Газотурбинные и парогазовые установки реферат

Обновлено: 05.07.2024

Газотурбинная электростанция (ГТЭС) (с парогазовыми установками).

(название темы реферата)

Проверил: ст. преподаватель

студент группы П-271

Реферат защищен с оценкой

Автор: Коваленко М.А., студент 2 курса энергетического факультета ЮУрГУ.

На основе литературных данных в работе рассмотрены такие элементы Газотурбинной электростанции, как: структурная схема, назначение и работа элементов схемы. КПД установки, сравнение с другими станциями. Выводы автора могут быть полезны для понимания работы Газотурбинной электростанции.

1 ТИПОВАЯ СХЕМА АГРЕГАТА 5

1.1 Как работает газотурбинная установка 6

2 ОСНОВНЫЕ ВИДЫ ГАЗОТУРБИННЫХ АГРЕГАТОВ 7

2.1 Преимущества и недостатки ГТЭС 8

3 ГТЭС КОМБИНИРОВАННОГО ЦИКЛА 9

4 ОБЩИЕ СХЕМЫ УСТАНОВОК И ИХ ОБЪЯСНЕНИЯ (ТЕОРИЯ) 10

7 РЕКОМЕНДАЦИИ 15

БИБЛИОГРАФИЧЕСКИЙ СПИСОК 16

Газотурбинная электростанция — современная высокотехнологичная установка, генерирующая электричество и тепловую энергию. В основе газотурбинной электростанции лежит один или несколько газотурбинных двигателей - силовых агрегатов, механически связанных с электрогенератором и объединенных системой управления в единый энергетический комплекс. Электростанция с газовой турбиной может иметь электрическую мощность от двадцати киловатт до сотен мегаватт. Также он способен отдавать потребителю значительное количество (вдвое больше электроэнергии) тепловой энергии, если на выходе турбины установлен котел-утилизатор; в данном случае агрегат называется ГТУ-ТЭЦ.

1 ТИПОВАЯ СХЕМА АГРЕГАТА

Типичный газотурбинный агрегат — это тепловой двигатель, в котором используется теплоноситель в газообразном состоянии, нагретый до высокой температуры. В результате определенных процессов, о которых будет сказано ниже, его энергия превращается в механическую. Конструкция такой силовой установки состоит из следующих частей: компрессора, камеры сгорания и самой газовой турбины. Взаимодействие этих компонентов и их управление в процессе работы обеспечивается специальными вспомогательными системами, входящими в конструкцию станции. Газотурбинный агрегат

К числу мероприятий, направленных на повышение экономичности тепловых электростанций, следует отнести развитие работ в области комбинированных циклов, в первую очередь парогазовых установок, позволяющих повысить к.п.д. цикла на 8% в зависимости от схемы подключения газовой турбины. Комбинирование паро- и газотурбинных установок в одном тепловом цикле позволяет сочетать высокотемпературный (в ГТУ) подвод и низкотемпературный (в конденсаторе паровой турбины) отвод теплоты и в результате обеспечивает повышение термического к. п. д. цикла, а следовательно, экономичности производства электрической энергии, особенно значительное при повышении начальной температуры газов в ГТУ.
Простейшие комбинированные установки могут быть реализованы при использовании тепла отработавших в ГТУ газов для подогрева питательной воды и вытеснения вследствие этого паровой регенерации. Термодинамически они наименее эффективны (по сравнению со сбросной схемой здесь два потока уходящих газов, потери с которыми возрастают), однако практически весьма рациональны для модернизации действующих ТЭС: вследствие слабых технологических связей между паровой и газотурбинной частями облегчается компоновка ГТУ и выбор их типоразмеров; поскольку вытеснение паровой регенерации приводит к значительному повышению мощности паровых турбин, капитальные затраты, разнесенные на сумму газотурбинной и дополнительной паротурбинной мощности, оказываются небольшими.
Показатели ПГУ и эффективность использования газовых турбин в комбинированных циклах существенно зависят от параметров и показателей ГТУ. Повышение начальной температуры газов и совершенствование турбомашин, приводящие к повышению к. п. д. ГТУ при автономной работе, при прочих равных условиях увеличивают долю газотурбинной мощности в комбинированных циклах. Это не только повышает к. п. д., но и снижает удельную стоимость всей ПГУ (растет ее мощность на единицу расхода газов, т.е. при тех же габаритах и массе).
Наиболее подходящим топливом для ПГУ является бессернистый природный газ, применение которого позволяет снижать температуры уходящих газов до экономически оптимального уровня (100–110 °С), не опасаясь низкотемпературной коррозии хвостовых поверхностей. Возможно применение в качестве топлива генераторного газа, получаемого путём газификации угля. ПГУ с газификацией угля или его прямым сжиганием в кипящем слое под давлением являются реальными установками для существенного повышения эффективности тепловых электростанций на угле при одновременном резком снижении вредных выбросов в атмосферу пыли, оксидов серы и азота.
1 Описание газотурбинной технологии

Основным блоком газотурбинной электростанции (ГТЭС) является энергоблок (газотурбинная энергетическая установка – ГТУ), в который входит газотурбинный привод (ГТП) (при необходимости с редуктором) и электрический генератор с системой возбуждения.
Основой (ГТП) является газогенератор, служащий источником сжатых горячих продуктов сгорания для привода свободной (силовой) турбины.
Газогенератор состоит из компрессора, камеры сгорания и турбины привода компрессора. В компрессоре сжимается атмосферный воздух, который поступает в камеру сгорания, где в него через форсунки подается топливо (для рассматриваемых в отчете энергетических ГТУ, основным топливом является газ, резервным (аварийным) – керосин, реактивное топливо), затем происходит сгорание топлива в потоке воздуха. Продукты сгорания подаются на турбину компрессора (турбину высокого давления) и на свободную турбину, вращающую вал ГТП (в случае одновального ГТП одна общая турбина вращает компрессор и вал ГТП). На лопатках турбины тепловая энергия потока продуктов сгорания превращается в механическую энергию вращения роторов турбины. Мощность, развиваемая турбиной, существенно превышает мощность, потребляемую компрессором на сжатие воздуха, а также преодоление трения в подшипниках и мощность, затрачиваемую на привод вспомогательных агрегатов. Разность между этими величинами представляет собой полезную мощность на валу ГТП.
На валу турбины расположен турбогенератор (электрический генератор).
Отработанные в газотурбинном приводе газы через выхлопное устройство и шумоглушитель уходят в дымовую трубу. Если предусмотрена утилизация тепла выхлопных газов, то после выхлопного устройства отработанные газы поступают в утилизационный теплообменник. Вместо него в технологической цепочке может находиться котел-утилизатор, в котором происходит выработка тепловой энергии в виде пара различных параметров и / или горячей воды. Пар или горячая вода от котла-утилизатора могут передаваться непосредственно к тепловому потребителю. Также возможно использование полученного пара в паротурбинном цикле для выработки электрической энергии.
2 Установки с монарным парогазовым циклом

Монарным ПГУ посвящена монография В.А. Зысина, в которой содержится термодинамический анализ различных вариантов циклов на смеси пара и газа, тепловых схем и конструктивных особенностей монарных ПГУ. Автором монографии предложен упрощенный метод термодинамического анализа цикла на парогазовой смеси, основанный на допущении, что теплосодержание и теплоемкость перегретого пара, содержащегося в парогазовой смеси, зависит только от температуры. При таком допущении термодинамические процессы обеих компонент парогазовой смеси могут рассматриваться изолированно при соответствующих параметрах – температуре и парциальном давлении. Общее количество подведенного в цикле тепла Q условно подразделяется на две части – сообщенное газу Qr и воде и пару Qn. К. п. д. монарного цикла, как и бинарного, определяется как средне-взвешенная величина из к. п. д. газового ηг и парового ηп циклов:
ηпг =(Qr / Q)* ηг+(Qn/ Q)* ηпЗависимость к. п. д. простейшей ПГУ на парогазовой смеси, рассчитанного по этой формуле, от степени давления ε представлена на рис. 1. Расчеты выполнены при величине относительного расхода пара d, близкой к максимальной, и начальной температуре газа 700° С.
Рисунок 1. – КПД монарной ПГУ простой схемы
Оптимальная степень повышения давления в такой ПГУ (εпг) выше, чем в изолированной
ГТУ (εг). В точке 2 газовая и паровая части установки имеют равные к. п. д. С уменьшением величины d точка 3 (максимум к. п. д. ПГУ) смещается влево, и при d→ О она совпадает с точкой 1 (максимум к. п. д. ГТУ).
Парогазовая смесь может образовываться путем впрыска воды в газовый тракт, причем вода перед впрыском нагревается в водяном экономайзере, заменяющем воздушный регенератор в схеме ГТУ.
С целью предотвращения заноса проточной части турбины солями, а также с целью защиты стенок камеры сгорания от перегрева испарение воды может осуществляться в экранных поверхностях нагрева с последующим вводом получаемого пара в газовый тракт.
На рис. 2 показаны основные элементы тепловой схемы монарной парогазовой установки, ПГУ-200–750/30.
Воздух сжимается в компрессорах низкого КНД, среднего КСД и высокого КВД давления, охлаждаясь в двух промежуточных охладителях ПО. Из КВД с давлением 29 ата и температурой 302° С воздух направляется в топку парогенератора ПГ. К продуктам сгорания подмешивается отработавший в паровой турбине ПТ пар, и их смесь с давлением 28 ата и 750° С поступает в турбину высокого давления ТВД.
Рисунок 2. – Тепловая схема ПГУ мощностью 200 МВт на парогазовой смеси
Часть воздуха из компрессора среднего давления идет в камеру сгорания КС турбины низкого давления ТНД.
Продукты сгорания этой камеры смешиваются с выхлопными газами ТВД и при параметрах 7,1 ата, 750° С подводятся к ТНД, отработав в которой, идут в регенератор Р, соединенный по пароводяному тракту с парогенератором через барабан-сепаратор. Тепло промежуточного охлаждения воздуха используется для подогрева воды после химической водоочистки, восполняющей потери пара с выхлопными газами. Паровая турбина служит приводом КВД. Вода после химической очистки в устройстве ВП проходит через деаэраторы Д1 и Д2, подогреваясь в теплообменниках Т1 и Т2. В эжекторе Эж используется напор, создаваемый питательным насосом.
В одновальной ГТУ на парогазовой смеси максимальный к.п.д. установки достигается при впрыске воды в продукты сгорания в количестве около 30% от расхода газа.
По расчетам Теплоэлектропроекта к. п. д. монарного парогазового блока мощностью 200 МВт на 5,8% ниже к. п. д. паротурбинного блока такой же мощности с турбиной К-200–130. Вес металла оборудования парогазового блока 7,7 кг/кВт, при этом 2,6 кг/кВт приходится на долю турбогруппы.
Низкая тепловая экономичность ПГУ на парогазовой смеси не позволяет использовать их для нанесения базисной нагрузки на электростанциях. При упрощении схемы и уменьшении веса и габаритов такие установки могут быть использованы в качестве пиковых, а на судах – в качестве аварийных
3 Установки с бинарным парогазовым циклом

На днях Василий рассказал о статье, в которой подробно и простыми словами описан цикл ПГУ-450. Статья действительно очень легко усваивается. Я же хочу рассказать о теории. Коротко, но по-делу.

Газотурбинная установка (ГТУ) представляет собой тепловой двигатель, в котором химическая энергия топлива преобразуется сначала в теплоту, а затем в механическую энергию на вращающемся валу.

Простейшая ГТУ состоит из компрессора, в котором сжимается атмосферный воздух, камеры сгорания, где в среде этого воздуха сжигается топливо, и турбины, в которой расширяются продукты сгорания. Так как средняя температура газов при расширении существенно выше, чем воздуха при сжатии, мощность, развиваемая турбиной, оказывается больше мощности, необходимой для вращения компрессора. Их разность представляет собой полезную мощность ГТУ.

На рис. 1 показаны схема, термодинамический цикл и тепловой баланс такой установки. Процесс (цикл) работающей таким образом ГТУ называется разомкнутым или открытым. Рабочее тело (воздух, продукты сгорания) постоянно возобновляется — забирается из атмосферы и сбрасывается в нее. КПД ГТУ, как и любого теплового двигателя, представляет собой отношение полезной мощности NГТУ к расходу теплоты, полученной при сжигании топлива:

Из баланса энергии следует, что NГТУ = QT — ΣQП, где ΣQП — общее количество отведенной из цикла ГТУ теплоты, равное сумме внешних потерь.

Основную часть потерь теплоты ГТУ простого цикла составляют потери с уходящими газами:

ΔQух ≈ Qух — Qв; ΔQух — Qв ≈ 65…80%.

Доля остальных потерь значительно меньше:

а) потери от недожога в камере сгорания ΔQкс / Qт ≤ 3%;

б) потери из-за утечек рабочего тела ; ΔQут / Qт ≤ 2%;

в) механические потери (эквивалентная им теплота отводится из цикла с маслом, охлаждающим подшипники) ΔNмех / Qт ≤ 1%;

г) потери в электрическом генераторе ΔNэг / Qт ≤ 1…2%;

д) потери теплоты конвекцией или излучением в окружающую среду ΔQокр / Qт ≤ 3%

Теплота, которая отводится из цикла ГТУ с отработавшими газами, может быть частично использована вне цикла ГТУ, в частности, в паросиловом цикле.

Принципиальные схемы парогазовых установок различных типов приведены на рис. 2.

В общем случае КПД ПГУ:

Формула КПД ПГУ - общий случай

Здесь — Qгту количество теплоты, подведенной к рабочему телу ГТУ;

Qпсу — количество теплоты, подведенной к паровой среде в котле.

Рис. 1. Принцип действия простейшей ГТУ

Принцип действия простейшей ГТУ

а — принципиальная схема: 1 — компрессор; 2 — камера сгорания; 3 — турбина; 4 — электрогенератор;
б — термодинамический цикл ГТУ в ТS-диаграмме;
в — баланс энергии.

В простейшей бинарной парогазовой установке по схеме, показанной на рис. 2 а, весь пар вырабатывается в котле-утилизаторе: ηУПГ = 0,6…0,8 (в зависимости, главным образом, от температуры уходящих газов).

При ТГ = 1400…1500 К ηГТУ ≈ 0,35, и тогда КПД бинарной ПГУ может дос-тигать 50-55 %.

Температура отработавших в турбине ГТУ газов высока (400-450оС), следовательно, велики потери теплоты с уходящими газами и КПД газотурбинных электростанций составляет 38 % , т. е. он практически такой же, как КПД современных паротурбинных электростанций.

Газотурбинные установки работают на газовом топливе, которое существенно дешевле мазута. Единичная мощность современных ГТУ достигает 250 МВт, что приближается к мощности паротурбинных установок. К преимуществам ГТУ по сравнению с паротурбинными установками относятся:

  1. незначительная потребность в охлаждающей воде;
  2. меньшая масса и меньшие капитальные затраты на единицу мощности;
  3. возможность быстрого пуска и форсирования нагрузки.

Рис. 2. Принципиальные схемы различных парогазовых установок:

Принципиальные схемы различных парогазовых установок

а — ПГУ с парогенератором утилизационного типа;
б — ПГУ со сбросом газов в топку котла (НПГ);
в — ПГУ на парогазовой смеси;
1 — воздух из атмосферы; 2 — топливо; 3 — отработавшие в турбине газы; 4 — уходящие газы; 5 — вода из сети на охлаждение; 6 — отвод охлаждающей воды; 7 — свежий пар; 8 — питательная вода; 9 – промежуточный перегрев пара; 10 — регенеративные отбросы пара; 11 — пар, поступающий после турбины в камеру сгорания.
К — компрессор; Т — турбина; ПТ — паровая турбина;
ГВ, ГН — газоводяные подогреватели высокого и низкого давления;
ПВД, ПНД — регенеративные подогреватели питательной воды высокого и низкого давления; НПГ, УПГ — низконапорный, утилизационный парогенераторы; КС — камера сгорания.

Объединяя паротурбинную и газотурбинную установки общим технологическим циклом, получают парогазовую установку (ПГУ), КПД который существенно выше, чем КПД отдельно взятых паротурбинной и газотурбинной установок.

КПД парогазовой электростанции на 17-20 % больше, чем обычной паротурбинной электростанции. В варианте простейшей ГТУ с утилизацией тепла уходящих газов коэффициент использования тепла топлива достигает 82-85%.


В статье дан анализ схем парогазовых установок, показаны типы, преимущества и особенности их применения в схеме теплоэлектростанции. Описаны технологические требования для эффективной эксплуатации парогазовых установок. Рассмотрены факторы, влияющие на повышение коэффициент полезного действия. Определены технические задачи, возникающие при проектировании и эксплуатации парогазовых установок. Выполнен анализ вопросов использования котла-утилизатора в парогазовой установке. Указаны объемы внедрения передовых зарубежных компаний по производству газовых турбин и дальнейшие перспективы их развития.

Ключевые слова:котел, паротурбина, газотурбина, топливо, испаритель, цикл, температура, давления, парогенератор, подогреватель, уходящих газов, вода, воздух, коэффициент полезного действия.

В любой стране энергетика является базовой отраслью экономики, стратегически важной для государства. От её состояния и развития зависят соответствующие темпы роста других отраслей хозяйства, стабильность их работы. В промышленности электрическая энергия из тепловой получается путем промежуточного преобразования её в механическую работу. Современная техника пока не позволяет создать более или менее мощные установки для получения электричества непосредственно из тепла. Все установки такого типа пока могут работать или только кратковременно, или при крайне малых мощностях, или при низких коэффициент полезного действия, или зависят от временных факторов. Поэтому на тепловых электростанциях нельзя обойтись без тепловых двигателей.

В настоящее время для эффективного функционирования любой электростанции одним из главных инструментов является организация правильной работы с топливом. А именно работа с поставщиками, учет качества и количества топлива, претензионная работа. К сожалению, не все предприятия уделяют достаточное внимание этому процессу, что негативно отражается на их финансово-экономическом и хозяйственном положении.

Перспективное направление развития энергетики связано с газотурбинными и парогазовыми энергетическими установками тепловых электростанций. Парогазовые установки на природном газе-единственные энергетические установки, которые в конденсационном режиме работы отпускают электроэнергию с электрическим коэффициент полезного действия более 58 % [1].

Парогазовые установки являются разновидностью комбинированных теплоэнергетических установок. Термодинамические циклы комбинированных установок состоят из двух и более простых циклов, совершаемых, как правило, разными рабочими телами в различных диапазонах изменение температуры. Циклы, осуществляемые в области более высоких температур, принято называть верхними, а в области более низких температур-нижними.

В качестве верхнего в парогазовом цикле используется цикл газотурбинной установки, рабочим телом которого являются продукты сгорания топлива, или газы. В качестве нижнего используется цикл паротурбинной установки, рабочим телом которого служит водяной пар. Отсюда названия цикла и установок-парогазовые.

Парогазовые установки — сравнительно новый тип генерирующих станций, работающих на газе или на жидком топливе. Принцип работы самой экономичной и распространенной классической схемы таков. Устройство состоит из двух блоков: газотурбинной и паросиловой установок. В газотурбинной установке турбину вращают газообразные продукты сгорания топлива. Проходя через газовую турбину, продукты сгорания отдают ей лишь часть своей энергии и на выходе из газотурбины все ещё имеют высокую температуру. С выхода из газотурбины продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где нагревают воду и образующийся водяной пар.

В первом газотурбинном цикле коэффициент полезного действия редко превышает 38 %. Отработавшие в газотурбинной установке, но все еще сохраняющие высокую температуру, продукты горения поступают в так называемый котел-утилизатор. Там они нагревают пар до температуры 500°С и давления 80 атм., достаточных для работы паровой турбины, к которой подсоединен еще один генератор. Во втором — паросиловом цикле используется еще около 20 % энергии сгоревшего топлива. В сумме коэффициент полезного действия всей установки оказывается равным примерно 58 % [1]. Паровые энергоблоки хорошо освоены. Они надежны и долговечны. Их единичная мощность достигает 800–1200 МВт, а коэффициент полезного действия, представляющий собой отношение произведенной электроэнергии к теплотворности использованного топлива, составляет до 40–41 %, а на наиболее совершенных электростанциях за рубежом — 45-48 %.

Повышение коэффициент полезного действия при объединении паротурбинной и газотурбинной установок получается за счет двух факторов:

  1. Осуществления надстройки газового цикла над паровым;
  2. Уменьшения суммарного расхода уходящих газов.

В большинстве схем используются одновременно оба фактора, дающие повышение коэффициент полезного действия. Однако есть схемы, в которых используется только один из них.

Известны три основных типа парогазовых установок:

  1. С газотурбинной установкой, работающей на парогазовой смеси, которая образуется при впрыске воды (или пара) в газовый тракт перед турбиной;
  2. С высоконапорным парогенератором;
  3. С обычным парогенератором, работающим на горячих газах, сбрасываемых в него из газотурбинной установки.

Основными достоинствами парогазовые установки с обычным парогенератором являются:

  1. Возможность работы парогенератора газотурбинной установки на любом топливе (в парогенераторе сжигается 70–85 % всего топлива);
  2. Возможность использования обычных парогенераторов, что облегчает создание парогазовые установки на базе серийного оборудования и позволяет проводить газовую надстройку действующих электростанций с сохранением всего установленного основного оборудования [2].

В энергетике реализован ряд тепловых схем парогазовые установки, имеющих свои особенности и различия в технологическом процессе. Многообразие парогазовых установок столь велико, что нет возможности рассмотреть их в полном объеме. Поэтому ниже рассмотрим основные типы парогазовые установки, интересные для нас либо с принципиальной, либо с практической точки зрения. Одновременно попытаемся выполнить их классификацию, которая, как и всякая классификация, будет условной.

По назначению парогазовые установки подразделяют на конденсационные и теплофикационные. Первые из них вырабатывают только электроэнергию, вторые-служат и для нагрева сетевой воды в подогревателях, подключаемых к паровой турбине.

По количеству рабочих тел, используемых в парогазовые установки, их делят на бинарные и монарные. В бинарных установках рабочие тела газотурбинного цикла (воздух и продукты горения топлива) и паротурбинной установки (вода и водяной пар) разделены. В монарных установках рабочим телом турбины является смесь продуктов сгорания и водяного пара.

Парогазовыми называются энергетические установки, в которых теплота уходящих газов газотурбинные установки прямо или косвенно используется для выработки электроэнергии в паротурбинном цикле.


Рис. 1. Принципиальная схема простейшая парогазовые установки утилизационного типа

На рис. 1 показана принципиальная схема простейшей парогазовой установки, так называемого утилизационного типа. Уходящие газы газотурбинные установки поступают в котел- утилизатор-теплообменник противоточного типа, в котором за счет тепла горячих газов генерируется пар высоких параметров, направляемый в паровую турбину. Из турбины отработанный пар поступает в конденсатор, конденсируется и с помощью питательного насоса, повышающего давление питательной воды, направляется снова в котел-утилизатор [3].

Часто применяются парогазовые установки со сбросом выходных газов газотурбинной установки в энергетический котел. В них тепло уходящих газов газотурбинной установки, содержащих достаточное количество кислорода, направляется в энергетический котел, замещая в нем воздух, подаваемый дутьевыми вентиляторами котла из атмосферы. При этом отпадает необходимость в воздухоподогревателе котла, так как уходящие газы газотурбинная установки имеют высокую температуру. Главным преимуществом сбросной схемы является возможность использования в паротурбинном цикле недорогих энергетических твердых топлив. В сбросной парогазовые установки топливо направляется не только в камеру сгорания газотурбинная установки, но и в энергетический котел (рис. 2). В ней реализуется два термодинамических цикла. Теплота, поступившая в камеру сгорания газотурбинная установки вместе с топливом, преобразуется в электроэнергию так же, как и в утилизационной парогазовые установки, то есть с коэффициент полезного действия на уровне 50 %, а теплота, поступившая в энергетический котел-как в обычном паротурбинном цикле, то есть с коэффициент полезного действия на уровне 40 % [3].


Рис. 2. Схема сбросной парогазовые установки


Рис. 3. Принципиальная схема парогазовые установки с вытеснением регенерации

За рубежом ведется массовое строительство парогазовых установок. Его тенденции можно увидеть из рис. 5, на котором представлен прогноз мировых заказов, составленный фирмой Siemens на ближайшую пятилетку. Общий ежегодный заказ на теплоэнергетические мощности возрастет с 64 до 70 ГВт. В 1993–1998 гг. доля паровых турбин мощностью более 20 МВт составляла 60 %, а газотурбинные установки мощностью более 50 МВт-40 %. В 1999–2004 гг. заказ на газотурбинные установки возрастет до 48 %, причем доля парогазовые установки увеличится с 40 до 52 %. Доля паровых турбин также возрастает, однако часть их, естественно, будет использоваться в парогазовые установки. Вместе с тем доля газотурбинные установки, работающих автономно в качестве пиковых агрегатов, остается неизменной и будет составлять 12 %. Все это говорит о том, что строительство парогазовые установки является преобладающей тенденцией в современной теплоэнергетике.

Исследования и мировой опыт показывают, что развитие и широкое использование парогазовых установок различных типов являются основным направлением повышения эффективности тепловых электростанций, дающих до последнего времени до 70 % всей выработки электроэнергии. Лучшие показатели экономичности среди всех типов парогазовые установки имеют установки с котлом-утилизатором. При работе на природном газом номинальной нагрузкой они обеспечивают производство электроэнергии с коэффициент полезного действия нетто до 60 % [4].


Рис. 4. Прогноз фирмы Siemens по ежегодным заказам на оборудование для ТЭС

В настоящее время можно говорить в основном о большей эффективности парогазовой тепловые электрические станции по сравнению с паротурбинной: в расчете на единицу тепловой нагрузки парогазовые установки-тепловые электрические станции вырабатывает больше электроэнергии. В энергетике реализован ряд тепловых схем парогазовых установок, имеющих свои особенности и различия в технологическом процессе. Происходит постоянная оптимизация как самих схем, так и улучшение технических характеристик её узлов и элементов. Основными показателями, характеризующими качество работы энергетической установки, являются производительность и надёжность.

Основные термины (генерируются автоматически): установка, газотурбинная установка, полезное действие, паровая турбина, газ, коэффициент, энергетический котел, водяной пар, высокая температура, питательная вода.

Читайте также: