Готовый реферат диод шоттки

Обновлено: 06.07.2024

Так как в современных блоках питания очень мощным становится и канал напряжения +12 В, то применение диодов Шоттки в этом канале также дало бы значительный энергетический эффект, однако их применение в канале +12 В нецелесообразно. Это связано с тем, что при обратном напряжении свыше 50 В (а в канале +12 В обратное напряжение может достигать величины и 60В), диоды Шоттки начинают плохо… Читать ещё >

Диод Шоттки ( реферат , курсовая , диплом , контрольная )

ВВЕДЕНИЕ

Диод Шоттки (также правильно Шотки, сокращённо ДШ) — с малым падением напряжения при прямом включении. Назван в честь немецкого физика Вальтера Шоттки. Диоды Шоттки используют переход металл-полупроводник в качестве барьера Шоттки (вместо p-n перехода, как у обычных диодов). Допустимое обратное напряжение промышленно выпускаемых диодов Шоттки ограничено 250 В (MBR40250 и аналоги), на практике большинство диодов Шоттки применяется в низковольтных цепях при обратном напряжении порядка единиц и нескольких десятков вольт.

Диоды Шоттки — составные части современных дискретных полупроводниковых приборов:

· МОП-транзисторы со встроенным обратным диодом Шоттки (впервые выпущены компанией International Rectifier под торговой маркой FETKY в 1996) — основной компонент синхронных выпрямителей. В отличие от обычного МОП-транзистора, обратный диод которого отличается высоким прямым падением напряжения и посредственными временнымми характеристиками (так как представляет из себя обычный диод на p-n переходе, образуемый областями стока и подложкой, объединённой с истоком), использование обратного диода Шоттки позволяет строить силовые синхронные выпрямители с частотой преобразования в сотни кГц и выше. Существуют приборы этого класса со встроенными драйверами затворов и устройствами управления синхронным выпрямлением.

· Так называемые ORing-диоды и ORing-сборки — силовые диоды и диодные сборки, применяемые для объединения параллельных источников питания общей нагрузки в устройствах повышенной надёжности (логическое ИЛИ по питанию). Отличаются особо низким, нормируемым прямым падением напряжения. Например, специализированный миниатюрный диод MBR140 (30 В, 1 А) при токе 100 мА имеет прямое падение напряжения не более 360 мВ при +25 °C и 300 мВ при +85 °C. ORing-диоды характеризуются относительно большой площадью p-n перехода и низкими удельными плотностями тока.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Виды и обозначение диодов

В зависимости от свойств и поведения ВАХ различают следующие виды диодов, ниже перечислены некоторые из них.

1) Выпрямительные диоды различных классов, отличающиеся напряжением, временем переключения, рабочей полосой частот. ВАХ как у обычного p-n-перехода. В качестве выпрямительных используют сплавные эпитаксиальные и диффузионные диоды, выполненные на основе несимметричных p-n-переходов. Для выпрямительных диодов характерны малые сопротивления и большие токи в прямом режиме. Барьерная емкость из-за большой площади перехода достигает значений десятков пикофарад. Германиевые выпрямительные диоды применяют до температур 70−80оС, кремниевые до 120−150оС, арсенид-галлиевые до 150оС.

Основные параметры выпрямительных диодов:

Uобр, макс — максимально допустимое обратное напряжение, которое диод может выдержать без нарушения его работоспособности;

Iвып, ср — средний выпрямленный ток;

Iпр, п — пиковое значение импульса тока при заданных максимальной длительности, скважности и формы импульса;

Uпр, ср — среднее прямое напряжение диода при заданном среднем значении прямого тока;

Pср — средняя за период мощность, рассеиваемая диодом, при протекании тока в прямом и обратном направлениях;

rдиф — дифференциальное сопротивление диода в прямом режиме.

Особо отметим класс импульсных диодов, имеющих очень малую длительность переходных процессов из-за малых емкостей переходов (доли пикофарад); уменьшение емкостей достигается за счет уменьшения площади p-n-перехода, поэтому допустимые мощности рассеяния у них меньше, чем у низкочастотных выпрямительных диодов. Их используют в импульсных схемах.

К параметрам, перечисленным выше, для импульсных диодов следует отнести общую емкость СД, максимальные импульсные прямые и обратные напряжения и токи, время установления прямого напряжения от момента подачи импульса прямого тока до достижения им заданного значения прямого напряжения и время восстановления обратного сопротивления диода с момента прохождения тока через нуль до момента, когда обратный ток достигает заданного малого значения (рис. 1).

2) Диод Шоттки — разновидность выпрямительных диодов, работающий на основе выпрямляющего контакта металл — полупроводник, образующего контактную разность потенциалов из-за перехода части электронов из полупроводника n-типа в металл и уменьшения концентрации электронов в полупроводниковой части контакта. Эта область обладает повышенным сопротивлением. При подключении внешнего источника плюсом к металлу, а минусом к полупроводнику, потенциальный барьер понизится и через переход пойдет прямой ток.

В диоде Шоттки отсутствуют явления накопления и рассасывания основных носителей, поэтому они очень быстродействующие и могут работать на частотах до десятков ГГц. Прямое напряжение составляет ~0,5 В, прямой допустимый ток может достигать сотни ампер, а обратное напряжение — сотен вольт. ВАХ диода Шотки напоминает характеристику обычных p-n-переходов, отличие состоит в том, что прямая ветвь в пределах 8−10 декад напряжения представляет почти идеальную экспоненциальную кривую, а обратные токи достаточно малы — 10−10…10−9 А.

Конструктивно диоды Шоттки выполняют в виде пластины из низкоомного кремния, на которую нанесена высокоомная эпитаксиальная пленка с электропроводностью того же типа. На поверхность пленки вакуумным напылением нанесен слой металла.

Диоды Шоттки применяют в переключательных схемах, а также в выпрямителях больших токов и в логарифмирующих устройствах, из-за соответствующей вида его ВАХ.

Таблица 1 Обозначение диода Шоттки на схеме и Вольтамперная характеристика

Обозначение на схеме

Диоды Шоттки в системных блоках питания. Характеристики, особенности применения и методы проверки

Как показывает текущая статистика отказов современных системных блоков питания, наибольшее количество неисправностей возникает во вторичных цепях источников питания.

Отказы силовых транзисторных ключей (наиболее типовая неисправность блоков питания предыдущих поколений) на сегодняшнее время случаются крайне редко, что является показателем тех успехов, которые были достигнуты за прошедшее пятилетие производителями силовой полупроводниковой электроники.

Одним из самых проблематичных узлов современных блоков питания становятся вторичные выпрямители на диодах Шоттки, что обусловлено большими значениями выходных токов блока питания.

Достоинства диодов Шоттки В то время как обычные кремниевые диоды имеют прямое падение напряжения около 0.6 — 0.7 В, применение диодов Шоттки позволяет снизить это значение до 0.2 — 0.4 В.

Столь малое прямое падение напряжения присуще только диодам Шоттки с максимальным обратным напряжением порядка десятков вольт.

При больших обратных напряжениях, прямое падение становится сравнимым с аналогичным параметром кремниевых диодов, что ограничивает применение диодов Шоттки низковольтными цепями. Например, для силового диода Шоттки 30Q150 с максимально возможным обратным напряжением (150 В) при прямом токе 15 А падение напряжение нормируется на уровне от 0.75 В (T = 125°C) до 1.07 В (T = -55°C).

Барьер Шоттки также имеет меньшую электрическую ёмкость перехода, что позволяет заметно повысить рабочую частоту диода.

Это свойство используется в интегральных микросхемах, где диодами Шоттки шунтируются переходы транзисторов логических элементов.

В силовой электронике малая ёмкость перехода (то есть короткое время восстановления) позволяет строить выпрямители, работающие на частотах в сотни кГц и выше. Например, диод MBR4015 (15 В, 40 А), оптимизированный под высокочастотное выпрямление, нормирован для работы при dV/dt до 1000 В/мс.Б.

Благодаря лучшим временным характеристикам и малым емкостям перехода, выпрямители на диодах Шоттки отличаются от традиционных диодных выпрямителей пониженным уровнем помех, что делает их наиболее предпочтительными для применения в импульсных блоках питания аналоговой и цифровой аппаратуры.

Недостатки диодов Шоттки Во-первых, при кратковременном превышении максимального обратного напряжения, диод Шоттки необратимо выходит из строя, в отличие от кремниевых диодов, которые переходят в режим обратного пробоя, и при условии непревышения рассеиваемой на диоде максимальной мощности, после падения напряжения диод полностью восстанавливает свои свойства.

Во-вторых, диоды Шоттки характеризуются повышенными (относительно обычных кремниевых диодов) обратными токами, возрастающими с ростом температуры кристалла. Для вышеупомянутого 30Q150 обратный ток при максимальном обратном напряжении изменяется от 0.12 мА при +25°C до 6.0 мА при +125°C. У низковольтных диодов в корпусах ТО-220 обратный ток может превышать величину в сотни миллиампер (MBR4015 — до 600 мА при +125°C). При неудовлетворительных условиях теплоотвода положительная обратная связь по теплу в диоде Шоттки приводит к его катастрофическому перегреву.

Вольтамперная характеристика барьера Шоттки имеет ярко выраженный несимметричный вид. В области прямых смещений ток экспоненциально растёт с увеличением приложенного напряжения. В области обратных смещений ток от напряжения не зависит. В обоих случаях, при прямом и обратном смещении, ток в барьере Шоттки обусловлен основными носителями заряда — электронами. По этой причине диоды на основе барьера Шоттки являются быстродействующими приборами, поскольку в них отсутствуют рекомбинационные и диффузионные процессы. Несимметричность вольт-амперной характеристики барьера Шоттки является типичной для барьерных структур. Зависимость тока от напряжения в таких структурах обусловлена изменением числа носителей, принимающих участие в процессах зарядопереноса. Роль внешнего напряжения заключается в изменении числа электронов, переходящих из одной части барьерной структуры в другую.

Диоды Шоттки в блоках питания В системных блоках питания, диоды Шоттки используются для выпрямления тока каналов +3.3 В и +5 В, а, как известно, величина выходных токов этих каналов составляет десятки ампер, что приводит к необходимости очень серьезно относиться к вопросам быстродействия выпрямителей и снижения их энергетических потерь. Решение этих вопросов способно значительно увеличить КПД источников питания и повысить надежность работы силовых транзисторов первичной части блока питания.

Итак, для уменьшения динамических коммутационных потерь и устранения режима короткого замыкания при переключении, в самых сильноточных каналах (+3.3 В и +5В), где эти потери наиболее значительны, в качестве выпрямительных элементов используются диоды Шоттки. Применение диодов Шоттки в этих каналах обусловлено следующими соображениями:

· Диод Шоттки является практически безынерционным прибором с очень малым временем восстановления обратного сопротивления, что приводит к уменьшению обратного вторичного тока и к уменьшению броска тока через коллекторы силовых транзисторов первичной части в момент переключения диода. Это в значительной степени снижает нагрузку на силовые транзисторы, и, как результат, увеличивает надежность блока питания.

Так как в современных блоках питания очень мощным становится и канал напряжения +12 В, то применение диодов Шоттки в этом канале также дало бы значительный энергетический эффект, однако их применение в канале +12 В нецелесообразно. Это связано с тем, что при обратном напряжении свыше 50 В (а в канале +12 В обратное напряжение может достигать величины и 60В), диоды Шоттки начинают плохо переключаться (слишком долго и при этом возникают значительные обратные токи утечки), что приводит к потере всех преимуществ их применения. Поэтому в канале +12 В используются быстродействующие кремниевые импульсные диоды. Хотя промышленностью сейчас выпускаются диоды Шоттки и с большим обратным напряжением, но их использование в блоках питания считается нецелесообразным по разным причинам, в том числе и экономического плана. Но в любых правилах имеются исключения, поэтому в отдельных блоках питания можно встретить диодные сборки Шоттки и в каналах +12 В.

В современных системных блоках питания компьютеров диоды Шоттки представляют собой, как правило, диодные сборки из двух диодов (диодные полумосты), что однозначно повышает технологичность и компактность блоков питания, а также улучшает условия охлаждения диодов. Использование отдельных диодов, а не диодных сборок, является сейчас показателем низкокачественного блока питания.

Диодные сборки выпускается, в основном, в трех типах корпусов:

· TO-220 (менее мощные сборки с рабочими токами до 20 А, иногда до 25−30А);

· TO-247 (более мощные сборки с рабочими токами 30 — 40 А);

· TO-3P (мощные сборки).

Электрические характеристики диодных сборок, наиболее часто используемых в современных системных блоках питания представлены в табл.1.

Взаимозаменяемость диодных сборок определяется, исходя из их характеристик. Естественно, что при невозможности использовать диодную сборку с абсолютно такими же характеристиками, лучше проводить замену на прибор с большими значениями тока и напряжения. В противном случае гарантировать стабильную работу блока питания будет невозможно. Известны случаи, когда производители применяют в своих блоках питания диодные сборки со значительным запасом по мощности (хотя чаще приходится наблюдать ситуацию, как раз, обратную), и при ремонте можно установить прибор с меньшими значениями тока или напряжения. Однако при такой замене необходимо самым тщательным образом проанализировать характеристики блока питания и его нагрузки, и вся ответственность за последствия такой доработки, естественно, ложится на плечи специалиста, производящего ремонт.

Проявление неисправностей диодов Шоттки Как уже отмечалось, неисправность диодов Шоттки является одной из основных проблем современных блоков питания. Так по каким же предварительным признакам можно предположительно определить их неисправность? Таких признаков несколько.

Во-первых, при пробоях и утечках вторичных выпрямительных диодов, как правило, срабатывает защита, и блок питания не запускается. Это может проявляться по-разному:

· Признаком неисправности диодов Шоттки является чрезвычайно сильный разогрев вторичного радиатора, на котором они установлены.

Кроме того, необходимо осознавать, что в блоках питания с плохой и непродуманной схемотехникой, утечки выпрямительных диодов приводят к перегрузкам первичной цепи и к всплескам тока через силовые транзисторы, что может стать причиной их отказа. Таким образом, профессиональный подход к ремонту блоков питания, диктует обязательную проверку вторичных выпрямительных диодов при каждой замене силовых транзисторов-ключей первичной части блока питания.

Диагностика диодов Шоттки Проверка и точная диагностика диодов Шоттки, на практике, является достаточно непростым делом, т.к. многое здесь определяется типом используемого измерительного прибора и опытом подобных измерений, хотя определить обычный пробой одного или двух диодов диодной сборки Шоттки не составляет особого труда. Для этого необходимо выпаять диодную сборку и проверить тестером так, как это делается для обычных диодов. При подобной диагностике тестер необходимо установить в режим проверки диодов. Неисправный диод в обоих направлениях покажет одинаковое сопротивление (как правило, очень малое, т. е. покажет короткое замыкание), что и указывает на его непригодность для дальнейшего использования. Однако явные пробои диодных сборок в практике встречаются очень и очень редко.

Иногда встречаются ситуации, когда выходит из строя только один из диодов сборки. В этом случае неисправность также легко выявляется методом сравнения обратного сопротивления двух диодов одной сборки. Диоды одной сборки должны иметь одинаковое сопротивление.

Вот так можно попытаться проверить диод Шоттки, однако предложенными методиками не стоит злоупотреблять, т. е. не следует проводить проверки на слишком большом пределе измерений сопротивления и слишком сильно разогревать диод, т.к. теоретически, все это может привести к повреждению диода.

Кроме того, из-за возможности отказа диодов Шоттки под действием температуры, необходимо строго соблюдать все рекомендуемые условия пайки (температурный режим и время пайки). Хотя надо отдать должное производителям диодов, так как многие из них добились того, что монтаж сборок можно в течение 10 секунд осуществлять при высокой температуре.

Выпрямительные диоды Шоттки. Время перезарядки барьерной ёмкости перехода и сопротивление базы диода. ВАХ кремниевого диода Шоттки 2Д219 при разных температурах. Импульсные диоды. Номенклатура составных частей дискретных полупроводниковых приборов.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 20.06.2011
Размер файла 71,2 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Государственное образовательное учреждение высшего профессионального образования

Национальный Исследовательский Томский Политехнический Университет

Выполнили Студент гр1Д90

Введение

Диод Шоттки - это полупроводниковый диод, выпрямительные свойства которого основаны на использовании выпрямляющего электрического перехода между металлом и полупроводником. Назван в честь немецкого физика Вальтера Шоттки. Диоды Шоттки используют переход металл-полупроводник в качестве барьера Шоттки (вместо p-n-перехода, как у обычных диодов).

Для многих видов диодов (таких как выпрямительные плоскостные низкочастотные диоды, импульсные диоды и т.д.), основным физическим процессом, ограничивающим диапазон рабочих частот, оказывался процесс накопления и рассасывания неосновных носителей заряда в базе диода. Другой физический процесс - перезаряд барьерной ёмкости выпрямляющего электрического перехода - имел в рассмотренных диодах второстепенное значение и сказывался на их частотных свойствах только при определенных условиях. Поэтому были выдвинуты требования к конструкции и технологии изготовления диодов, выполнение которых обеспечивало бы ускорение рассасывания накопленных в базе за время действия прямого напряжения неосновных носителей заряда. Понятно, что если исключить инжекцию неосновных носителей заряда при работе диода, то не было бы накопления этих неосновных носителей в базе и соответственно относительно медленного процесса их рассасывания. Среди немногих возможностей практически полного устранения инжекции неосновных носителей заряда при сохранении выпрямительных свойств полупроводниковых диодов, используется выпрямляющий переход Шоттки т.е. выпрямляющего электрического перехода, образованного в результате контакта между металлом и полупроводником. На таком переходе высота потенциального барьера для электронов и дырок может существенно отличаться. Поэтому при включении выпрямляющего перехода Шотки в прямом направлении прямой ток возникает благодаря движению основных носителей заряда полупроводника в металл, а носители другого знака (неосновные для полупроводника) практически не могут прейти из металла в полупроводник из-за высокого для них потенциального барьера на переходе.

Основная часть

Выпрямительные диоды Шот тки

На частотные свойства диодов Шоттки основное влияние должно оказывать время перезарядки барьерной ёмкости перехода. Постоянная времени перезарядки зависит и от сопротивления базы диода

Поэтому выпрямляющий переход Шоттки целесообразнее создавать на кристалле полупроводника с электропроводностью n-тип а - подвижность электронов больше подвижности дырок. По той же причине должна быть большой и концентрация примесей в кристалле полупроводника.

Однако толщина потенциального барьера Шоттки, возникающего в полупроводнике вблизи границы раздела с металлом, должна быть достаточно большой. Только при большой толщине потенциального барьера (перехода Шоттки) можно будет, во-первых, устранить вероятность туннелирования носителей заряда сквозь потенциальный барьер, во-вторых, получить достаточные значении пробивного напряжения и, в-третьих, получить меньшие значения удельной (на единицу площади) барьерной ёмкости перехода. А толщина перехода или потенциального барьера зависит от концентрации примесей в полупроводнике: чем больше концентрация примесей, тем тоньше переход. Отсюда следует противоположное требование меньшей концентрации примесей в полупроводнике.

Учёт этих противоречивых требований к концентрации примесей в исходном полупроводнике приводит к необходимости создания двухслойной базы диода Шотки (рис. 1). Основная часть кристалла - подложка толщиной около 0,2 мм - содержит большую концентрацию примесей и имеет малое удельное сопротивление. Тонкий монокристаллический слой того же самого полупроводника (толщиной в несколько микрометров) с той же электропроводностью n-типа может быть получен на поверхности подложки методом эпитаксиального наращивания. Концентрация доноров в эпитаксиальном слое должна быть значительно меньше, чем концентрация доноров в подложке.

Рис. 1. Варианты структур диодов Шотки с двухслойной базой

В качестве исходного полупроводникового материала для выпрямительных диодов Шоттки можно использовать кремний или арсенид галлия. Однако в эпитаксиальных слоях арсенида галлия не удаётся пока достичь малой концентрации дефектов и достаточно низкой концентрации доноров. Поэтому пробивное напряжение диодов Шоттки на основе арсенида галлия оказывается низким, что является существенным недостатком для выпрямительных диодов.

Металлический электрод на эпитаксиальный слой полупроводника обычно наносят методом испарения в вакууме с последующим осаждением на поверхность эпитаксиального слоя. Перед нанесением металлического электрода целесообразно методами фотолитографии создать окна в оксидном слое на поверхности полупроводника. Так легче получить выпрямляющий переход Шотки необходимой площади и конфигурации.

Выпрямительные низкочастотные диоды предпочтительнее изготовлять с p-n-переходом. Выпрямительные диоды Шоттки в области низких частот могут в перспективе иметь преимущество перед диодами с p-n-переходом, связанное с простотой изготовления.

Наибольшие преимущества перед диодами с p-n-переходом диоды Шоттки должны иметь при выпрямлении больших токов высокой частоты. Здесь кроме лучших частотных свойств диодов Шотки следует отметить такие их особенности: меньшее прямое напряжение из-за меньшей высоты потенциального барьера для основных носителей заряда полупроводника; большая максимально допустимая плотность прямого тока, что связано, во-первых, с меньшим прямым напряжением и, во-вторых, с хорошим теплоотводом от выпрямляющего перехода Шоттки. Действительно, металлический слой, находящийся с одной стороны перехода Шотки, по своей теплопроводности превосходит любой сильнолегированный слой полупроводника. По этим же причинам выпрямительные диоды Шотки должны выдерживать значительно большие перегрузки по току по сравнению с аналогичными диодами с p-n-переходом на основе того же самого полупроводникового материала.

Ещё одна особенность диодов Шотки заключается в идеальности прямой ветви ВАХ - прямая ветвь ВАХ соответствует выражению:

При этом с изменением прямого тока в пределах нескольких порядков зависимость

близка к линейной, или в показателе экспоненты при изменении тока не появляется дополнительных множителей. Учитывая эту особенность, диоды Шотки можно использовать в качестве быстродействующих логарифмических элементов.

На рис. 2 показаны ВАХ кремниевого диода Шоттки 2Д219, рассчитанного на максимально допустимый прямой ток 10 А. Прямое напряжение на диоде при максимально допустимом прямом токе не более 0,6 В, максимально допустимое обратное напряжение для диода 2Д219Б 20 В. Эти диоды допускают прохождение импульсов тока длительностью до 10 мс с периодом повторения не менее 10 мин с амплитудой, в 25 раз превышающей максимально допустимый прямой ток. Диоды рассчитаны на частоту выпрямляемого тока 0,2 МГц.

Рис. 2. ВАХ кремниевого диода Шоттки 2Д219 при разных температурах

Импульсные диоды Шоттки

Исходным полупроводниковым материалом для этих диодов может быть, так же как и для выпрямительных диодов Шоттки, кремний или арсенид галлия. Но предпочтение здесь должно быть отдано арсениду галлия, так как в этом материале время жизни неосновных носителей заряда может быть менее с. Несмотря на практическое отсутствие инжекции неосновных носителей заряда через переход Шотки при его включении в прямом направлении (что уже было отмечено ранее), при больших прямых напряжениях и плотностях прямого тока существует, конечно, некоторая составляющая прямого тока, связанная с инжекцией неосновных носителей заряда в полупроводник. Поэтому требование малости времени жизни неосновных носителей в исходном полупроводниковом материале остается и для импульсных диодов Шоттки.

Арсенид галлия пока не удаётся получить с малой концентрацией дефектов, в результате чего арсенид-галлиевые диоды имеют относительно малые значения пробивных напряжений, далёкие от теоретически возможных. Это является существенным недостатком для выпрямительных диодов, но не столь важно для импульсных диодов, так как большая часть импульсных схем - это низковольтные схемы.

Выпускаемые промышленностью арсенид-галлиевые импульсные диоды Шоттки (3А527А, 3А530Б и др.) предназначены для использования в импульсных схемах пико- и наносекундного диапазона. В отличие от выпрямительных диодов Шоттки они имеют значительно меньшие площади выпрямляющих переходов. Поэтому общая емкость этих диодов не превышает 1 пФ даже при нулевом постоянном напряжении смещения.

Допустимое обратное напряжение промышленно выпускаемых диодов Шоттки ограничено 250 В (MBR40250 и аналоги), на практике большинство диодов Шоттки применяется в низковольтных цепях при обратном напряжении порядка единиц и нескольких десятков вольт

Номенклатура диодов Шоттки

Диоды Шоттки -- составные части современных дискретных полупроводниковых приборов:

· МОП-транзисторы со встроенным обратным диодом Шоттки (впервые выпущены компанией International Rectifier под торговой маркой FETKY в 1996) -- основной компонент синхронных выпрямителей. В отличие от обычного МОП-транзистора, обратный диод которого отличается высоким прямым падением напряжения и посредственными временнымми характеристиками (т.к. представляет из себя обычный диод на p-n переходе, образуемый областями стока и подложкой, объединённой с истоком), использование обратного диода Шоттки позволяет строить силовые синхронные выпрямители с частотой преобразования в сотни кГц и выше. Существуют приборы этого класса со встроенными драйверами затворов и устройствами управления синхронным выпрямлением.

· Так называемые ORing-диоды и ORing-сборки -- силовые диоды и диодные сборки, применяемые для объединения параллельных источников питания общей нагрузки в устройствах повышенной надёжности (логическое ИЛИ по питанию). Отличаются особо низким, нормируемым прямым падением напряжения. Например, специализированный миниатюрный диод MBR140 (30 В, 1 А) при токе 100 мА имеет прямое падение напряжения не более 360 мВ при +25 °C и 300 мВ при +85 °C. ORing-диоды характеризуются относительно большой площадью P-N перехода и низкими удельными плотностями тока.

Заключение

диод шоттка кремниевый импульсный

· В то время, как обычные кремниевые диоды имеют прямое падение напряжения около 0,6--0,7 вольт, применение диодов Шоттки позволяет снизить это значение до 0,2--0,4 вольт. Столь малое прямое падение напряжения присуще только диодам Шоттки с максимальным обратным напряжением порядка десятков вольт, выше же падение напряжения становится сравнимым с аналогичным параметром кремниевых диодов, что ограничивает применение диодов Шоттки. Например, для силового диода Шоттки 30Q150 с максимально возможным обратным напряжением (150 В) при прямом токе 15 А падение напряжения нормируется на уровне от 0,75 В (T = 125 °C) до 1,07 В (T = ?55 °C).

· Барьер Шоттки (открыл нем. физик Вальтер Шоттки -- Walter Schottky) также имеет меньшую электрическую ёмкость перехода, что позволяет заметно повысить рабочую частоту. Это свойство используется в интегральных микросхемах, где диодами Шоттки шунтируются переходы транзисторов логических элементов. В силовой электронике малое время восстановления позволяет строить выпрямители на частоты в сотни кГц и выше. Например, диод MBR4015 (15 В, 40 А), оптимизированный под высокочастотное выпрямление, нормирован для работы при dV/dt до 10 кВ/мкс.

· Благодаря лучшим временнымм характеристикам и малым ёмкостям перехода выпрямители на диодах Шоттки отличаются от традиционных диодных выпрямителей пониженным уровнем помех, поэтому они предпочтительны в традиционных трансформаторных блоках питания аналоговой аппаратуры.

· при кратковременном превышении максимального обратного напряжения диод Шоттки необратимо выходит из строя (КЗ -- короткое замыкание), в отличие от кремниевых диодов, которые переходят в режим обратимого пробоя, и, при условии непревышения рассеиваемой на диоде максимальной мощности после падения напряжения, диод полностью восстанавливает свои свойства.

· диоды Шоттки характеризуются повышенными (относительно обычных кремниевых диодов) обратными токами, возрастающими с ростом температуры кристалла. Для вышеупомянутого 30Q150 обратный ток при максимальном обратном напряжении изменяется от 0,12 мА при +25 °C до 6,0 мА при +125 °C. У низковольтных диодов в корпусах ТО220 обратный ток может превышать сотни миллиампер (MBR4015 -- до 600 мА при +125 °C). При неудовлетворительных условиях теплоотвода положительная обратная связь по теплу в диоде Шоттки приводит к его катастрофическому перегреву.

Список используемой литературы

1) Полупроводниковые приборы, 2006 г. В.В. Пасынков, Л.К. Чиркин

2) Полупроводниковые сверхвысокочастотные диоды, 1983 г. М.С. Гусятинер, А.И. Горбачев.

Для многих видов диодов (таких как выпрямительные плоскостные низкочастотные диоды, импульсные диоды и т.д.), основным физическим процессом, ограничивающим диапазон рабочих частот, оказывался процесс накопления и рассасывания неосновных носителей заряда в базе диода. Другой физический процесс – перезаряд барьерной ёмкости выпрямляющего электрического перехода – имел в рассмотренных диодах второстепенное значение и сказывался на их частотных свойствах только при определенных условиях. Поэтому были выдвинуты требования к конструкции и технологии изготовления диодов, выполнение которых обеспечивало бы ускорение рассасывания накопленных в базе за время действия прямого напряжения неосновных носителей заряда. Понятно, что если исключить инжекцию неосновных носителей заряда при работе диода, то не было бы накопления этих неосновных носителей в базе и соответственно относительно медленного процесса их рассасывания. Здесь можно перечислить несколько возможностей практически полного устранения инжекции неосновных носителей заряда при сохранении выпрямительных свойств полупроводниковых диодов.

1. Использование в качестве выпрямляющего электрического перехода (гетероперехода), т.е. электрического перехода, образованного в результате контакта полупроводников с различной шириной запрещённой зоны. Инжекция неосновных носителей при прямом включении будет отсутствовать при выполнении ряда условий и, в частности, при одинаковом типе электропроводности полупроводников, образующих гетеропереход. Этот способ устранения инжекции неосновных носителей заряда пока не нашел широкого применения в промышленном производстве монокристаллических полупроводниковых диодов из-за технологических трудностей.

2. Использование для выпрямления эффекта туннелирования.

3. Инвертирование диодов, т.е. использование для выпрямления только обратной ветви ВАХ вместе с участком, соответствующим лавинному пробою. Этот способ не нашёл применения из-за необходимости иметь для каждого диода своё напряжение смещения, почти равное напряжению пробоя. Кроме того, в начальной стадии лавинного пробоя в диоде возникают шумы.

4. Использование выпрямляющего перехода Шотки, т.е. выпрямляющего электрического перехода, образованного в результате контакта между металлом и полупроводником. На таком переходе высота потенциального барьера для электронов и дырок может существенно отличаться. Поэтому при включении выпрямляющего перехода Шотки в прямом направлении прямой ток возникает благодаря движению основных носителей заряда полупроводника в металл, а носители другого знака (неосновные для полупроводника) практически не могут прейти из металла в полупроводник из-за высокого для них потенциального барьера на переходе.

Таким образом, на основе выпрямляющего перехода Шотки могут быть созданы выпрямительные, импульсные и сверхвысокочастотные полупроводниковые диоды, отличающиеся от диодов с p - n - переходом лучшими частотными свойствами.

Выпрямительные диоды Шотки


На частотные свойства диодов Шотки основное влияние должно оказывать время перезарядки барьерной ёмкости перехода. Постоянная времени перезарядки зависит и от сопротивления базы диода . Поэтому выпрямляющий переход Шотки целесообразнее создавать на кристалле полупроводника с электропроводностью n -типа – подвижность электронов больше подвижности дырок. По той же причине должна быть большой и концентрация примесей в кристалле полупроводника.

Однако толщина потенциального барьера Шотки, возникающего в полупроводнике вблизи границы раздела с металлом, должна быть достаточно большой. Только при большой толщине потенциального барьера (перехода Шотки) можно будет, во-первых, устранить вероятность туннелирования носителей заряда сквозь потенциальный барьер, во-вторых, получить достаточные значении пробивного напряжения и, в-третьих, получить меньшие значения удельной (на единицу площади) барьерной ёмкости перехода. А толщина перехода или потенциального барьера зависит от концентрации примесей в полупроводнике: чем больше концентрация примесей, тем тоньше переход. Отсюда следует противоположное требование меньшей концентрациипримесей в полупроводнике.

Учёт этих противоречивых требований к концентрации примесей в исходном полупроводнике приводит к необходимости создания двухслойной базы диода Шотки (рис. 1). Основная часть кристалла – подложка толщиной около 0,2 мм – содержит большую концентрацию примесей и имеет малое удельное сопротивление. Тонкий монокристаллический слой того же самого полупроводника (толщиной в несколько микрометров) с той же электропроводностью n -типа может быть получен на поверхности подложки методом эпитаксиального наращивания. Концентрация доноров в эпитаксиальном слое должна быть значительно меньше, чем концентрация доноров в подложке.


Рис. 1. Варианты структур диодов Шотки с двухслойной базой

В качестве исходного полупроводникового материала для выпрямительных диодов Шотки можно использовать кремний или арсенид галлия. Однако в эпитаксиальных слоях арсенида галлия не удаётся пока достичь малой концентрации дефектов и достаточно низкой концентрации доноров. Поэтому пробивное напряжение диодов Шотки на основе арсенида галлия оказывается низким, что является существенным недостатком для выпрямительных диодов.

Металлический электрод на эпитаксиальный слой полупроводника обычно наносят методом испарения в вакууме с последующим осаждением на поверхность эпитаксиального слоя. Перед нанесением металлического электрода целесообразно методами фотолитографии создать окна в оксидном слое на поверхности полупроводника. Так легче получить выпрямляющий переход Шотки необходимой площади и конфигурации.

Выпрямительные низкочастотные диоды предпочтительнее изготовлять с p - n - переходом. Выпрямительные диоды Шотки в области низких частот могут в перспективе иметь преимущество перед диодами с p - n - переходом, связанное с простотой изготовления.

Наибольшие преимущества перед диодами с p - n -переходом диоды Шотки должны иметь при выпрямлении больших токов высокой частоты. Здесь кроме лучших частотных свойств диодов Шотки следует отметить такие их особенности: меньшее прямое напряжение из-за меньшей высоты потенциального барьера для основных носителей заряда полупроводника; большая максимально допустимая плотность прямого тока, что связано, во-первых, с меньшим прямым напряжением и, во-вторых, с хорошим теплоотводом от выпрямляющего перехода Шотки. Действительно, металлический слой, находящийся с одной стороны перехода Шотки, по своей теплопроводности превосходит любой сильнолегированный слой полупроводника. По этим же причинам выпрямительные диоды Шотки должны выдерживать значительно большие перегрузки по току по сравнению с аналогичными диодами с p - n -переходом на основе того же самого полупроводникового материала.

Ещё одна особенность диодов Шотки заключается в идеальности прямой ветви ВАХ – прямая ветвь ВАХ соответствует выражению: . При этом с изменением прямого тока в пределах нескольких порядков зависимость близка к линейной, или в показателе экспоненты при изменении тока не появляется дополнительных множителей. Учитывая эту особенность, диоды Шотки можно использовать в качестве быстродействующих логарифмических элементов.

На рис. 2 показаны ВАХ кремниевого диода Шотки 2Д219, рассчитанного на максимально допустимый прямой ток 10 А. Прямое напряжение на диоде при максимально допустимом прямом токе не более 0,6 В, максимально допустимое обратное напряжение для диода 2Д219Б 20 В. Эти диоды допускают прохождение импульсов тока длительностью до 10 мс с периодом повторения не менее 10 мин с амплитудой, в 25 раз превышающей максимально допустимый прямой ток. Диоды рассчитаны на частоту выпрямляемого тока 0,2 МГц.

диод устройство полупроводник шотки


Рис. 2. ВАХ кремниевого диода Шотки 2Д219 при разных температурах

Импульсные диоды Шотки


Исходным полупроводниковым материалом для этих диодов может быть, так же как и для выпрямительных диодов Шотки, кремний или арсенид галлия. Но предпочтение здесь должно быть отдано арсениду галлия, так как в этом материале время жизни неосновных носителей заряда может быть менее с. Несмотря на практическое отсутствие инжекции неосновных носителей заряда через переход Шотки при его включении в прямом направлении (что уже было отмечено ранее), при больших прямых напряжениях и плотностях прямого тока существует, конечно, некоторая составляющая прямого тока, связанная с инжекцией неосновных носителей заряда в полупроводник. Поэтому требование малости времени жизни неосновных носителей в исходном полупроводниковом материале остается и для импульсных диодов Шотки.

Арсенид галлия пока не удаётся получить с малой концентрацией дефектов, в результате чего арсенид-галлиевые диоды имеют относительно малые значения пробивных напряжений, далёкие от теоретически возможных. Это является существенным недостатком для выпрямительных диодов, но не столь важно для импульсных диодов, так как большая часть импульсных схем – это низковольтные схемы.

Выпускаемые промышленностью арсенид-галлиевые импульсные диоды Шотки (3А527А, 3А530Б и др.) предназначены для использования в импульсных схемах пико- и наносекундного диапазона. В отличие от выпрямительных диодов Шотки они имеют значительно меньшие площади выпрямляющих переходов. Поэтому общая емкость этих диодов не превышает 1 пФ даже при нулевом постоянном напряжении смещения.

Список используемой литературы

1) Полупроводниковые приборы, 2006 г. В.В. Пасынков, Л.К. Чиркин

2) Полупроводниковые сверхвысокочастотные диоды, 1983 г. М.С. Гусятинер, А.И. Горбачев.

Физические исследования контакта металл - полупроводник стимулировались прогрессом в области точечно-контактных полупроводниковых выпрямителей. В предвоенные годы немецкий ученый Шоттки получил основные математические соотношения, описывающие электрические характеристики этого контакта, вследствие чего подобную структуру стали называть барьером Шоттки. Однако многие замечательные свойства, предсказываемые теорией для барьера Шоттки, практически наблюдать не удалось из-за очень резкого отличия точечных диодов от идеализированной модели (значительные механические напряжения в приконтактной области, наличие промежуточных окисных слоев, мультиконтактность и т. п.).

Содержание
Прикрепленные файлы: 1 файл

Реферат диод Шотки (крайняя версия 2).docx

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ВЫСШЕГО ПРООФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра физики полупроводников и микроэлектроники

Исполнитель: студент 4 курса, Богданов М.С.

Содержание

Глава 3. Применение диодов Шоттки………………………………………

Глава 4. Производство диодов Шоттки…………………………………….

Физические исследования контакта металл - полупроводник стимулировались прогрессом в области точечно-контактных полупроводниковых выпрямителей. В предвоенные годы немецкий ученый Шоттки получил основные математические соотношения, описывающие электрические характеристики этого контакта, вследствие чего подобную структуру стали называть барьером Шоттки. Однако многие замечательные свойства, предсказываемые теорией для барьера Шоттки, практически наблюдать не удалось из-за очень резкого отличия точечных диодов от идеализированной модели (значительные механические напряжения в приконтактной области, наличие промежуточных окисных слоев, мультиконтактность и т. п.). Этим, а также большими успехами приборов с p-n-переходами и объясняется тот ограниченный интерес в отношении исследований контакта металл - полупроводник и создания приборов на его основе.

Лишь в последние годы в связи с небывалыми успехами полупроводниковой технологии стало возможным получение структур, близких к идеальному барьеру Шоттки, и практическое конструирование на этой основе различных приборов. Это обусловливает тот огромный интерес, который проявляют к барьеру Шоттки специалисты в области физики, технологии и применения полупроводниковых приборов.

Глава 1. Диоды.

Дио́д (от др.-греч. δις[1] — два и -од[2] означающего путь) — двухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключаемый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключаемый к отрицательному полюсу — катодом.

В зависимости от свойств и поведения ВАХ различают следующие виды диодов, ниже перечислены некоторые из них. Выпрямительные диоды различных классов, отличающиеся напряжением, временем переключения, рабочей полосой частот. ВАХ как у обычного p-n-перехода. В качестве выпрямительных используют сплавные эпитаксиальные и диффузионные диоды, выполненные на основе несимметричных p-n-переходов. Для выпрямительных диодов характерны малые сопротивления и большие токи в прямом режиме. Барьерная емкость из-за большой площади перехода достигает значений десятков пикофарад. Германиевые выпрямительные диоды применяют до температур 70-80 , кремниевые до 120-150 , арсенид-галлиевые до 150.

Основные параметры выпрямительных диодов: максимально допустимое обратное напряжение, которое диод может выдержать без нарушения его работоспособности; средний выпрямленный ток; пиковое значение импульса тока при заданных максимальной длительности, скважности и формы импульса; среднее прямое напряжение диода при заданном среднем значении прямого тока; средняя за период мощность, рассеиваемая диодом, при протекании тока в прямом и обратном направлениях; дифференциальное сопротивление диода в прямом режиме.

Глава 2. Диод Шоттки

Диод Шоттки – это полупроводниковый диод, выпрямительные свойства которого основаны на использовании выпрямляющего электрического перехода между металлом и полупроводником

Эффект Шотки возникает при контакте металла с полупроводниковым материалом. В самых старых диодах (точечных) использовалось металлическое остриё. В металле при его соприкосновении с полупроводником образуется область пространственного заряда, что позволяет току течь в одном направлении, но не пропускает его в другом. Диоды Шотки являются развитием этой технологии. Современные диоды Шотки имеют структуру, изображённую на Рис.1

Рис.1 Структура современного диода Шоттки

Рис 2. Схема контакта металл - полупроводник (а) и его энергетическая диаграмма при нулевом (б), прямом (г) и обратном (д) смещении

Рассмотрим особенности работы диода с барьером Шоттки на основе контакта металла с полупроводником n-типа для случая, когда работа выхода металла больше, чем работа выхода полупроводника (Рис 2 а). При образовании контакта электроны переходят из материала с меньшей работой выхода в материал с большей работой выхода, в результате чего уровни Ферми металла и полупроводника выравниваются. При этом полупроводник оказывается заряженным положительно, а возникающее внутреннее электрическое поле препятствует переходу электронов в металл. Между металлом и полупроводником возникает контактная разность потенциалов Uк=Aп-Ам (Ап и Ам работа выхода полупроводника и металла соответственно).

Благодаря разности работ выхода металла и полупроводника между ними происходит обмен электронами. Электроны из полупроводника, имеющего меньшую работу выхода, переходят в металл с большей работой выхода. В равновесном состоянии (рис. 2 а) металл заряжается отрицательно, в результате чего возникает электрическое поле, прекращающее однородный переход электронов.

Из-за резкого различия концентраций свободных электронов по обе стороны от контакта практически все падение напряжения приходится на приконтактную область полупроводника. Приложенное внешнее напряжение изменяет высоту барьера лишь со стороны полупроводника. Электроны зоны проводимости отталкиваются возникшим контактным полем. Создается обедненный слой с пониженной концентрацией подвижных носителей. Около контакта вследствие изгиба границ зон полупроводник n-типа переходит в полупроводник p-типа.

Распределение электрического поля (рис. 2 в) и объемного заряда в этом случае описывается теми же уравнениями, что и для резкого p-n-перехода. В полупроводнике возникает область, обедненная основными носителями заряда с пониженной проводимостью, ширина которой зависит от уровня легирования полупроводника. В состоянии равновесия поток электронов (основных носителей полупроводника) в металл уравновешивается потоком электронов из металла в полупроводник.

При прямом смещении (рис. 2 г) потенциальный барьер со стороны полупроводника понижается и число переходов электронов в металл увеличивается. При обратном смещении (рис. 2 д), напротив, ток из полупроводника уменьшается, стремясь с ростом напряжения к нулю. Ток электронов из металла все время остается неизменным: роль его незначительна при прохождении прямого тока, им же обусловлен ток утечки при обратном смещении. Величина этого обратного тока в приборах с барьером Шоттки порядка единиц микроампер.

В реальных контактах линейная зависимость высоты барьера от работы выхода металла наблюдается редко ввиду того, что на поверхности полупроводника из-за её неидеальности, имеются поверхностные заряды. При нанесении металла такой поверхностный заряд экранирует влияние металла, вследствие чего высота потенциального барьера в основном определяется состоянием поверхности полупроводника. Кроме того, на свойства контакта металл - полупроводник влияют токи утечки, токи генерации - рекомбинации носителей заряда в обедненной области и возможность туннельного перехода электронов в случае сильнолегированного полупроводника.

Диоде Шоттки отсутствуют накопление неосновных носителей заряда в областях диода при прямом напряжении и рассасывание этого заряда при изменении знака напряжения. Это улучшает быстродействие диода, т. е. частотные и импульсные свойства. Время восстановления обратного сопротивления с диодом Шоттки при использовании кремния и золота - примерно 10 нс и меньше.

Достоинством диода Шоттки при современном уровне технологии является также то, что его вольт-амперная характеристика оказывается очень близкой к характеристике идеализированного p-n-перехода.

Ток в полупроводниковом материале представляет собой поток электронов. Электроны — основные носители заряда, и скорость протекания тока выше, чем p-материале плоскостного диода. Поэтому диоды Шоттки — самые быстродействующие из всех диодов. Поскольку в области перехода отсутствуют неосновные носители заряда, диод запирается сразу же, как только прикладываемое напряжение снижается до нуля. Однако процесс заряда ёмкости перехода вызывает протекание обратного тока. Эта ёмкость весьма мала, поэтому и обратный ток имеет чрезвычайно низкую величину. Диоды Шотки характеризуются практически нулевым временем прямого и обратного восстановления, потому что их проводимость не зависит от неосновных носителей заряда.

Прямое падение напряжения у кремниевого диода Шоттки очень мало, обычно порядка 0.2. 0.45 В. Падение напряжения пропорционально максимальному обратному напряжению. Например, падение напряжения на диоде с обратным напряжением 10 В может составлять всего лишь 0.3 В. Чем выше максимальное обратное напряжение и номинальный ток, тем больше прямое падение напряжения вследствие увеличения толщины n-слоя. Диод с повышенной предельно допустимой температурой имеет большее прямое падение напряжения, которое уменьшается с понижением температуры перехода. Этот отрицательный температурный коэффициент по току позволяет снизить рассеивание мощности, но усложняет параллельное включение диодов.

Для многих видов диодов (таких как выпрямительные плоскостные низкочастотные диоды, импульсные диоды и т.д.), основным физическим процессом, ограничивающим диапазон рабочих частот, оказывался процесс накопления и рассасывания неосновных носителей заряда в базе диода. Другой физический процесс – перезаряд барьерной ёмкости выпрямляющего электрического перехода – имел в рассмотренных диодах второстепенное значение и сказывался на их частотных свойствах только при определенных условиях. Поэтому были выдвинуты требования к конструкции и технологии изготовления диодов, выполнение которых обеспечивало бы ускорение рассасывания накопленных в базе за время действия прямого напряжения неосновных носителей заряда. Понятно, что если исключить инжекцию неосновных носителей заряда при работе диода, то не было бы накопления этих неосновных носителей в базе и соответственно относительно медленного процесса их рассасывания. Здесь можно перечислить несколько возможностей практически полного устранения инжекции неосновных носителей заряда при сохранении выпрямительных свойств полупроводниковых диодов.

1. Использование в качестве выпрямляющего электрического перехода (гетероперехода), т.е. электрического перехода, образованного в результате контакта полупроводников с различной шириной запрещённой зоны. Инжекция неосновных носителей при прямом включении будет отсутствовать при выполнении ряда условий и, в частности, при одинаковом типе электропроводности полупроводников, образующих гетеропереход. Этот способ устранения инжекции неосновных носителей заряда пока не нашел широкого применения в промышленном производстве монокристаллических полупроводниковых диодов из- за технологических трудностей.

2. Использование для выпрямления эффекта туннелирования.

3. Инвертирование диодов, т.е. использование для выпрямления только обратной ветви ВАХ вместе с участком, соответствующим лавинному пробою. Этот способ не нашёл применения из-за необходимости иметь для каждого диода своё напряжение смещения, почти равное напряжению пробоя. Кроме того, в начальной стадии лавинного пробоя в диоде возникают шумы.

4. Использование выпрямляющего перехода Шоттки, т.е. выпрямляющего электрического перехода, образованного в результате контакта между металлом и полупроводником. На таком переходе высота потенциального барьера для электронов и дырок может существенно отличаться. Поэтому при включении выпрямляющего перехода Шоттки в прямом направлении прямой ток возникает благодаря движению основных носителей заряда полупроводника в металл, а носители другого знака (неосновные для полупроводника) практически не могут прейти из металла в полупроводник из-за высокого для них потенциального барьера на переходе.

Таким образом, на основе выпрямляющего перехода Шоттки могут быть созданы выпрямительные, импульсные и сверхвысокочастотные полупроводниковые диоды, отличающиеся от диодов с p-n-переходом лучшими частотными свойствами.

Выпрямительные диоды Шоттки

На частотные свойства диодов Шоттки основное влияние должно оказывать время перезарядки барьерной ёмкости перехода. Постоянная времени перезарядки зависит и от сопротивления базы диода. Поэтому выпрямляющий переход Шоттки целесообразнее создавать на кристалле полупроводника с электропроводностью n-типа – подвижность электронов больше подвижности дырок. По той же причине должна быть большой и концентрация примесей в кристалле полупроводника.

Однако толщина потенциального барьера Шоттки, возникающего в полупроводнике вблизи границы раздела с металлом, должна быть достаточно большой. Только при большой толщине потенциального барьера (перехода Шоттки) можно будет, во-первых, устранить вероятность туннелирования носителей заряда сквозь потенциальный барьер, во-вторых, получить достаточные значении пробивного напряжения и, в-третьих, получить меньшие значения удельной (на единицу площади) барьерной ёмкости перехода. А толщина перехода или потенциального барьера зависит от концентрации примесей в полупроводнике: чем больше концентрация примесей, тем тоньше переход. Отсюда следует противоположное требование меньшей концентрации примесей в полупроводнике.

Читайте также: