Газовые баллоны для сварки реферат

Обновлено: 07.07.2024

Способ газовой сварки был разработан в конце прошлого столетия, когда начиналось промышленное производство кислорода, водорода и ацетилена. В тот период газовая сварка являлась основным способом сварки металлов и обеспечивала получение наиболее прочных сварных соединений. В дальнейшем с созданием и внедрением высококачественных электродов для дуговой сварки, автоматической и полуавтоматической дуговой сварки под флюсом и в среде защитных газов (аргона, гелия и углекислого газа и др.), газовая сварка была постепенно вытеснена из многих производств этими способами электрической сварки. Тем не менее, и до настоящего времени газовая сварка металлов наряду с другими способами сварки широко применяется в народном хозяйстве.

Вложенные файлы: 1 файл

Газосварка.docx

Таблица 8 Основные газы применяемые при газовой сварке

Сварочные проволоки и флюсы

В большинстве случаев при газовой сварке применяют присадочную проволоку близкую по своему хим. составу к свариваемому металлу.
Нельзя применят для сварки случайную проволоку неизвестной марки.
Поверхность проволоки должна быть гладкой и чистой без следов окалины, ржавчины, масла, краски и прочих загрязнений. Температура плавления проволоки должна быть равна или несколько ниже to плавления металла.
Проволока должна плавится спокойно и равномерно, без сильного разбрызгивания и вскипания, образуя при застывании плотный однородный металл без посторонних включений и прочих дефектов.
Для газовой сварки цветных металлов (меди, латуни, свинца), а так же нержавеющей стали в тех случаях, когда нет подходящей проволоки, применяют в виде исключения полоски нарезанный из листов той же марки, что и сваривает металл.
Флюсы

Медь, алюминий, магний и их сплавы при нагревании в процессе сварки энергично вступают в реакцию с кислородом воздуха или сварочного пламени (при сварке окислительным пламенем), образуя окислы, которые имеют более высокую to плавления, чем металл. Окислы покрывают капли расплавленного металла тонкой пленкой и этим сильно затрудняют плавление частиц металла при сварке.
Для защиты расплавленного металла от окисления и удаления образующихся окислов применяют сварочные порошки или пасты, называемые флюсами. Флюсы, предварительно нанесенные на присадочную проволоку или пруток и кромки свариваемого металла, при нагревании расплавляются и образуют легкоплавкие шлаки, всплывающие на поверхность жидкого металла. Пленка шлаков прокрывает поверхность расплавленного металла, защищая его от окисления.
Состав флюсов выбирают в зависимости от вида и свойств свариваемого металла.
В качестве флюсов применяют прокаленную буру, борную кислоту. Применение флюсов необходимо при сварке чугуна и некоторых специальных легированных сталей, меди и ее сплавов. При сварке углеродистых сталей не применяют.

Аппаратура и оборудование для газовой сварки.

Водяные предохранительные затворы Водяные затворы защищают ацетиленовый генератор и трубопровод от обратного удар пламени из сварочной горелки и резака. Обратным ударом называется воспламенение ацетиленово-кислородной смеси в каналах горелки или резака. Водяной затвор обеспечивает безопасность работ при газовой сварке и резке и является главной частью газосварочного поста. Водяной затвор должен содержатся всегда в исправном состоянии, и быть наполнен водой до уровня контрольного крана. Водяной затвор всегда включает между горелкой или резаком и ацетиленовым генератором или газопроводом.


Рисунок 17 Схема устройства и работы водяного затвора среднего давления:
а — нормальная работа затвора, б - обратный удар пламени

Баллоны для сжатых газов

Баллоны для кислорода и других сжатых газов представляют собой стальные цилиндрические сосуды. В горловине баллона сделано отверстие с конусной резьбой, куда ввертывается запорный вентиль. Баллоны бесшовные для газов высоких давлений изготавливают из труб углеродистой и легированной стали. Баллоны окрашивают с наружи в словные цвета, в зависимости от рода газа. Например, кислородные баллоны в голубой цвет, ацетиленовые в белый водородные в желто-зеленый для прочих горючих газов в красный цвет.
Верхнею сферическую часть баллона не окрашивают и на ней выбивают паспортные данные баллона.
Баллон на сварочном посту устанавливают вертикально и закрепляют хомутом.

Вентили для баллонов

Вентили кислородных баллонов изготавливают из латуни. Сталь для деталей вентиля применять нельзя так как она сильно коррозирует в среде сжатого влажного кислорода.
Ацетиленовые вентили изготавливают из стали. Запрещается применять медь и сплавы, содержащие свыше 70% меди, так как с медью ацетилен может образовывать взрывчатое соединение – ацетиленовую медь.

Редукторы для сжатых газов

Редукторы служат для понижения давления газа, отбираемого из баллонов (или газопровода), и поддержания этого давления постоянным независимо от снижения давления газа в баллоне. Принцип действия и основные детали у всех редукторов примерно одинаковы.
По конструкции бывают редукторы однокамерные и двухкамерные. Двухкамерные редукторы имеют две камеры редуцирования, работающие последовательно, дают более постоянное рабочее давление и менее склонны к замерзанию при больших расходах газа.
Кислородный и ацетиленовый редукторы показаны на рисунок 18.


Рисунок 18 Редукторы: а — кислородный, б — ацетиленовый


Рукава (шланги) служат для подвода газа в горелку. Они должны обладать достаточной прочностью, выдерживать давление газа, быть гибкими и не стеснять движений сварщика. Шланги изготовляют из вулканизированной резины с прокладками из ткани. Выпускаются рукава для ацетилена и кислорода. Для бензина и керосина применяют шланги из бензостойкой резины.

Сварочные горелки

Сварочная горелка служит основным инструментом при ручной газовой сварке. В горелке смешивают в нужных количествах кислород и ацетилен. Образующаяся горючая смесь вытекает из канала мундштука горелки с заданной скоростью и, сгорая, дает устойчивое сварочное пламя, которым расплавляют основной и присадочный металл в месте сварки. Горелка служит также для регулирования тепловой мощности пламени путем изменения расхода горючего газа и кислорода.
Горелки бывают инжекторные и безинжекторные. Служат для сварки, пайки, наплавки, подогрева стали, чугуна и цветных металлов. Наибольшее распространение получили горелки инжекторного типа. Горелка состоит из мундштука, соединительного ниппеля, трубки наконечника, смесительной камеры, накидной гайки, инжектора, корпуса, рукоятки, ниппеля для кислорода и ацетилена.
Горелки делятся по мощности пламени:

1. Микромалой мощности (лабораторные) Г-1;
2. Малой мощности Г-2. Расход ацетилена от 25 до 700 л. в час, кислорода от 35 до 900 л. в час. Комплектуются наконечниками №0 до 3;
3. Средней мощности Г-3. Расход ацетилена от 50 до 2500 л. в час, кислорода от 65 до 3000 л. в час. Наконечники №1-7;
4. Большой мощности Г-4.

Также есть горелки для газов заменителей ацетилена Г-3-2, Г-3-3. Комплектуются наконечниками с №1 по №7.

Виды сварочного пламяни.

Внешний, вид температура и влияние сварочного пламени на расплавленный металл зависят от состава горючей смеси, т.е. соотношение в ней кислорода и ацетилена. Изменяя состав горючей смеси, сварщик изменяет свойства сварочного пламени. Изменяя соотношение кислорода и ацетилена в смеси, можно получать три основных вида сварочного пламени, рис. 19.


Рисунок 19 Виды ацетилено-кислородного пламени а – науглероживающее, б-нормальное, в – окислительное; 1 – ядро, 2- восстановительная зона, 3 - факел


Для сварки большинства металлов применяют нормальное (восстановительное) пламя (рис. 19, б). Окислительное пламя (рис. 19, в) применяют при сварке с целью повышения производительности процесса, но при этом обязательно пользоваться проволокой, содержащей повышенное количество марганца и кремния в качестве раскислителей, оно также необходимо при сварке латуни и пайке твердым припоем. Пламя с избытком ацетилена применяют при наплавке твердыми сплавами. Пламя с незначительным избытком ацетилена используют для сварки алюминиевых и магниевых сплавов.
Качество наплавленного металла и прочности сварного шва сильно зависят от состава сварочного пламени.

Сварочное пламя образуется при сгорании горючего газа или паров горючей жидкости в кислороде. Пламя нагревает и расплавляет основной и присадочный металл в месте сварки. Наибольшее применение при газовой сварке нашло кислородно-ацетиленовое пламя, так как оно имеет высокую температуру (3150°С) и обеспечивает концентрированный нагрев. Однако в связи с дефицитностью ацетилена в настоящее время получили широкое распространение (особенно при резке металлов) газы—заменители ацетилена — пропан-бутан, метан, природный и городской газы.
От состава горючей смеси, т. е. от соотношения кислорода и горючего газа, зависят внешний вид, температура и влияние сварочного пламени на расплавленный металл. Изменяя состав горючей смеси, сварщик тем самым изменяет основные параметры сварочного пламени.

Для получения нормального пламени отношение кислорода к горючему газу должно быть для ацетилена — 1,1—1,2, природного газа — 1,5—1,6, пропана — 3,5.
Все горючие газы, содержащие углеводороды, образуют сварочное пламя, которое имеет три ярко различимые зоны: ядро, восстановительную зону и факел. Водородное пламя ярко различимых зон не имеет, что затрудняет его регулировку по внешнему виду.

При зажигании газовой струи, вытекающей из сопла, пламя перемещается по направлению движения струи газовой смеси. Скорость истечения для каждого газа подбирается такой, чтобы пламя не проникало внутрь сопла горелки и не отрывалось от него. Газ в струе должен прогреваться до температуры воспламенения, ацетилен воспламеняется при температуре 450—500°С, а газы-заменители — 550—650°С. Поэтому ядро пламени при сгорании газов-заменителей длиннее, чем при сгорании ацетилена.

Процесс сгорания ацетилена в кислороде можно условно разделить на две стадии. Сначала под влиянием нагрева происходит распад ацетилена на элементы: С2Н2=2С+Н2. Затем происходит первая стадия..сгорания ацетилена за счет кислорода смеси по реакции 2С+Н2+O2=2СО+Н2. Вторая стадия горения протекает за счет кислорода воздуха: 2СО+Н2+1,5O2=2СO22O. Процесс горения горючего газа в кислороде экзотермичен, т. е. идет с выделением теплоты.

Ядро имеет резко очерченную форму (близкую к форме цилиндра), плавно закругляющуюся в конце, с ярко светящейся оболочкой. Оболочка состоит из раскаленных частиц углерода, которые сгорают в наружном слое оболочки. Размеры ядра зависят от состава горючей смеси, ее расхода и скорости истечения. Диаметр канала мундштука горелки определяет диаметр ядра пламени, а скорость истечения газовой смеси — его длину.


Металлургические процессы при газовой сварке.

Металлургические процессы при газовой сварке характеризуются следующими особенностями: малым объемом ванны расплавленного металла; высокой температурой и концентрацией тепла в месте сварки; Большой скоростью расплавления и остывания метла; интенсивным перемешиванием металла гладкой ванны газовым потоком пламени и присадочной проволокой; химическим взаимодействием расплавленного металла с газами пламени.
Основными в сварочной ванне являются реакции окисления и восстановления. Наиболее легко окисляются магний, алюминий, обладающие большим сродством к кислороду.
Кислы этих металлов не восстанавливаются водородом и окисью углерода, поэтому при сварке металлов необходимы специальные флюсы. Окислы железа и никеля, наоборот хорошо восстанавливаются окисью углерода и водородом пламени, поэтому при газовой сварке этих металлов флюсы не нужны.
Водород способен хорошо растворятся в жидком железе. При быстром остывании сварочной ванны он может остаться в шве в виде мелких газовых пузырей. Однако газовая сварка обеспечивает более медленное охлаждение металла по сравнению, например с дуговой. Поэтому при газовой сварке углеродистой стали, весь водород успевает уйти из металла шва и последний получится плотным


Структурные изменения в металле при газовой сварке.

Вседствии более медленного нагрева зона влияния при газовой сварке больше чем при дуговой. Слои основного металла, непосредственно примыкающие к сварочной ванне непрерывны и приобретают крупнозернистую структуру. В непосредственной близости к границе шва находится зона неполного расплавления. Основного металла с крупной структурой, характерной для ненагретого металла. В этой зоне прочность металла ниже, чем прочночность металла шва, поэтому здесь обычно и происходит разрушение сварного соедениения.
Далее расположен участок, нерекристализации характеризуемы так же крупнозернистой структурой, для которого t плавления металла, не выше 1100-1200С. Последующие участки нагреваются до более низких температур и имеют мелкозернистую структуру, нормализованной стали.
Для улучшения структуры и свойств металла шва и околошовной зоны иногда применяют горячую проковку шва и местную термообработку нагревом сварочным пламенем или общую термообработку с нагревом в печи.
Элюстрация способов газовой сварки показана на рисунок 20.

Особенности и режимы сварки различных металлов.

Сварка углеродистых сталей

Сварка легированных сталей

Легированные стали хуже проводят тепло чем низкоуглеродистая сталь, и поэтому больше коробятся при сварке.
Низколегированные стали (например XCHД) хорошо свариваются газовой сваркой. При сварке применяют нормальное пламя и проволоку СВ-0.8, СВ-08А или СВ-10Г2
Хромоникелевые нержавеющие стали сваривают нормальным пламенем мощностью 75 дм 3 ацетилена на 1 мм толщины металла. Применяют проволоку СВ-02Х10Н9, СВ-06-Х19Н9Т. При сварке жаропрочной нержавеющей стали, применяют проволоку содержащую 21% никеля 25% хрома. Для сварки коррозиностойкой стали содержащей молибден 3%, 11% никеля, 17% хрома.

Сварка чугуна

Чугун сваривают при исправлении дефектов отливок, а так же восстановлении и ремонте деталей: заварке трещин, раковин, при варке отколовшихся частей и пр.
Сварочное пламя должно быть нормальным или науглероживающим, так как окислительное вызывает местное выгорание кремния, и в металле шва образуются зерна белого чугуна.

Существенной особенностью газовой сварки является применение в качестве источника тепла газового пламени. При газовой сварке в качестве горючего можно применять ацетилен, водород, блаугаз, газы коксовальных печей, естественные и нефтяные газы и др., а также пары нефтепродуктов; наибольшее распространение имеет ацетилен. Газы и пары нефтепродуктов, сгорая в кислороде, развивают температуру, позволяющую быстро расплавлять свариваемый и присадочный металл.

В табл. 40 помещены данные, характеризующие применяемое при газовой сварке горючее.

Газовая сварка

Так как в процессе газовой сварки необходимо иметь и восстановительную зону сварочного пламени, то теплотворная способность горючего не может быть полностью использована; используется лишь та ее часть, которая идет на выделение тепла в первой восстановительной зоне горения; поэтому при сравнении различных видов горючего, применяемого при газовой сварке, нужно иметь в виду не только теплотворную способность топлива и температуру его пламени, но также и его способность выделять тепло в этой первой зоне сгорания.

Необходимо также отметить, что и удельная мощность пламени при сгорании ацетилена приблизительно втрое выше, чем в случае сгорания других газов.

Сварочное ацетилено-кислородное пламя

Для правильного понимания процесса газовой сварки необходимо прежде всего ознакомиться с пламенем, образующимся при сгорании газов, подаваемых сварочной горелкой. Это пламя образуется при сгорании смеси горючего газа и кислорода, поступающего через ту же горелку, а также кислорода окружающего воздуха,

К сварочному пламени предъявляют следующие требования:

1) достаточно высокая, необходимая для быстрого расплавления свариваемого металла, температура;

2) во избежание загрязнения металла сварного шва окислами сварочное пламя не должно быть окислительным;

3) небольшой объем сварочного пламени для концентрации нагрева.

Для того чтобы обеспечить наличие восстановительной зоны горения, в горелку подается недостаточное для полного сгорания количество кислорода. Например, для полного сгорания 1 м 3 ацетилена требуется 2,5 м 3 кислорода, а в горелку подается лишь 1,15 м 3 ; для полного сгорания 1 м 3 водорода требуется 0,5 м 3 кислорода, а в горелку подается только 0,25 м 3 ; поэтому процесс сгорания здесь состоит из двух, как принято говорить, фаз:

1) фазы сгорания за счет кислорода, подаваемого в горелку, и

2) фазы сгорания за счет кислорода окружающего воздуха.

В первой фазе сгорание будет неполным; область первой фазы соответствует восстановительной зоне сварочного пламени. Во второй фазе сгорание происходит полностью. Продукты полного сгорания окружают восстановительную зону и защищают свариваемый металл от соприкосновения с кислородом воздуха.


На фиг. 320 дано схематическое изображение сварочного ацетилено-кислородного пламени: через мундштук 1 горелки поступает смесь ацетилена и кислорода; зона 2, называемая ядром пламени, состоит из несгоревших частиц газовой смеси; на поверхности ядра начинается процесс горения и выделяется тепло; частицы углерода раскаляются и испускают яркий свет; сгорание ацетилена, начинаясь на поверхности ядра, происходит во всей зоне 3. Но так как на 1 м 3 ацетилена дается не 2,5 м 3 кислорода, необходимого для полного сгорания, а лишь 1,0—1,25 м 3 , то горение будет неполным и выразится уравнением


Зона 4 и является той частью сварочного пламени, которая расплавляет свариваемый металл. Чем меньше объем, занимаемый восстановительной зоной 4, тем, при прочих равных условиях, лучше сосредоточивается тепло на поверхности подлежащего нагреву металла. На небольшой толщине по поверхности восстановительной зоны слева от металла и правее восстановительной зоны происходит полное сгорание за счет кислорода окружающего воздуха (зона 5) по уравнению


Зона полного сгорания со всех сторон окружает восстановительную зону а предохраняет расплавленный металл от окисления воздухом.

Если объем подаваемого кислорода будет меньше, чем объем ацетилена, в восстановительной зоне будет происходить распад неокислившейся части ацетилена на углерод и водород, которые могут поглощаться расплавленным

металлом, ухудшая свойства получаемого сваркой шва. Пламя приобретает более светлый оттенок и увеличивается в длину.

При увеличении количества кислорода восстановительная зона уменьшается, пламя приобретает синеватый цвет, расплавленный металл загрязняется окислами, что ведет к снижению качества сварочного шва,

На фиг. 321 показано в виде примера распределение температур по различным зонам сварочного пламени горелки, питаемой ацетиленом.


Из приведенного графика видно, что максимальную температуру, несколько превышающую 3000°, пламя ацетиленовой сварочной горелки имеет в восстановительной зоне.

Сварочные горелки

Сварочная горелка служит для смешивания горючего газа с кислородом в требуемых соотношениях, обеспечивая устойчивое пламя, а также является устройством, позволяющим легко и удобно подводить сварочное пламя к месту нагрева металла. Она состоит из следующих главных частей: 1) корпуса-рукоятки, за которую держат горелку; на корпусе находятся и регулирующие подвод кислорода и горючего газа вентили; 2) смесительной камеры; 3) мундштука, через который горючая смесь выходит из смесительной камеры.

Сварочные горелки делают инжекторными, иначе называемыми горелками низкого давления, и безинжекторными, или горелки высокого давления.

На фиг. 322, а представлена схема устройства инжекторной горелки; кислород через регулирующий вентиль под давлением около 3 aт подается через центральный канал в сопло 1 (инжектор) с отверстием малого диаметра, по выходе из которого он расширяется и его струя приобретает большую скорость; вследствие этого в кольцевом (внешнем) канале 2, по которому подается горючий газ (ацетилен), создается разрежение, увлекающее горючий газ, подаваемый под небольшим давлением (обычно от 0,1 до 0,2 aт), вместе с кислородом в смесительную камеру 3. Из смесительной камеры 3 струя горючей смеси через мундштук 4 выбрасывается наружу.


На фиг. 322, б представлена схема устройства безинжекторной горелки.

Кислород в такой горелке подается через регулирующие вентили 2 в смесительную камеру 1 под давлением 1—3 aт, горючее — под давлением 0,5—1,5 aт; из смесительной камеры через мундштук 3 горючая смесь выходит наружу.

Преимуществом инжекторных горелок является возможность работать на низком давлении горючего; преимуществом безинжекторных — большая устойчивость в работе.


На фиг. 323 показана конструкция инжекторной горелки марки СУ (сварочная универсальная); нипель 1 служит для надевания на него резинового шланга, по которому поступает кислород; нипель 2 предназначен для

шланга, подающего горючее (ацетилен); трубка 3 подводит кислород к инжектору; полая рукоятка 4 служит для подвода горючего к инжектору; вентили 5—6 регулируют подвод газов; в стойке 7 крепится сменный наконечник го

релки гайкой 8; через инжектор 9 горючее поступает в смесительную камеру 10 и через трубку 11 подается к мундштуку 12. На фиг. 324 показано устройство безинжекторной горелки для сварки водородом.


Так как высокая температура при газовой сварке достигается в результате сгорания газов в смеси с чистым кислородом, то рассмотрение газов, применяемых в сварочных процессах, удобнее начать с кислорода.

При давлении 760 мм рт. ст. и 0°С 1 м 3 кислорода весит 1,429 кг. Будучи охлажден до —181,4°, кислород сжижается, образуя прозрачную жидкость голубого оттенка; 1 л жидкого кислорода весит 1,106 кг и при испарении дает 790 л газообразного кислорода.

Горение в кислороде характеризуется сильно концентрированным пламенем.

Выше было сказано, что расширение применения газовой сварки находилось в прямой зависимости от совершенствования промышленных способов получения кислорода.

В настоящее время наиболее распространенным является способ получения кислорода из атмосферного воздуха методом глубокого охлаждения. Сущность способа заключается в том, что воздух сжимают компрессором, и затем сжатый, очищенный от углекислого газа и осушенный воздух поступает в разделительный аппарат, где он охлаждается (за счет расширения) до температуры сжижения и разделяется на составные части (кислород, азот, аргон).

На единицу объема воздуха приходится 1 /5 объема кислорода, и 4 /5 азота; отделение азота и кислорода от полученного жидкого воздуха основано на разности температур кипения кислорода (—183°) и азота (—196°); в установках, предназначенных для получения кислорода, азот обычно не используется и выпускается в атмосферу.

Потребитель может получать кислород для сварки или резки как в газообразном, так и в жидком состоянии. Кислород в больших количествах удобнее хранить и транспортировать в жидком виде, так как отпадает необходимость в большом баллонном парке. Например, для перевозки жидкого кислорода в танке емкостью 2400 л требуется одна 5-тонная автомашина. Для перевозки соответствующего количества газообразного кислорода (380 баллонов) потребуется двенадцать 3-тонных автомашин.

Необходимо, с другой стороны, учесть испарение жидкого кислорода из танка через испаритель в количестве 0,3—0,35% в час, что делает невыгодным длительное хранение жидкого кислорода.

На кислородном заводе (или станции) из кислородной установки жидкий кислород переливают в хранилища, называемые стационарными танками. Танки представляют собой сосуды шарообразной формы; каждый танк состоит из латунного шара, помещенного внутри стально го шара; промежуток между внутренним и наружным шарами заполняют теплоизоляционными материалами. Жидкий кислород находится в танке под давлением, немного превосходящим атмосферное. При переливании жидкого кислорода из стационарного танка в транспортный используется давление, создаваемое испаряющимся кислородом, образующим в верхней части танка газовую подушку; под этим давлением жидкий кислород по трубке перетекает в транспортный танк.

В России стационарные танки для жидкого кислорода строятся вместимостью до 8000 л, а транспортные — до 2900 л. Для перевозки и хранения больших количеств кислорода строятся специальные цистерны емкостью др 30 000 а жидкого кислорода.

Для использования жидкого кислорода на месте его потребления устраивают газификаторы, в которые и переливают жидкий кислород из транспортных танков. Назначение газификаторов—не только хранить жидкий кислород, но и выдавать его для потребления в газообразном виде. На фиг. 325 показано одно из устройств газификатора. Отверстие 1 для заливки жидкого кислорода закрывают пробкой после заполнения газификатора. В кожух 3 вставлен стальной цилиндр 4, внутри которого находится латунный тонкостенный цилиндр 5. Испарение жидкого кислорода, вытесняемого из цилиндра 5, происходит в змеевиках 6 и 7. Кожух 3 заполняется водой, подогреваемой паром, пропускаемым через змеевик 8; вследствие подогрева заполняющей кожух 3 воды испарение кислорода идет очень интенсивно, и давление газообразного кислорода достигает 150 aт. В целях предупреждения подъема давления сверх допускаемого газификатор снабжается предохранительным клапаном.

Газовая сварка

Жидкий кислород применяют лишь на крупных заводах, где оправдываются расходы по устройству и содержанию газификаторов, и где потребление кислорода так велико, что потеря кислорода от его испарения из танков не играет существенной роли.

Газообразным кислородом наполняют баллоны под давлением 150 aт при 15°. Устройство кислородного баллона показано на фиг. 326. Корпус баллона 1 своим днищем 2 сажается в предварительно разогретый башмак 3. На горловину 4 надевается кольцо 5, на которое навертывается колпак 6, закрывающий вентиль 7. Выдачу газа из баллона производят через редуктор, понижающий давление в выпускаемом газе до 3 aт и менее.


Для смазки арматуры кислородных баллонов нельзя применять масла и жиры, так как при большом давлении в присутствии кислорода они дают взрыв; в случае надобности в смазке применяют 5%-ный раствор глицерина в дистиллированной воде.

Не следует также применять эбонитовых или фибролитовых прокладок, могущих давать взрывы; прокладки должны быть металлическими или асбестоедными.

Водяные затворы защищают ацетиленовый генератор и трубопровод от обратного удар пламени из сварочной горелки и резака. Обратным ударом называется воспламенение ацетиленово-кислородной смеси в каналах горелки или резака.

Водяной затвор обеспечивает безопасность работ при газовой сварке и резке и является главной частью газосварочного поста. Водяной затвор должен содержатся всегда в исправном состоянии, и быть наполнен водой до уровня контрольного крана.

Водяной затвор всегда включает между горелкой или резаком и ацетиленовым генератором или газопроводом.



Рис. 1. Схема устройства и работы водяного затвора среднего давления: а — нормальная работа затвора, б - обратный удар пламени
Баллон для сжатых газов

Баллоны для кислорода и других сжатых газов представляют собой стальные цилиндрические сосуды. В горловине баллона сделано отверстие с конусной резьбой, куда ввертывается запорный вентиль. Баллоны бесшовные для газов высоких давлений изготавливают из Турб углеродистой и легированной стали. Баллоны окрашивают с наружи в словные цвета, в зависимости от рода газа. Например, кислородные баллоны в голубой цвет, ацетиленовые в белый водородные в желто-зеленый для прочих горючих газов в красный цвет.

Верхнею сферическую часть баллона не окрашивают и на ней выбивают паспортные данные баллона.

Баллон на сварочном посту устанавливают вертикально и закрепляю хомутом.
Вентили для баллонов

Вентили кислородных баллонов изготавливают из латуни. Сталь для деталей вентиля применять нельзя так как она сильно коррозирует в среде сжатого влажного кислорода.

Ацетиленовые вентили изготавливают из стали. Запрещается применять медь и сплавы, содержащие свыше 70% меди, так как с медью ацетилен может образовывать взрывчатое соединение – ацетиленовую медь.
Редукторы для сжатых газов

Редукторы служат для понижения давления газа, отбираемого из баллонов (или газопровода), и поддержания этого давления постоянным независимо от снижения давления газа в баллоне. Принцип действия и основные детали у всех редукторов примерно одинаковы.

По конструкции бывают редукторы однокамерные и двухкамерные. Двухкамерные редукторы имеют две камеры редуцирования, работающие последовательно, дают более постоянное рабочее давление и менее склонны к замерзанию при больших расходах газа.

Кислородный и ацетиленовый редукторы показаны на рис. 2.


Рис. 2. Редукторы: а кислородный, б — ацетиленовый
Рукава (шланги) служат для подвода газа в горелку. Они должны обладать достаточной прочностью, выдерживать давление газа, быть гибкими и не стеснять движений сварщика. Шланги изготовляют из вулканизированной резины с прокладками из ткани. Выпускаются рукава для ацетилена и кислорода. Для бензина и керосина применяют шланги из бензостойкой резины.
Сварочные горелки

Сварочная горелка служит основным инструментом при ручной газовой сварке. В горелке смешивают в нужных количествах кислород и ацетилен. Образующаяся горючая смесь вытекает из канала мундштука горелки с заданной скоростью и, сгорая, дает устойчивое сварочное пламя, которым расплавляют основной и присадочный металл в месте сварки. Горелка служит также для регулирования тепловой мощности пламени путем изменения расхода горючего газа и кислорода.

Горелки бывают инжекторные и безинжекторные. Служат для сварки, пайки, наплавки, подогрева стали, чугуна и цветных металлов. Наибольшее распространение получили горелки инжекторного типа. Горелка состоит из мундштука, соединительного ниппеля, трубки наконечника, смесительной камеры, накидной гайки, инжектора, корпуса, рукоятки, ниппеля для кислорода и ацетилена.

Горелки делятся на мощности пламени:

1. Микромалой мощности (лабораторные) Г-1;

2. Малой мощности Г-2. Расход ацетилена от 25 до 700 л. в час, кислорода от 35 до 900 л. в час. Комплектуются наконечниками №0 до 3;

3. Средней мощности Г-3. Расход ацетилена от 50 до 2500 л. в час, кислорода от 65 до 3000 л. в час. Наконечники №1-7;

4. Большой мощности Г-4.

Также есть горелки для газов заменителей ацетилена Г-3-2, Г-3-3. Комплектуются наконечниками с №1 по №7.

Водяные затворы защищают ацетиленовый генератор и трубопровод от обратного удар пламени из сварочной горелки и резака. Обратным ударом называется воспламенение ацетиленово-кислородной смеси в каналах горелки или резака.

Водяной затвор обеспечивает безопасность работ при газовой сварке и резке и является главной частью газосварочного поста. Водяной затвор должен содержатся всегда в исправном состоянии, и быть наполнен водой до уровня контрольного крана.

Водяной затвор всегда включает между горелкой или резаком и ацетиленовым генератором или газопроводом.



Рис. 1. Схема устройства и работы водяного затвора среднего давления: а — нормальная работа затвора, б - обратный удар пламени
Баллон для сжатых газов

Баллоны для кислорода и других сжатых газов представляют собой стальные цилиндрические сосуды. В горловине баллона сделано отверстие с конусной резьбой, куда ввертывается запорный вентиль. Баллоны бесшовные для газов высоких давлений изготавливают из Турб углеродистой и легированной стали. Баллоны окрашивают с наружи в словные цвета, в зависимости от рода газа. Например, кислородные баллоны в голубой цвет, ацетиленовые в белый водородные в желто-зеленый для прочих горючих газов в красный цвет.

Верхнею сферическую часть баллона не окрашивают и на ней выбивают паспортные данные баллона.

Баллон на сварочном посту устанавливают вертикально и закрепляю хомутом.
Вентили для баллонов

Вентили кислородных баллонов изготавливают из латуни. Сталь для деталей вентиля применять нельзя так как она сильно коррозирует в среде сжатого влажного кислорода.

Ацетиленовые вентили изготавливают из стали. Запрещается применять медь и сплавы, содержащие свыше 70% меди, так как с медью ацетилен может образовывать взрывчатое соединение – ацетиленовую медь.
Редукторы для сжатых газов

Редукторы служат для понижения давления газа, отбираемого из баллонов (или газопровода), и поддержания этого давления постоянным независимо от снижения давления газа в баллоне. Принцип действия и основные детали у всех редукторов примерно одинаковы.

По конструкции бывают редукторы однокамерные и двухкамерные. Двухкамерные редукторы имеют две камеры редуцирования, работающие последовательно, дают более постоянное рабочее давление и менее склонны к замерзанию при больших расходах газа.

Кислородный и ацетиленовый редукторы показаны на рис. 2.


Рис. 2. Редукторы: а кислородный, б — ацетиленовый
Рукава (шланги) служат для подвода газа в горелку. Они должны обладать достаточной прочностью, выдерживать давление газа, быть гибкими и не стеснять движений сварщика. Шланги изготовляют из вулканизированной резины с прокладками из ткани. Выпускаются рукава для ацетилена и кислорода. Для бензина и керосина применяют шланги из бензостойкой резины.
Сварочные горелки

Сварочная горелка служит основным инструментом при ручной газовой сварке. В горелке смешивают в нужных количествах кислород и ацетилен. Образующаяся горючая смесь вытекает из канала мундштука горелки с заданной скоростью и, сгорая, дает устойчивое сварочное пламя, которым расплавляют основной и присадочный металл в месте сварки. Горелка служит также для регулирования тепловой мощности пламени путем изменения расхода горючего газа и кислорода.

Горелки бывают инжекторные и безинжекторные. Служат для сварки, пайки, наплавки, подогрева стали, чугуна и цветных металлов. Наибольшее распространение получили горелки инжекторного типа. Горелка состоит из мундштука, соединительного ниппеля, трубки наконечника, смесительной камеры, накидной гайки, инжектора, корпуса, рукоятки, ниппеля для кислорода и ацетилена.

Горелки делятся на мощности пламени:

1. Микромалой мощности (лабораторные) Г-1;

2. Малой мощности Г-2. Расход ацетилена от 25 до 700 л. в час, кислорода от 35 до 900 л. в час. Комплектуются наконечниками №0 до 3;

3. Средней мощности Г-3. Расход ацетилена от 50 до 2500 л. в час, кислорода от 65 до 3000 л. в час. Наконечники №1-7;

4. Большой мощности Г-4.

Также есть горелки для газов заменителей ацетилена Г-3-2, Г-3-3. Комплектуются наконечниками с №1 по №7.

Читайте также: