Гиалуроновая кислота химия реферат

Обновлено: 07.07.2024

Гиалуроновая кислота– природный полисахарид животного происхождения. Широко распространена в природе, содержится в основном веществе многих видов соединительной и нервной ткани (в коже, связках, пуповине, сердечных клапанах, стекловидном теле глаза, роговице и др.) ибиологических жидкостей (слюне,синовиальной исуставной жидкости, и др.). В соединительной ткани дермы гиалуроновая кислота расположена между волокнами коллагена и эластина, в клетках рогового слоя – в корнеоцитах.

Таким образом, гиалуроновая кислота является одним из основных компонентов внеклеточного матрикса. Принимает значительное участие впролиферациии миграции клеток. Продуцируется некоторымибактериями(например,Streptococcus).

Количество гиалуроновой кислоты в различных источниках может составлять до 5% сухой массы ткани. В теле человека весом 70 кг в среднем содержится ~15 г гиалуроновой кислоты.

Получение

В промышленности гиалуроновую кислоту получают двумя способами: физико-химическим и биотехнологическим.

Физико-химический способ. По этому способу гиалуроновую кислоту получают, в основном, из петушиных гребней, человеческих пуповин и глаз крупного рогатого скота. Технологическая схема получения гиалуроновой кислоты из вышеназванной биомассы включает следующие стадии:ферментативное расщеплениесоединительной тканис выделением гиалуроновой кислоты илиэкстрагированиегиалуроновой кислоты из биомассы разбавленными растворами щелочи или кислоты, последующее специфическое фракционирование выделенного продукта для удаления белковых и липидных составляющих, несколько этапов очистки, осаждение и высушивание.

В последнее время гиалуроновую кислоту все чаще получают более выгодным с экономической точки зрения биотехнологическим путем из растительного сырья (пшеничный субстрат) с использованием бактериальных культур (Streptococcus zooepidermicusилиStreptococcus equi). Этапы получения гиалуроновой кислоты по биотехнологии следующие: строго контролируемыйбиосинтезгиалуроновой кислотыбактериальными клетками(бактерии размножаются и помещаются в бродильный чан, где они синтезируют гиалуроновую кислоту в специальных условиях); выделение наработанной гиалуроновой кислоты из бактерий и ее дальнейшая очистка; осаждение и высушивание. Все процессы биотехнологического получения гиалуроновой кислоты проводят в условиях постоянного бактериологического и реологического контроля, обеспечивающего высокое качество получаемого продукта и, самое главное, заданную молекулярную массу гиалуроновой кислоты.

Химическое строение и молекулярная структура

Гиалуроновая кислота– несульфированныйгликозаминогликан. В природных условиях гиалуроновая кислота синтезируется классом встроенныхмембранных белков, называемыхгиалуронат-синтетазами. В организмах позвоночных содержатся три типа гиалуронат-синтетаз: HAS1, HAS2 и HAS3. Считается, что эти ферменты соединяют молекулыглюкуроновой кислотыиN-ацетилглюкозаминав строго чередующемся порядке.

Структурная формула фрагмента макромолекулы гиалуроновой кислоты приведена на рис.1. Макромолекулярные цепи построены из чередующихся звеньев остатков β-D-глюкуроновой кислотыиβ-N-ацетилглюкозамина, связанныхβ-(1→4)-и β-(1→3)-гликозидными связями.


Рис.1.Структурная формула макромолекулы гиалуроновой кислоты.

Атомы водорода СООН-групп некоторых элементарных звеньев β-D-глюкуроновой кислоты могут быть замещеныNaилиK. Такие полисахариды называют натриевой или калиевой солью гиалуроновой кислоты (гиалуронат натрияилигиалуронат калия).

Элементарной повторяющейся единицей макромолекулы гиалуроновой кислоты является дисахаридный фрагмент. В качестве примера на рис.2 представлена элементарная единица макромолекулы натриевой соли гиалуроновой кислоты


Рис.2.Элементарная единица макромолекулыNa-соли гиалуроновой кислоты.

Наиболее энергетически выгодной конформацией элементарного звена молекулы гиалуроновой кислоты является конформация кресла С1 (рис.3).


Рис.3.Конформация повторяющегося дисахаридного звена гиалуроновой кислоты.

Объёмные заместители пиранозногокольца находятся в стерически выгодныхэкваториальных положениях, а меньшие по размеру атомы водорода занимают менее выгодныеаксиальныепозиции.

Благодаря присутствию β-(1→3)-гликозидных cвязeй макромолекула гиалуроновой кислоты, насчитывающая несколько тысяч моносахаридных остатков, принимает конформацию спирали (рис.4).


Рис.4.Виток спиральной конформации макромолекулы гиалуроновой кислоты.

На один виток спирали приходится три дисахаридных блока. Локализованные на внешней стороне спирали гидрофильные карбоксильные группы остатков глюкуроновой кислоты могут связывать ионы Ca 2+ .

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Кафедра фармацевтической химии

Лекарственное средствоуглеводов-гиалуроновая кислота. Способы получения. Реакции идентификации. Количественное определение. Применение.

студентка 5 курса 3 группы фармацевтического факультета
заочной формы обучения


Саратов 2014
Оглавление

Введение 3
1. Общая характеристика гиалуроновой кислоты 5
1.1 История открытия гиалуроновой кислоты 5
1.2 Структура ГК 5
1.3 Синтез иметаболизм ГК в организме человека 7
1.4 Получение и модификация ГК 8
2. Биологическая роль ГК 11
3.Идентификация ГК 14
3.1 Химические методы исследования ГК 14
3.2 Микробиологические методы исследований 15
4. Механизмы противовоспалительного действия ГК 15
5. Применение ГК в медицине и косметологии 17
Заключение 21
Литература 22

Гиалуро́новая кислота́ (гиалурона́т, гиалурона́н) —несульфированный гликозаминогликан, входящий в состав соединительной, эпителиальной и нервной тканей. Является одним из основных компонентов внеклеточного матрикса, содержится во многих биологических жидкостях (слюне, синовиальной жидкости и др.). Принимает значительное участие в пролиферации и миграции клеток, может быть вовлечена в процесс развития злокачественных опухолей. Продуцируется некоторыми бактериями (напр.Streptococcus). В теле человека весом 70 кг в среднем содержится около 15 граммов гиалуроновой кислоты, треть из которой преобразуется (расщепляется или синтезируется) каждый день.
Тот факт, что гиалуроновая кислота входит в состав многих тканей (кожа, хрящи, стекловидное тело), обусловливает её применение в лечении заболеваний, связанных с этими тканями (катаракта, остеоартрит и др.):эндопротезы синовиальной жидкости; хирургическая среда для офтальмологических операций; препараты для мягкого увеличения тканей и заполнения морщин (в том числе в виде внутрикожных инъекций) в косметической хирургии. Гиалуроновая кислота способна, согласно научным прогнозам связанным с исследованиями Хайфского университета, лечь в основу новых эффективных противораковых препаратов [4].
В связи с вышесказанным теманастоящего исследования является весьма актуальной.
Цель исследования: на основе изучения специальной научной литературы исследовать свойства гиалуроновой кислоты и обосновать ее широкое применение в медицине и косметологии.
Задачи исследования:
-дать общую характеристику гиалуроновой кислоты,
-определить методы получения ГК в промышленности,
-выявить способы идентификации ГК,
-определитьбиологическую роль ГК
-рассмотреть механизм противоспалительного действия ГК
-обосновать применение ГК в медицине и косметологии.


1. Общая характеристика гиалуроновой кислоты

1.1 История открытия гиалуроновой кислоты

Гиалуроновая кислота представляет собой поли-(2-ацетамидо-2-дезокси-D-глюко)-D-глюкуроногликан, то есть полимер, состоящий из остатков D-глюкуроновой кислоты и D-N-ацетилглюкозамина, соединённых поочерёдно β-1,4- и β-1,3-гликозидными связями (см. рисунки).


Благодаря присутствию β(1→3)-cвязeй молекула гиалуроновой кислоты.

Физические свойства гиалуроновой кислоты. Формирование с кислотой гелей различной степени вязкости, которые в дальнейшем определяют свойства и функции тканей, органов, систем. Создание эффектов несжимаемости и набухания. Смазка для хрящевой поверхности.

Рубрика Химия
Вид презентация
Язык русский
Дата добавления 21.10.2019
Размер файла 768,7 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.

Подобные документы

История выделения бензойной кислоты. Физические свойства и нахождение в природе. Химические свойства бензойной кислоты. Получение одноосновных карбоновых кислот ароматического ряда. Окисление ароматических кетонов. Нитробензойные кислоты, их применение.

реферат [5,5 M], добавлен 17.06.2009

Карбоновые кислоты-органические соединения, содержащие карбоксильную группу (карбоксил). Номенклатура и изомерия. Физические свойства. Химические свойства. Уксусная (метанкарбоновая, этановая) кислота СН3-СООН. Применение кислот в прмышленности.

реферат [73,1 K], добавлен 16.12.2007

Физические и физико-химические свойства азотной кислоты. Дуговой способ получения азотной кислоты. Действие концентрированной серной кислоты на твердые нитраты при нагревании. Описание вещества химиком Хайяном. Производство и применение азотной кислоты.

презентация [5,1 M], добавлен 12.12.2010

Строение атома фосфора, его электронная конфигурация, типичные степени окисления. Физические свойства ортофосфорной кислоты и история ее открытия. Соли ортофосфорной кислоты. Применение в стоматологии, авиационной промышленности, а также фармацевтике.

презентация [1,7 M], добавлен 18.12.2013

История получения фталиевой кислоты, ее формула. Физические (молярная масса, плотность) и химические свойства (при нагревании, взаимодействии с другими веществами). Практическое значение эфиров ортофталевой кислоты, полиэфирных смол парафталевых кислот.

презентация [169,7 K], добавлен 06.04.2014

Синтезирование нитрата 1-окси-3-адамантановой кислоты, её свойства. Строение молекулы адамантана. Физические и химические свойства адамантана, определяемые его структурными особенностями. Температура плавления адмантана. Стойкость к агрессивным сферам.

курсовая работа [732,2 K], добавлен 16.10.2008

Физические и физико-химические свойства азотной кислоты. Сырье для производства азотной кислоты. Характеристика целевого продукта. Процесс производства слабой (разбавленной) и концентрированной азотной кислоты. Действие на организм и ее применение.

• Гиалуронан представляет собой гликозаминогликан, который образует во внеклеточном матриксе огромные комплексы с протеогликанами. Особенно в большом количестве эти комплексы присутствуют в хрящевой ткани, где гиалуронан посредством линкерного белка связывается с протеогликаном агреканом

• Гиалуронан несет сильный отрицательный заряд и поэтому во внеклеточном пространстве связывается с катионами и с молекулами воды. Это приводит к увеличению жесткости внеклеточного матрикса и создает между клетками водяную подушку, которая гасит силы сжатия

• Гиалуронан состоит из повторяющихся единиц дисахаридов, связанных в длинные цепи

• В отличие от других гликозаминогликанов, гиалуронановые цепи синтезируются на цитозольной поверхности плазматической мембраны и затем выходят из клетки

• Клетки связываются с гиалуронанами с участием семейства рецепторов, известных под названием гиаладгерины, которые инициируют сигнальные процессы, контролирующие миграцию клеток и сборку цитоскелета

Гиалуронан (ГК), также известный под названием гиалуроновая кислота или гиалуронат, представляет собой глюкозаминогликан (ГАГ). В отличие от других гликозаминогликанов (ГАГ), связанных с внеклеточном матриксом, гиалуронан не связан ковалентной связью с протеогликанами сердцевинных белков, а образует очень большие комплексы с секретируемыми протеогликанами.

К числу таких наиболее важных комплексов относятся комплексы, присутствующие в хрящевой ткани, где молекулы ГК, секретируемые хондроцитами (хрящеобразующие клетки), связываются примерно со 100 копиями протеоглика-на агрекана. Агрекановые сердцевинные белки через небольшой линкерный белок связываются с одной молекулой ГК через 40-нм интервалы. Такие комплексы в длину могут достигать более 4 мм и обладать мол массой, превышающей 2 х 108 дальтон. Таким образом, с участием ГК во внеклеточном матриксе хрящевой ткани создаются большие гидратированные пространства.

Эти пространства играют особенно важную роль в тканях с низкой плотностью кровеносных сосудов, поскольку они обеспечивают диффузию питательных компонентов и выведение продуктов обмена из внеклеточного пространства.

Гиалуроновая кислота (ГК) обладают очень простой структурой. Подобно всем ГАГ, они являются линейными полимерами одного из дисахаридов, глюкуроновой кислоты, связанной с N-ацетилглюкозамином посредством (3 (1-3) связи. Как показано на рисунке ниже, молекулы ГК содержат в среднем 10 000 (и до 50 000 этих дисахаридов, связанных b(1-4) связью. Поскольку дисахариды несут отрицательный заряд, они связывают катионы и молекулы воды.

Подобно протеогликанам, ГК увеличивают жесткость внеклеточного матрикса и служат в качестве смазки в таких соединительнотканных структурах, как суставы. Гидратированные молекулы ГК также образуют между клетками водяную подушку, которая позволяет тканям гасить силы сжатия.

CD44 как рецептор гиалуроновой кислоты

CD44 образует гомодимеры или гетеродимеры с рецепторами Erb2.
Эти комплексы связываются с рядом сигнальных молекул,
которые контролируют организацию цитоскелета и экспрессию генов.

Молекулы гиалуроновой кислоты (ГК) гораздо крупнее, чем другие ГАГ. Из-за этого клетки должны расходовать на их формирование большие количества энергии. Подсчитано, что для формирования одной среднего размера цепи ГК, необходимо 50 000 эквивалентов АТФ, 20 000 кофакторов НАД и 10 000 групп ацетил-КоА. Поэтому в большинстве клеток синтез ГК находится под жестким контролем.

Синтез гиалуроновой кислоты (ГК) катализируется трансмембранными ферментами, ГК синтазами, локализованными в плазматической мембране. Эти ферменты несколько необычны в том смысле, что они собирают полимер ГК на цитозольной стороне плазматической мембраны, а затем переносят его через мембрану во внеклеточное пространство. Это принципиально отличается от синтеза других ГАГ, которые образуются в аппарате Гольджи и ковалентно связываются с протеогликанами сердцевинных белков по мере их прохождения по секреторному пути.

Важнейшим способом регуляции синтеза гиалуроновой кислоты (ГК) является изменение экспрессии ферментов, ГК синтаз. Экспрессия этих ферментов индуцируется специфичными для клеток факторами роста. Например, фактор роста фибробластов и интерлейкин-1 являются индукторами экспрессии ферментов в фибробластах, в то время как глюкокортикоиды подавляют экспрессию в этих же клетках. Эпидермальный фактор роста стимулирует экспрессию в кератиноцитах, но не в фибробластах. Секреция ГК контролируется независимо от их синтеза, и это обеспечивает, по крайней мере, два способа контроля уровня ГК в тканях.

Наряду с участием в гидратации тканей, гиалуроновая кислота (ГК) связывается со специфическими поверхностными рецепторами, что приводит к стимуляции внутриклеточных сигнальных путей, контролирующих такие процессы, как миграция клеток. Основным рецептором ГК является CD44, относящийся к семейству белков, называемых гиладгеринами, которые связываются с ГК. К остальным представителям этого семейства относятся протеогликаны (например, версикан, агрекан, бревикан) и линкерный белок, который связывает ГК с агреканом в хрящевой ткани. Множественные формы CD44 образуются при альтернативном сплайсинге транскриптов одного гена, хотя функциональные различия между этими изоформами остаются неясными.

CD44 существует в виде гомодимеров, которые экспрессируются во многих типах клеток или в виде гетеродимеров с ErbВ, тирозинкиназой, которая экспрессируется на эпителиальных клетках.

Цитоплазматический участок CD44 обладает несколькими функциями. Он необходим для правильного связывания с ГК и для сортинга рецепторов на клеточной поверхности. Он также участвует в процессах внутриклеточной передачи сигнала. Картирование функциональных областей в цитоплазматическом участке CD44 проводилось при изучении экспрессии мутантных форм CD44 в культуре клеток, и активации сигнальных путей после прикрепления клеток к ГК.

Из этих исследований мы знаем, что гомодимеры CD44 и гетеродимеры CD44/ErbB активируют нерецепторные тирозинкиназы, например Src, а также представителей семейства небольших G-белков, Ras. Эти киназы активируют такие сигнальные белки, как протеинкиназа С, МАР киназа и ядерные факторы транскрипции.

Наряду с этим, как показано на рисунке ниже, сигналы, передающиеся с участием CD44, могут изменять сборку актинового цитоскелета у поверхности клеток. Это происходит при активации таких белков, связывающих актин, как фодрин и небольшого G-белка, Rac-1. Одним из последствий реорганизации актина является стимуляция миграции клеток под влиянием связывания CD44 с ГК. В опухолях усиление экспрессии CD44 и секреции ГК коррелирует с увеличением ее агрессивности, и является плохим прогностическим признаком.

Обычно считается, что гиалуроновая кислота (ГК) играет двоякую роль в стимуляции миграции клеток. Во-первых, за счет связывания с внеклеточным матриксом ГК нарушает межклеточные взаимодействия и взаимодействие клеток с матриксом. Мыши, у которых не происходит экспрессии ГК, характеризуются незначительной величиной межклеточного пространства, вследствие чего животные не могут развиваться нормально. Поскольку ГК обладает большим гидратированным объемом, повышенная секреция ГК в опухоли нарушает целостность внеклеточного матрикса, что приводит к образованию больших промежутков, через которые могут мигрировать опухолевые клетки.

Во-вторых, при связывании ГК с рецепторами CD44 могут активироваться внутриклеточные процессы передачи сигналов, непосредственно приводящие к перегруппировкам цитоскелета и к активации миграции клеток. Это подтверждается данными, полученными в экспериментах по добавлению ГК к клеткам в культуре. Клетки, экспрессирующие CD44, начинают мигрировать сразу же после контакта с ГК, и соединения, разрушающие внутриклеточные сигнальные молекулы и связывающиеся с CD44, ингибируют эту миграцию.

Существует внутриклеточный пул гиалуроновой кислоты (ГК), однако его роль остается невыясненной. После синтеза в цитозоле остается некоторое количество ГК, и некоторое количество вновь секретированного ГК может снова попадать в клетку за счет эндоцитоза. Количество внутриклеточного ГК может меняться в зависимости от стадии цикла, и некоторые цитоплазматические белки, контролирующие клеточную пролиферацию, также связываются с ним. Это позволяет предполагать, что ГК служит внутренней сигнальной молекулой, регулирующей деление клеток.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021


Гиалуроновая кислота - гликозаминогликан, входящий в состав соединительной, эпителиальной и нервной тканей. Является одним из основных компонентов внеклеточного матрикса, содержится во многих биологических жидкостях (слюне, синовиальной жидкости и др.). Играет большую роль в пролиферации и миграции клеток.


Основная функция гиалуроновой кислоты заключается в уменьшении трения в суставах, поддержании плавности движений. Гиалуроновая кислота отвечает за вязкость синовиальной жидкости, является важным компонентом суставного хряща, в котором присутствует в виде оболочки каждой клетки (хондроцита). Гиалуроновая кислота входит в состав кожи, где участвует в регенерации ткани. За счет высокого содержания во внеклеточных матриксах гиалуроновая кислота играет важную роль в гидродинамике тканей, процессах миграции и пролиферации клеток.

Наш организм в состоянии вырабатывать гиалуроновую кислоту благодаря ферментам ГКС (синтазы гиалуроновой кислоты, гиаулуронат-синтазы). Ферменты объединяют два сахара, D-глюкуроновую кислоту и N-ацетилглюкозамин.

Также гиалуроновую кислоту можно получить из пищевых продуктов, таких как мясо (свинина, птица и говядина), костный бульон. Определенные продукты могут помочь синтезировать и оптимизировать выработку гиалуроновой кислоты в организме. К таким продуктам относятся продукты, богатые витамином С (специи и цитрусовые). Не менее полезны для синтеза гиалуроновой кислоты продукты, богатые магнием (темно-зеленые листовые овощи, орехи, бобы, авокадо и бананы).



Научные исследования демонстрируют эффективность использования гиалуроновой кислоты при остеоартрозе благодаря ее способности уменьшать боль и улучшать функцию суставов.

Использование капель с гиалуроновой кислотой при синдроме сухого глаза облегчает состояние людей, им страдающих.

Гиалуроновая кислота может помочь сохранить молодость и здоровье кожи. Именно поэтому производители многих косметических продуктов по уходу за кожей включают этот ингредиент в состав кремов, масок, сывороток.

При снижении выработки гиалуроновой кислоты может увеличиваться риск развития первичной открытоугольной глаукомы.

Итак, гиалуроновая кислота играет важную роль в ежедневных функциях организма. Каким образом можно оптимизировать ее выработку? Лучший способ - диета.

Богаты гиалуроновой кислотой мясо говядины, индейки, свинины, баранины и курицы, в также бульон из костей и хрящей.

Витамин С играет важную роль в производстве гиалуроновой кислоты. Отличным выбором будут красный, желтый и оранжевый болгарский перец, цитрусовые, петрушка и кинза.

Магний может помочь синтезировать гиалуроновую кислоту. Магнием богаты бананы, яблоки, авокадо, помидоры, дыни, груши и персики. Они также богаты другими питательными веществами, которые могут помочь оптимизировать ваше здоровье.

С осторожностью следует использовать гиалуроновую кислоту при наличии аллергических реакций на яйца и/или мясо птицы; в случае приема лекарств, влияющих на свертываемость крови; при гемофилии; при инфекционных заболеваниях суставов или кожных заболеваниях в области пораженных остеоартрозом суставов.

Гиалуроновая кислота не рекомендуется беременным и кормящим женщинам. Также не рекомендуется применение гиалуроновй кислоты лицам, не достигшим 18 лет.

В настоящее время существует не много информации о неблагоприятном влиянии гиалуроновой кислоты, и большая часть таких сведений относится к медицинскому применению гиалуроновй кислоты при ее иньекционном введении при остеоартрозах. Известно, что использование гиалуроновой кислоты в средствах по уходу за кожей может вызвать сухость кожи.

Следует отметить, что проводимые в настоящее время клинические испытания гиалуроновой кислоты не демонстрируют ее эффективность при пероральном приеме, в виде биологически активных добавок к пище. В таком виде гиалуронова

Читайте также: