Физиология синаптической передачи реферат

Обновлено: 02.07.2024

Содержимое работы - 1 файл

Физиология синаптической передачи.docx

Физиология синаптической передачи

Классификация синапсов

Синапс - это морфофункциональное образование ЦНС, которое обеспечивает передачу сигнала с нейрона на другой нейрон или с нейрона на эффекторную клетку (мышечное волокно, секреторную клетку). Все синапсы ЦНС можно классифицировать следующим образом.

1. По локализации: центральные (головной и спинной мозг) и периферические (нервно-мышечный, нейросекреторный синапс вегетативной нервной системы). Центральные синапсы можно в свою очередь разделить на аксо-аксональные, аксо-дендритические (дендритные), аксо-соматические, дендро-дендритические, дендро-соматические и т.п. Согласно Г. Шенсрду, различают реципрокные синапсы, последовательные синапсы и синаптические гломерулы (различным способом соединенные через синапсы клетки).

2. По развитию в онтогенезе: стабильные (например, синапсы дуг безусловного рефлекса) и динамичные, появляющиеся в процессе индивидуального развития.

3. По конечному эффекту: тормозные и возбуждающие.

4. По механизму передачи сигнала: электрические, химические, смешанные.

5. Химические синапсы можно классифицировать:

а) по форме контакта - терминальные (колбообразное соединение) и преходящие (варикозное расширение аксона);

б) по природе медиатора - холинергические (медиатор - ацетилхолин, АХ), адренергическис (медиатор - норадреналин, НА), дофаминергические (дофамин), ГАМК-ергические (медиатор - гаммааминомасляная кислота), глицинергические, глутаматергические, аспартатсргические, пептидергические (медиатор - пептиды, например, вещество Р), пуринергические (медиатор - АТФ).

Электрические синапсы. В настоящее время признают, что в ЦНС имеются электрические синапсы. С точки зрения морфологии электрический синапс представляет собой щелевидное образование (размеры щели до 2 нм) с ионными мостиками-каналами между двумя контактирующими клетками. Петли тока, в частности при наличии потенциала действия (ПД), почти беспрепятственно перескакивают через такой щелевидный контакт и возбуждают, т.е. индуцируют генерацию ПД второй клетки. В целом, такие синапсы (они называются эфапсами) обеспечивают очень быструю передачу возбуждения. Но в то же время с помощью этих синапсов нельзя обеспечить одностороннее проведение, т. к. большая часть таких синапсов обладает двусторонней проводимостью. Кроме того, с их помощью нельзя заставить эффекторную клетку (клетку, которая управляется через данный синапс) тормозить свою активность. Аналогом электрического синапса в гладких мышцах и в сердечной мышце являются щелевые контакты типа нексуса.

Химические синапсы. По строению химические синапсы представляют собой окончания аксона (терминальные синапсы) или его варикозную часть (проходящие синапсы), которая заполнена химическим веществом - медиатором. В синапсе различают пресинаптический элемент, который ограничен пресинаптической мембраной, постсинаптический элемент, который ограничен постсипаптической мембраной, а также внесинаптическую область и синаптическую щель, величина которой составляет в среднем 50 нм. В литературе существует большое разнообразие в названиях синапсов. Например, синаптическая бляшка - это синапс между нейронами, концевая пластинка - это постсинаптическая мембрана мионеврального синапса, моторная бляшка - это пресинаптичсское окончание аксона на мышечном волокне.

Общие принципы работы химического синапса

Любой химический синапс, независимо от природы медиатора и хеморецептора, активируется под влиянием потенциала действия, прибегающего к пресинапсу от тела нейрона. В результате - происходит деполяризация пресинаптической мембраны, что повышает проницаемость кальциевых каналов пресинаптической мембраны и приводит к увеличению входа в пресинапс ионов кальция. В ответ на это происходит высвобождение квантов (выход из пресинапса) - 100-200 порций (квантов) медиатора. Выйдя в синаптическую щель, медиатор взаимодействует со специфическим рецептором постсинаптической мембраны, что вызывает изменение ионной проницаемости. В синапсах, в которых осуществляется возбуждение постсинантической структуры, обычно происходит повышение проницаемости для ионов натрия, что вызывает деполяризацию постсинаптической мембраны. Эта деполяризация получила определенное название: возбуждающий постсинаптический потенциал (ВПСП). Если его величина достаточно велика и достигает критического уровня деполяризации, то генерируется ПД. В тормозных синапсах в результате взаимодействия медиатора с рецепторами, наоборот, происходит гиперполяризация (за счет, например, увеличения проницаемости для ионов калия и хлора). Это называется тормозным постсинаптическим потенциалом (ТПСГ1). В гиперполяризоваином состоянии клетка снижает свою возбудимость и благодаря этому прекращает отвечать на внешние раздражители или (если она обладала свойством автоматии) уменьшает спонтанную активность.

После каждого цикла проведения импульса медиатор разрушается, например, ацетилхолин разрушается ацстилхолинэстеразой, норадреналин разрушается моноаминоксидазой (МАО) или катсхол-0-метилтрансферазой (КОМТ), либо идет обратный захват в преси-наптическую структуру. В одних случаях захватывается неразрушенный медиатор (например, норадреналип), в других - его осколки (например, холин из ацетилхолина).

Синтез медиатора совершается в пресинаптическом элементе, куда попадают исходные продукты для синтеза и ферменты, необходимые в синтезе. Ферменты образуются в соме нейрона и по аксону, примерно со скоростью 6 мм/сутки, попадают в пресинапс, где используются в процессе синтеза медиатора. Угнетение активности этих ферментов фармакологическим путем может привести к истощению запасов медиатора в синапсе и, следовательно, к снижению его функциональной способности.

Свойства химических синапсов

1. Односторонняя проводимость - одно из важнейших свойств химического синапса. Асимметрия - морфологическая и функциональная - является предпосылкой для существования односторонней проводимости.

2. Наличие синаптической задержки: для того, чтобы в ответ на генерацию ПД в области пресинапса выделился медиатор и произошло изменение постсинаптического потенциала (ВИСИ или ТПСП), требуется определенное время (синаптическая задержка). В среднем оно равно 0,2-0,5 мс.

3. Благодаря синаптическому процессу нервная клетка, управляющая данным постсинаптичсским элементом (эффектором), может оказывать возбуждающее воздействие или, наоборот, тормозное (это определяется конкретным синапсом).

4. В синапсах существует явление отрицательной обратной связи - антидромный эффект. Речь идет о том, что выделяемый в синаптическую щель медиатор может регулировать выделение следующей порции медиатора из этого же пресинаптического элемента путем воздействия на специфические рецепторы пресинаптичсской мембраны.

В мозге имеется ряд медиаторов, вызывающих возбуждение нейрона: норадреналин (его продуцируют адренергические нейроны), дофамин (дофаминергические нейроны), серото-нин, пептиды (пептидергические), глутаминовая кислота, аспарагиновая кислота и т.д. Во всех этих случаях выделяющийся медиатор взаимодействует со специфическим рецептором, в результате чего меняется проницаемость для ионов натрия, калия или хлора, и в итоге развивается деполяризация (ВПСП). Если она достигает критического уровня деполяризации, то возникает ПД (возбуждение нейрона).

Тормозные синапсы образованы специальными тормозными нейронами (точнее, их аксонами). Медиатором могут быть глицин, гамма-аминомасляная кислота (ГАМК) и ряд других веществ. Обычно глицин вырабатывается в синапсах, с помощью которых осуществляется постсинаптическое торможение. При взаимодействии глицина как медиатора с глициновыми рецепторами нейрона возникает гиперполяризация нейрона (ТПСП) и, как следствие, - снижение возбудимости нейрона вплоть до полной его рефрактсрности. В результате этого возбуждающие воздействия, оказываемые через другие аксоны, становятся малоэффективными или неэффективными. Нейрон выключается из работы полностью.

Центральная нервная система

Центральная нервная система (ЦНС) - это совокупность нервных образований спинного и головного мозга, обеспечивающих восприятие, обработку, передачу, хранение и воспроизведение информации с целью адекватного взаимодействия организма и изменений окружающей среды, организации оптимального функционирования органов, их систем и организма в целом.

Центральная нервная система человека представлена спинным продолговатым, средним, промежуточным мозгом, мозжечком, базальными ганглиями и корой головного мозга.

Нейрон и нейроглия

Нейрон является функциональной единицей мозга. Наряду с нейронами в мозге имеются клетки глии - олигодендроциты и астроциты.

Нейрон имеет дендриты, аксон, сому. Для физиолога очень важно понятие об аксонном холмике и начальном сегменте. Именно в этом месте происходит возбуждение нейрона, так как эта часть обладает наибольшей возбудимостью.

Нейрон имеет множество синапсов, через которые он получает возбуждение и тормозные воздействия от других нейронов. Благодаря этому нейрон может получать в больших количествах информацию.

Нейрон может находиться в различных состояниях: а) в состоянии покоя - практически отсутствуют колебания мембранного потенциала, ПД не генерируется; б) в состоянии активности - генерировать потенциалы действия (для нейронов характерна генерация серии или пачки импульсов). Состояние активности может быть индуцировано за счет поступления к нейрону импульсов от других нейронов или быть спонтанным (автоматия). В этом случае нейрон играет роль пейсмекера (водителя ритма). Такие нейроны имеются в ряде центров, например, в центре дыхания; в) в состоянии торможения - оно проявляется в том, что нейрон прекращает свою импульсную активность (нейрон - пейсмекер, или нейрон, получающий возбуждающие воздействия). В основе торможения лежит явление гиперполяризации нейрона (это характерно для постсинаптического торможения).

1 - поляризация, 2 - гиперполяризация, 3 - деполяризация;

МП - мембранный потенциал,

ТПСП - тормозящий постсинаптический потенциал,

ПД - потенциал действия

Функционально нейроны делят на три типа: афферентные, промежуточные и эфферентные. Первые - выполняют функцию получения и передачи информации в вышележащие структуры ЦНС, вторые - обеспечивают взаимодействие между нейронами одной структуры, третьи - за счет длинного аксона передают информацию в нижележащие структуры ЦНС, в нервные узлы, лежащие за ее пределами, и в органы организма.

По форме нейроны делят на моно-, би- и мультиполярные. По химической характеристике выделяемых в окончаниях аксонов веществ, отличают нейроны: холинэргические, пептидэргические, норадреналинэргические, дофаминэргические, серотонинэргические и др.

Важной характеристикой нейронов является их чувствительность к разным раздражителям. По этому признаку нейроны делят на моно-, би- и полисенсорные.

Моносенсорные нейроны располагаются чаще в первичных проекционных зонах коры и реагируют только на сигналы своей модальности. Например, значительная часть нейронов первичной зрительной коры реагирует только на световое раздражение сетчатки глаза.

Бисенсорные нейроны располагаются преимущественно во вторичных зонах коры анализатора и могут реагировать как на сигналы своей, так и на сигналы другой модальности. Например, нейроны вторичной зрительной коры реагируют на зрительные и слуховые раздражения. Полисенсорные нейроны - это чаще всего нейроны ассоциативных зон мозга. Они способны реагировать на раздражение слуховой, зрительной, кожной и др. анализаторных систем.

Наше тело - один большой часовой механизм. Он состоит из огромнейшего количества мельчайших частиц, которые расположены в строгом порядке и каждая из них выполняет определённые функции, и имеет свои неповторимые свойства. Этот механизм - тело, состоит из клеток, соединяющих их тканей и систем: все это в целом представляет собой единую цепочку, сверхсистему организма. Величайшее множество клеточных элементов не могли бы работать как единое целое, если бы в организме не существовал утонченный механизм регуляции. Особую роль в регуляции играет нервная система. Вся сложная работа нервной системы - регулирование работы внутренних органов, управление движениями, будь то простые и неосознаваемые движения (например, дыхание) или сложные, движения рук человека - все это, в сущности, основано на взаимодействии клеток между собой. Все это, в сущности, основано на передаче сигнала от одной клетке к другой. Причем, каждая клетка выполняет свою работу, а иногда имеет несколько функций. Разнообразие функций обеспечивается двумя факторами: тем, как клетки соединены между собой, и тем, как устроены эти соединения.

ФИЗИОЛОГИЯ НЕЙРОНА И ЕГО СТРОЕНИЕ:

Простейшая реакция нервной системы на внешний раздражитель - это рефлекс. Прежде всего, рассмотрим строение и физиологию структурной элементарной единицы нервной ткани животных и человека - нейрона. Функциональные и основные свойства нейрона определяются его способностью к возбуждению и самовозбуждению. Передача возбуждения осуществляется по отросткам нейрона - аксонам и дендритам.

Аксоны - более длинные и широкие отростки. Они обладают рядом специфических свойств: изолированным проведением возбуждения и двусторонней проводимостью.

Нервные клетки способны не только воспринимать и перерабатывать внешнее возбуждение, но и самопроизвольно выдавать импульсы, не вызванные внешним раздражением (самовозбуждение). В ответ на раздражение, нейрон отвечает импульсом активности - потенциалом действия, частота генерации которых колеблется от 50-60 импульсов в секунду (для мотонейронов), до 600-800 импульсов в секунду (для вставочных нейронов головного мозга). Аксон заканчивается множеством тоненьких веточек, которые называются терминалями. С терминалей импульс переходит на другие клетки, непосредственно на их тела или чаще на их отростки дендриты. Количество терминалей у аксона, может достигать до одной тысячи, которые оканчиваются в разных клетках. С другой стороны, типичный нейрон позвоночного имеет от 1000 до 10000 терминалей от других клеток.

Дендриты - более короткие и многочисленные отростки нейронов. Они воспринимают возбуждение от соседних нейронов и проводят его к телу клетки. Различают мякотные и безмякотные нервные клетки и волокна.

Безмякотные волокна - составляют основную часть симпатических нервов. Они не имеют миелиновой оболочки и отделены друг от друга клетками нейроглии.

В безмякотных волокнах роль изоляторов выполняют клетки нейроглии (нервной опорной ткани). Швановские клетки - одна из разновидностей глиальных клеток. Помимо внутренних нейронов, воспринимающих и преобразующих импульсы, поступающие от других нейронов, существуют нейроны, воспринимающие воздействия непосредственно из окружающей среды - это рецепторы, а так же нейроны, непосредственно воздействующие на исполнительные органы - эффекторы, например, на мышцы или железы. Если нейрон воздействует на мышцу, его называют моторным нейроном или мотонейроном. Среди нейрорецепторов различают 5 типов клеток, в зависимости от вида возбудителя:

- фоторецепторы, которые возбуждаются под воздействием света и обеспечивают работу органов зрения,

- механорецепторы, те рецепторы, которые реагируют на механические воздействия. Они располагаются в органах слуха, равновесия. Осязательные клетки также являются механорецепторами. Некоторые механорецепторы располагаются в мышцах и измеряют степень их растяжения.

- хеморецепторы - избирательно реагируют на присутствие или изменение концентрации различных химических веществ, на них основана работа органов обоняния и вкуса,

- терморецепторы, реагируют на изменение температуры либо на ее уровень - холодовые и тепловые рецепторы,

- электрорецепторы реагируют на токовые импульсы, и имеются у некоторых рыб, амфибий и млекопитающих, например, у утконоса.

Исходя из выше сказанного, хотелось бы отметить, что долгое время среди биологов, изучавших нервную систему, существовало мнение, что нервные клетки образуют длинные сложные сети, непрерывно переходящие одна в другую.

Однако в 1875 году, итальянский ученый, профессор гистологии университета в Павии, придумал новый способ окраски клеток - серебрение. При серебрении одной из тысяч лежащих рядом клеток окрашивается только она - единственная, но зато полностью, со всеми своими отростками. Метод Гольджи сильно помог изучению строения нервных клеток. Его использование показало, что, не смотря на то, что клетки в головном мозгу расположены чрезвычайно близко друг к другу, и их отростки перепутаны, все же каждая клетка четко отделяется. То есть мозг, как и другие ткани, состоит из отдельных, не объединенных в общую сеть клеток. Этот вывод был сделан испанским гистологом С. Рамон-и-Кахалем, который тем самым распространил клеточную теорию на нервную систему. Отказ от представления об объединенной сети, означал, что в нервной системе импульс переходит с клетки на клетку не через прямой электрический контакт, а через разрыв.

Когда в биологии стал использоваться электронный микроскоп, который был изобретен в 1931 году М. Кноллем и Э. Руска, эти представления о наличии разрыва получили прямое подтверждение.

СТРУКТУРА И ФУНКЦИИ СИНАПСА:

Различные синаптические контакты отличаются друг от друга. Однако при всем многообразии синапсов существуют определенные общие свойства их структуры и функции. Поэтому сначала опишем общие принципы их функционирования.

Синапс - представляет собой сложное структурное образование, состоящее из пресинаптической мембраны (чаще всего это концевое разветвление аксона), постсинаптической мембраны (чаще всего это участок мембраны тела или дендрита другого нейрона), а так же синаптической щели.

Механизм передачи через синапс долгое время оставался невыясненным, хотя было очевидно, что передача сигналов в синаптической области резко отличается от процесса проведения потенциала действия по аксону. Однако в начале XX века была сформулирована гипотеза, что синаптическая передача осуществляется или электрическим или химическим путем. Электрическая теория синаптической передачи в ЦНС пользовалась признанием до начала 50-х годов, однако она значительно сдала свои позиции после того, как химический синапс был продемонстрирован в ряде периферических синапсов. Так, например, А.В. Кибяков, проведя опыт на нервном ганглии, а также использование микроэлектродной техники для внутриклеточной регистрации синаптических потенциалов

нейронов ЦНС позволили сделать вывод о химической природе передачи в межнейрональных синапсах спинного мозга.

Микроэлектродные исследования последних лет показали, что в определенных межнейронных синапсах существует электрический механизм передачи. В настоящее время стало очевидным, что есть синапсы, как с химическим механизмом передачи, так и с электрическим. Более того, в некоторых синаптических структурах вместе функционируют и электрический и химический механизмы передачи - это так называемые смешанные синапсы.

Если электрические синапсы характерны для нервной системы более примитивных животных (нервная диффузионная система кишечнополостных, некоторые синапсы рака и кольчатых червей, синапсы нервной системы рыб), хотя они и обнаружены в мозге млекопитающих. Во всех перечисленных выше случаях импульсы передаются посредством деполяризующего действия электрического тока, который генерируется в пресинаптическом элементе. Хотелось бы также отметить, что в случае электрических синапсов возможна передача импульсов как в одном, так и в двух направлениях. Также у низших животных контакт между пресинаптическим и постсинаптическим элементом осуществляется посредством всего одного синапса - моносинаптическая форма связи, однако в процессе филогенеза осуществляется переход к полисинаптической форме связи, то есть, когда указанный выше контакт осуществляется посредством большего числа синапсов.

Однако, в данной работе, мне хотелось бы подробнее остановиться на синапсах с химическим механизмом передачи, которые составляют большую часть синаптического аппарата ЦНС высших животных и человека. Таким образом, химические синапсы, на мой взгляд, особенно интересны, так как они обеспечивают очень сложные взаимодействия клеток, а также связаны с рядом патологических процессов и изменяют свои свойства под влиянием некоторых лекарственных средств.

ХИМИЧЕСКИЙ СИНАПС:

мембрана содержит много кальциевых каналов. Потенциал действия деполяризует пресинаптическое окончание и, таким образом, изменяет состояние кальциевых каналов, вследствие чего они открываются. Так как концентрация кальция (Са2 +) во внеклеточной среде больше, чем внутри клетки, то через открытые каналы кальций проникает в клетку. Увеличение внутриклеточного содержания кальция, приводит к слиянию пузырьков с пресинаптической мембраной. Медиатор выходит из синаптических пузырьков в синоптическую щель. Синаптическая щель в химических синапсах довольно широкая и составляет в среднем 10-20 нм. Здесь медиатор связывается с белками - рецепторами, которые встроены в постсинаптическую мембрану. Связывание медиатора с рецептором начинает цепь явлений, приводящих к изменению состояния постсинаптической мембраны, а затем и всей постсинаптической клетки. После взаимодействия с молекулой медиатора рецептор активируется, заслонка открывается, и канал становится проходимым или для одного иона, или для нескольких ионов одновременно.

Следует отметить, что химические синапсы отличаются не только механизмом передачи, но также и многими функциональными свойствами. Некоторые из них мне хотелось бы указать. Например, в синапсах с химическим механизмом передачи продолжительность синоптической задержки, то есть интервал между приходом импульса в пресинаптическое окончание и началом постсинаптического потенциала, у теплокровных животных составляет 0,2 - 0,5мс. Также, химические синапсы отличаются односторонним проведением, то есть медиатор, обеспечивающий передачу сигналов, содержится только в пресинаптическом звене. Учитывая, что в химических возникновениях синапсах возникновение постсинаптического потенциала обусловлено изменением ионной проницаемости постсинаптической мембраны, они эффективно обеспечивают как возбуждение, так и торможение. Указав, на мой взгляд, функциональные основные свойства химической синаптической передачи, рассмотрим, как же осуществляется процесс высвобождения медиатора, а так же опишем наиболее известные из них.

ВЫДЕЛЕНИЕ МЕДИА ТОРА:

Фактор, выполняющий медиаторную функцию, вырабатывается в теле нейрона, и оттуда транспортируется в окончание аксона. Содержащийся в пресинаптческих окончаниях медиатор должен выделиться в синаптическую щель, чтобы воздействовать на рецепторы постсинаптической мембраны, обеспечивая транссинаптическую передачу сигналов. В качестве медиатора могут выступать такие вещества, как ацетилхолин, катехоламиновая группа, серотонин, нейропиптиды и многие другие, их общие свойства будут описаны ниже.

Еще до того, как были выяснены многие существенные особенности процесса высвобождения медиатора, было установлено, что пресинаптические окончания могут изменять состояния спонтанной секреторной активности. Постоянно выделяемые небольшие порции медиатора вызывают в постсинаптической клетке так называемые спонтанные, миниатюрные постсинаптические потенциалы. Это было установлено в 1950 году английскими учеными Феттом и Катцом, которые, изучая работу нервно-мышечного синапса лягушки, обнаружили, что без всякого действия на нерв в мышце в области постсинаптической мембраны сами по себе через случайные промежутки времени возникают небольшие колебания потенциала, амплитудой примерно в 0,5мВ. Открытие, не связанного с приходом нервного импульса, выделения медиатора помогло установить квантовый характер его высвобождения, то есть получилось, что в химическом синапсе медиатор выделяется и в покое, но изредка и небольшими порциями. Дискретность выражается в том, что медиатор выходит из окончания не диффузно, не в виде отдельных молекул, а в форме многомолекулярных порций (или квантов), в каждой из которых содержится несколько тысяч молекул.

Происходит это следующим образом: в аксоплазме окончаний нейрона в непосредственной близости к пресинаптической мембране при рассмотрении под электронным микроскопом было обнаружено множество пузырьков или везикул, каждая из которых содержит один квант медиатора. Токи действия, вызываемые пресинаптическими импульсами, не оказывают заметного влияния на постсинаптическую мембрану, но приводят к разрушению оболочки пузырьков с медиатором. Этот процесс (экзоцитоз) заключается в том, что пузырек, подойдя к внутренней поверхности мембраны пресинаптического окончания при наличии кальция (Са2 +), сливается с пресинаптической мембраной, в результате чего и происходит опорожнение пузырька в синаптическую щель. После разрушения пузырька окружающая его мембрана включается в мембрану пресинаптического окончания, увеличивая его поверхность. В дальнейшем, в результате процесса эндоцитоза, небольшие участки пресинаптической мембраны впячиваются внутрь, вновь образуя пузырьки, которые впоследствии снова способны включать медиатор и вступать в цикл его высвобождения.

ХИМИЧЕСКИЕ МЕДИАТОРЫ:

В ЦНС медиаторную функцию выполняет большая группа разнородных химических веществ. Список вновь открываемых химических медиаторов неуклонно пополняется. По последним данным их насчитывается около 30. Хотелось бы также отметить, что согласно принципу Дейла, каждый нейрон во всех своих синаптических окончаниях выделяет один и тот же медиатор. Исходя из этого принципа, принято обозначать нейроны по типу медиатора, который выделяют их окончания. Таким образом, например, нейроны, освобождающие ацетилхолин, называют холинэргическими, серотонин - серотонинергическими. Такой принцип может быть использован для обозначения различных химических синапсов. Рассмотрим некоторые из наиболее известных химических медиаторов:

Особенностью ацетилхолина как медиатора, является быстрое его разрушение после высвобождения из пресинаптических окончаний с помощью фермента ацетилхолинэстеразы. Ацетилхолин выполняет функцию медиатора в синапсах, образуемых возвратными коллатералями аксонов двигательных нейронов спинного мозга на вставочных клетках Реншоу, которые в свою очередь с помощью другого медиатора оказывают тормозящее воздействие на мотонейроны.

Холинэргическими являются также нейроны спинного мозга, иннервирующие хромаффинные клетки и преганглионарные нейроны, иннервирующие нервные клетки интрамуральных и экстрамуральных ганглиев. Полагают, что холинэргические нейроны имеются в составе ретикулярной формации среднего мозга, мозжечка, базальных ганглиях и коре.

КАТЕХОЛАМИНЫ - это три родственных в химическом отношении вещества. К ним относятся: дофамин, нор адреналин и адреналин, которые являются производными тирозина и выполняют медиаторную функцию не только в периферических, но и в центральных синапсах. Дофаминергические нейроны находятся у млекопитающих главным образом в пределах среднего мозга. Особенно важную роль дофамин играет в полосатом теле, где обнаруживаются особенно большие количества этого медиатора. Кроме того, дофаминергические нейроны имеются в гипоталамусе. Норадренергические нейроны содержатся также в составе среднего мозга, моста и продолговатого мозга. Аксоны норадренергических нейронов образуют восходящие пути, направляющиеся в гипоталамус, таламус, лимбические отделы коры и в мозжечок. Нисходящие волокна норадренергических нейронов иннервируют нервные клетки спинного мозга.

Катехоламины оказывают как возбуждающее, так и тормозящее действие на нейроны ЦНС.

СЕРОТОНИН - Подобно катехоламинам, относится к группе моноаминов, то есть синтезируется из аминокислоты триптофана. У млекопитающих серотонинергические нейроны локализуются главным образом в стволе мозга. Они входят в состав дорсального и медиального шва, ядер продолговатого мозга, моста и среднего мозга. Серотонинергические нейроны распространяют влияние на новую кору, гиппокамп, бледный шар, миндалину, подбугровую область, стволовые структуры, кору мозжечка, спинной мозг. Серотонин играет важную роль в нисходящем контроле активности спинного мозга и в гипоталамическом контроле температуры тела. В свою очередь нарушения серотонинового обмена, возникающие при действии ряда фармакологических препаратов, могут вызывать галлюцинации. Нарушение функций серотонинергических синапсов наблюдаются при шизофрении и других психических расстройствах. Серотонин может вызывать возбуждающее и тормозящее действие в зависимости от свойств рецепторов постсинаптической мембраны.

НЕЙТРАЛЬНЫЕ АМИНОКИСЛОТЫ - это две основные дикарбоксильные кислоты L-глутамат и L-аспартат, которые находятся в большом количестве в ЦНС и могут выполнять функцию медиаторов. L-глутаминовая кислота, входит в состав многих белков и пептидов. Она плохо проходит через гематоэнцефалический барьер и поэтому не поступает в мозг из крови, образуясь главным образом из глюкозы в самой нервной ткани. В ЦНС млекопитающих глутамат обнаруживается в высоких концентрациях. Полагают, что его функция главным образом связана с синаптической передачей возбуждения.

ПОЛИПЕПТИДЫ - В последние годы показано, что в синапсах ЦНС медиаторную функцию могут выполнять некоторые полипептиды. К таким полипептидам относятся вещества-Р, гипоталамические нейрогормоны, энкефалины и др. Под веществом-Р подразумевается группа агентов, впервые экстрагированных из кишечника. Эти полипептиды обнаруживаются во многих частях ЦНС. Особенно велика их концентрация в области черного вещества. Наличие вещества-Р в задних корешках спинного мозга позволяет предполагать, что оно может служить медиатором в синапсах, образуемых центральными окончаниями аксонов некоторых первичных афферентных нейронов. Вещество-Р оказывает возбуждающее действие на определенные нейроны спинного мозга. Медиаторная роль других нейропептидов выяснена еще меньше.

ЭПИЛОГ:

Можно себе только представить, что случится, если в этом сложнейшем процессе обмена произойдёт сбой. что будет с нами. Так можно говорить о любой структуре организма, она может не являться главной, но без неё деятельность всего организма будет не совсем верной и полной. Всё равно, что в часах. Если отсутствует одна, даже самая маленькая деталь в механизме, часы уже не будут работать абсолютно точно. И вскоре часы сломаются. Так же и наш организм, при нарушении одной из систем, постепенно ведёт к сбою всего организма, а в последствие к гибели этого самого организма. Так что в наших интересах следить за состоянием своего организма, и не допускать тех ошибок, которые могут привести к серьёзным последствиям для нас.

Строение и классификация синапсов по локализации, развитию в онтогенезе и механизму передачи сигнала. Физиология синаптической передачи при химической трансляции сигнала с нейрона на эффекторную клетку. Характеристика нейромедиаторных систем мозга.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 10.07.2011
Размер файла 20,4 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Физиология синаптической передачи

2. Физиология синаптической передачи в химическом синапсе

3. Нейромедиаторные системы мозга

4. Роль синапсов в формировании временной связи

1. Строение и классификация синапсов

Синапс - это морфофункциональное образование ЦНС, которое обеспечивает передачу сигнала с нейрона на другой нейрон или на эффекторную клетку (мышечную, секреторную). Синапс включает три компонента: пресинаптическая мембрана, постсинаптическая мембрана и синаптическая щель, т. е. содержит элементы и первого и второго контактирующих нейронов.

По локализации синапсы делятся на центральные и периферические. Центральные подразделяются на аксо-аксональные, аксо-дендрические, аксо-соматические, дендро-дендрические и т. д.; по развитию в онтогенезе различают стабильные и динамические синапсы, по конечному эффекту - тормозные и возбуждающие. По механизму передачи сигнала синапсы бывают электрические, химические и смешанные.

Электрический синапс представляет собой щелевидное образование с ионными мостиками-каналами между двумя контактирующими клетками. При наличии ПД ток почти беспрепятственно перескакивает через щелевидный контакт и индуцирует генерацию ПД в другой клетке, таким образом происходит быстрая передача возбуждения. Но электрические синапсы в основном обладают двусторонней проводимостью. Кроме того с их помощью нельзя заставить эффекторную клетку тормозить свою активность. С другой стороны, передача сигнала происходит почти без синаптической задержки и почти без утечки токов через внеклеточную среду. Электрические синапсы широко распространены в нервной системе беспозвоночных и низших позвоночных. В стволе мозга млекопитающих они имеются в ядрах тройничного нерва и некоторых других ядрах ствола.

Химические синапсы передачу нервного сигнала осуществляют с помощью химических веществ - медиаторов, которые содержатся в синаптических визикулах. Химические синапсы классифицируют по природе медиатора, который они используют: холинэргические (ацетилхолин), адренергические (адреналин), дофаминергические (дофамин) и др.

2. Физиология синаптической передачи в химическом синапсе

Потенциал действия, пришедший по пресинаптическому волокну к синапсу, вызывает деполяризацию мембраны, которая включает кальциевый насос, и ионы кальция поступают в синапс. Попадая в цитоплазму синаптического окончания, кальций связывается с белками оболочки синаптических везикул (пузырьков, в которых хранятся медиаторы), что приводит к выделению медиаторов в синаптическую щель, которая отделяет мембрану одного нейрона от мембраны другого. Так возбуждение (электрический потенциал действия) нейрона в синапсе превращается из электрического импульса в импульс химический, т. е. каждое возбуждение нейрона сопровождается выбросом в окончании его аксона порции биологически активного вещества - медиатора. Далее молекулы медиатора связываются со специальными белковыми молекулами, которые находятся на мембране другого нейрона. Эти молекулы называются рецепторами. Рецепторы устроены уникально и связывают только один тип молекул (которые подходят как "ключ к замку"). Рецепторы - белковые структуры, которые являются интегральными белками плазматической мембраны. Они синтезируются в рибосомах эндоплазматического ретикулюма клетки, затем встраиваются в мембраны. Функциональная активность синапса зависит от количества рецепторов, а также от их сродства к медиатору (лиганду). Искусственно созданные лиганды, обладающие высоким специфическим (т. е. действующим только на определенный тип либо подтип рецептора) сродством к рецепторам, способны вызывать такой же функциональный ответ клетки, как и нативные медиаторы. Рецептор состоит из двух частей. Одну можно назвать "узнающим центром", другую - "ионным каналом". Если молекулы медиатора заняли определенные места (узнающий центр) на молекуле рецептора, то ионный канал открывается и ионы начинают входить в клетку (ионы натрия) или выходить (ионы калия) из клетки. Другими словами, через мембрану протекает ионный ток, который вызывает изменение потенциала на мембране. Этот потенциал получил название постсинаптического потенциала. В зависимости от характера открытых ионных каналов возникает возбудительный (открываются каналы для ионов натрия и калия) постсинаптсинаптический потенциала (ВПСП) или тормозной (открываются каналы для ионов хлора) постсинаптический потенциал (ТПСП). На мембране одного нейрона могут одновременно находиться два вида синапсов: тормозные и возбудительные. Все определяется устройством ионного канала мембраны. Мембрана возбудительных синапсов пропускает как ионы натрия, так и ионы калия. В этом случае мембрана нейрона деполяризуется. Мембрана тормозных синапсов пропускает только ионы хлора и гиперполяризуется. Очевидно, что если нейрон заторможен, потенциал мембраны увеличивается (гиперполяризация). Таким образом, нейрон благодаря воздействию через соответствующие синапсы может возбудиться или прекратить возбуждение, затормозиться. Все эти события происходят на соме и многочисленных отростках дендрита нейрона (на последних находится до нескольких тысяч тормозных и возбудительных синапсов).

После каждого проведения импульса медиаторы разрушаются специфическими ферментами либо происходит их обратный захват в пресинаптическое окончание. В синапсах существует широко распространенное в физиологии явление обратной связи: медиатор из синаптической щели может взаимодействовать с рецепторами на пресинаптической мембране (ауторецепторами), что приводит к прекращению выброса медиатора. Активность синапса может модулироваться действием модулирующих нейромедиаторов, рецепторы которых располагаются на аксоне или даже дендритах и теле синапса. Если через синапс проходит много импульсов, то рецепторы могут уменьшить свою чувствительность к нейромедиатору (это свойство рецепторов обеспечивает процессы адаптации на нейрональном уровне). Важно помнить, что между химической природой синапса и знаком его синаптического действия (возбуждающий или тормозной) нет однозначной зависимости: один и тот же медиатор может оказывать как тормозное, так и возбуждающее действие. Знак синаптического действия определяется свойствами постсинаптической мембраны, т. е. составом рецепторов, которые могут разным образом реагировать с медиатором и контролировать проводимость разных ионных каналов.

3. Нейромедиаторые системы мозга

В качестве медиаторов синаптической передачи сегодня известно большое количество химических веществ, список которых до сих пор не закончен. Нейромедиаторы разделяются на несколько групп: ацетилхолин, серотонин, катехоламины (дофамин, нор-адреналин, адреналин), аминокислоты, нейропептиды, пурин эргические производные. Все нейромедиаторы, кроме аминокислот, синтезируются из циркулирующих в крови предшественников. Распределение нейронов, использующих различные медиаторы, в нервной системе неравномерно. Нарушение выработки некоторых медиаторов в отдельных структурах мозга связывают с патогенезом ряда нервно-психических заболеваний. Так, содержание дофамина снижено при паркинсонизме и повышено при шизо-френии, снижение уровня норадреналина и серотонина типично для депрессивных состояний, а их повышение - для маниакальных.

Одним из наиболее распространенных медиаторов является ацетилхолин, который является основным нейромедиатором, передающим информацию в головном мозге и в периферических окончаниях нервных волокон. Нейроны головного мозга, возбуждаемые через ацетилхолиновые рецепторы, играют большую роль в проявлении некоторых психических функций. Установлено, что гибель таких нейронов приводит к старческому слабоумию (болезнь Альцгеймера).

Дофаминергические нейроны у млекопитающих находятся преимущественно в среднем мозге, а также в гипоталамической области. Дофаминовые цепи мозга млекопитающих хорошо изучены. Известны три главные цепи, все они состоят из однонейронной цепочки. Тела нейронов находятся в мозговом стволе и отсылают аксоны в другие области головного мозга. Одна цепь очень проста. Тело нейрона находится в области гипоталамуса и отсылает короткий аксон в гипофиз. Этот путь входит в состав гипоталамо-гипофизарной системы и контролирует систему эндокринных желез. Вторая дофаминовая система также хорошо изучена. Это черная субстанция, многие клетки которой содержат дофамин. Аксоны этих нейронов проецируются в полосатые тела. Эта система содержит примерно 3/4 дофамина головного мозга. Она имеет решающее значение в регулировании тонических движений. Дефицит дофамина в этой системе приводит к болезни Паркинсона. Известно, что при этом заболевании происходит гибель нейронов черной субстанции. Введение L-DOPA (предшественника дофамина) облегчает у больных некоторые симптомы заболевания. Третья дофаминергическая система участвует в проявлении шизофрении и некоторых других психических заболеваний. Функции этой системы пока изучены недостаточно, хотя сами пути хорошо известны. Тела нейронов лежат в среднем мозге рядом с черной субстанцией. Они проецируют аксоны в вышележащие структуры мозга, кору и лимбическую систему. Согласно дофаминовой гипотезе шизофрении, третья дофаминергическая система при этом заболевании сверхактивна. Эти представления возникли после открытия веществ, снимающих некоторые симптомы заболевания. Например, хлорпромазин и галоперидол имеют разную химическую природу, но они одинаково подавляют активность дофаминергической системы мозга и проявление некоторых симптомов шизофрении. У больных шизофренией, в течение года получавших эти препараты, появляются двигательные нарушения, названные tardive dyskinesia (повторяющиеся причудливые движения лицевой мускулатуры, включая мускулатуру рта, которые больной не может контролировать).

Серотонинергические нейроны широко распространены в центральной нервной системе, они иннервируют обширные области мозга, включающие кору больших полушарий, гиппокамп, бледный шар, миндалину, область гипоталамуса. Интерес к серотонину был привлечен в связи с проблемой сна. При разрушении ядер шва животные страдали бессонницей. Сходный эффект оказывали вещества, истощающие хранилище серотонина в мозге. Самая высокая концентрация серотонина обнаружена в эпифизе (pineal gland). Серотонин в эпифизе превращается в мелатонин, который участвует в пигментации кожи, а также влияет у многих животных на активность женских гонад. Исследования последних лет свидетельствуют о важной роли мелатонина в процессах, замедляющих старение организма. Обнаружена также способность мелатонина к функционированию в качестве нейромедиатора. Содержание как серотонина, так и мелатонина в эпифизе контролируется циклом свет - темнота через нервную симпатическую систему. Кроме того, серотонин называют нейромедиатором настроения. Считается, что снижение уровня этого соединения играет определенную роль при развитии депрессии.

Другую группу медиаторов ЦНС составляют аминокислоты, такие как: глутаминовая кислота, глутамин, аспарагиновая кислота, гамма-аминомасляная кислота (ГАМК) и др. Глутамат в нервной ткани образуется преимущественно из глюкозы. У млекопитающих больше всего глутамата содержится в конечном мозге и мозжечке, где его концентрация примерно в 2 раза выше, чем в стволе мозга и спинном мозге. В спинном мозге глутамат распределен неравномерно: в задних рогах он находится в большей концентрации, чем в передних. Глутамат является одним из самых распространенных медиаторов в ЦНС. Из тормозных медиаторов ГАМК является самой распространенной в ЦНС, другим известным тормозным медиатором является глицин. Глицинергические нейроны находятся главным образом в спинном и продолговатом мозге. Большую группу нейромедиаторов составляют нейропептиды. Опиоидные пептиды (энкефалины, эндорфины и др.) являются наиболее важными представителями этой группы, они принимают участие в механизмах регуляции работы других нейромедиаторов, а также опосредуют процессы развития различных заболеваний, обусловленных возникновением зависимости (алкоголизм, наркомания и др.).

В большинстве случаев роль медиаторов в передаче нервного сигнала заключается в их способности связываться с рецепторами постсинаптической мембраны, что приводит к открыванию ионного канала или к активированию внутриклеточных реакций. Появление иммунохимических методов позволило показать, что в одном синапсе могут сосуществовать несколько групп медиаторов, а не один, как это предполагали раньше. Например, в одном синаптическом окончании одновременно могут находиться синаптические пузырьки, содержащие ацетилхолин и норадреналин, которые довольно легко идентифицируются на электронных фотографиях. Кроме классических медиаторов, в синаптическом окончании могут находиться один или несколько нейропептидов. Количество веществ, содержащихся в синапсе, может доходить до 5 - 6. Более того, медиаторная специфичность синапса может меняться в онтогенезе. Например, нейроны симпатических ганглиев, иннервирующие потовые железы у млекопитающих, исходно норадренергичны, но у взрослых животных становятся холинергичными.

4. Роль синапсов в формировании временной связи

синапс онтогенез нейромедиаторный мозг

Процесс замыкания временной связи при формировании условных рефлексов заключается в том, что ранее бездействующие синапсы вставочных нейронов становятся проходимыми для нервных импульсов при сочетании условного и безусловного раздражителей. Первоначально считалось, что во время образования условного рефлекса происходит рост отростков нервных клеток, устанавливающих новые межклеточные связи, либо происходит образование своеобразных выростов ("шипиков") на апикальных дендритах пирамидных нейронов. Однако в последние годы более популярным является представление о том, что в процессе выработки условного рефлекса меняются свойства уже существующих между соответствующими нейронами синапсов, т. е. повышается эффективность синаптической передачи за счет повышения проводимости существующих синапсов. Предполагается, что в результате сочетания условного сигнала и безусловного раздражителя в синапсе появляется медиатор, обеспечивающий передачу возбуждения (как следствие экспрессии гена, контролирующего синтез этого медиатора). Таким образом, синаптическая гипотеза предполагает, что морфологические связи между отдельными нейронами существуют до начала выработки условного рефлекса, т. е. они являются врожденными, а их функционирование начинается лишь в процессе формирования условного рефлекса.

Ряд исследователей полагают, что повышение проводимости синапсов в процессе выработки условного рефлекса обусловлено непрерывной циркуляцией нервных импульсов между очагами возбуждения в коре больших полушарий, т. е. по кольцевым системам коры. Считтается, что выход импульсов в боковые замкнутые круги происходит при достаточной интенсивности возбуждения или при повышенной возбудимости нервных элементов данного пути. Такая степень возбудимости достигается при сочетании условного и безусловного раздражителей, когда происходит слияние двух потоков импульсов. В результате устанавливается непрерывная циркуляция возбуждения по такой замкнутой кольцевой системе. Этим самым постоянно будет поддерживаться состояние повышенной возбудимости и тех нейронов, в синапсах которых замыкается временная связь, т. е. постоянно будет поддерживаться проходимость этих синапсов.

Другие авторы полагают, что повышение синаптической проводимости обусловлено процессом миелинизации пресинаптических терминалей, который возникает под влиянием нейроглии (главным образом, олигодендроцитов). Эти изменения происходят в пресинаптических участках нервных волокон, по которым возбуждение, вызванное индифферентным раздражителем, достигает "недействующих" ("потенциальных") синапсов на телах вставочных нейронов коркового представительства безусловного рефлекса. Исходно эти синапсы непроходимы для импульсов, потому что пресинаптический участок нервного окончания лишен миелиновой оболочки, вследствие чего электротоническое распространение токов действия в этом участке проходит с постепенным ослаблением, а ослабленные токи действия вызывают выделение в синаптическую щель сравнительно небольшого количества медиатора, недостаточного для вызова возбуждения следующего нейрона. Это остающееся без внешнего эффекта раздражение вызовет лишь определенные физико-химические изменения ("химический след") как в мембранах нервных окончаний, так и в межклеточной среде вокруг них. Этот след постепенно затухает в течение нескольких минут. Исходя из представлений о том, что процесс миелинизации нервных волокон является функцией нейроглиальных клеток - олигодендроцитов, окружающих нейроны и контактирующих с их поверхностями, полагают, что процесс миелинизации происходит так, что отросток олигодендроцита замыкает голый осевой цилиндр, спирально закручиваясь вокруг него. Миелинизация заканчивается на определенной стадии онтогенеза, однако способность олигодендроцитов к миелинообразованию сохраняется и в зрелой центральной нервной системе, особенно повышаясь при раздражении олигодендроцитов, т. е. при длительной деполяризации их мембран. Благодаря этому создаются благоприятные условия для электротонического распространения тока действия: до синапсов будет достигать более сильный ток, вызывая выделение большого количества квантов медиатора, достаточного для возбуждения следующего нейрона и появления соответствующей реакции. Так замыкается временная связь, т. е. синапс из непроходимого ("потенциального") превращается в проходимый ("актуальный"), и индифферентный раздражитель начинает вызывать реакцию. В дальнейшем эта связь по мере увеличения количества слоев во вновь образовавшейся миелиновой оболочке становится все более прочной и совершенной.

Подобные документы

Строение нейрона - основной структурно-функциональной единицы нервной системы, обладающей рядом свойств, благодаря которым осуществляется регуляторно-координационная деятельность нервной системы. Функциональные особенности синаптической передачи.

Наше тело - один большой часовой механизм. Он состоит из огромнейшего количества мельчайших частиц, которые расположены в строгом порядке и каждая из них выполняет определённые функции, и имеет свои неповторимые свойства. Этот механизм - тело, состоит из клеток, соединяющих их тканей и систем: все это в целом представляет собой единую цепочку, сверхсистему организма. Величайшее множество клеточных элементов не могли бы работать как единое целое, если бы в организме не существовал утонченный механизм регуляции. Особую роль в регуляции играет нервная система.

Работа содержит 1 файл

Структура и функчии.docx

Физи ология синапсов.

Наше тело - один большой часовой механизм. Он состоит из огромнейшего количества мельчайших частиц, которые расположены в строгом порядке и каждая из них выполняет определённые функции, и имеет свои неповторимые свойства. Этот механизм - тело, состоит из клеток, соединяющих их тканей и систем: все это в целом представляет собой единую цепочку, сверхсистему организма. Величайшее множество клеточных элементов не могли бы работать как единое целое, если бы в организме не существовал утонченный механизм регуляции. Особую роль в регуляции играет нервная система. Вся сложная работа нервной системы - регулирование работы внутренних органов, управление движениями, будь то простые и неосознаваемые движения (например, дыхание) или сложные, движения рук человека - все это, в сущности, основано на взаимодействии клеток между собой. Все это, в сущности, основано на передаче сигнала от одной клетке к другой. Причем, каждая клетка выполняет свою работу, а иногда имеет несколько функций. Разнообразие функций обеспечивается двумя факторами: тем, как клетки соединены между собой, и тем, как устроены эти соединения.

Синапс - это специализированная структура, которая обеспечивает передачу возбуждения с одной возбудимой структуры на другую. Термин "синапс" введен Ч. Шеррингтоном и означает "сведение", "соединение", "застежка".

Классификация синапсов.

Синапсы можно классифицировать по:

1) их местоположению и принадлежности соответствующим структурам:

периферические (нервно-мышечные, нейро-секреторные, рецеп-торнонейрональные);

центральные (аксо- соматические, аксо-дендритные, аксо-аксо-нальные, сомато- девдритные, сомато-соматические);

2) знаку их действия - возбуждающие и тормозящие;

3) способу передачи сигналов - химические, электрические, смешанные.

4) медиатору, с помощью которого осуществляется передача - холинергические, адренергические, серотонинергические, глицинергические и т. д.

Строение синапса. Все синапсы имеют много общего, поэтому строение синапса и механизм передачи возбуждения в нем можно рассмотреть на примере нервно-мышечного синапса

Синапс состоит из трех основных элементов:

пресинаптической мембраны (в нервно-мышечном синапсе - это утолщенная концевая пластинка);

Пресинаптическая мембрана - это часть мембраны нервного окончания в области контакта его с мышечным волокном. Постсинаптическая мембрана - часть мембраны мышечного волокна. Часть постсинаптической мембраны, которая расположена напротив пресинап-тической, называется субсинаптической мембраной. Особенностью субсинаптической мембраны является наличие в ней специальных рецепторов, чувствительных к определенному медиатору, и наличие хемозависимых каналов. В постсинаптической мембране, за пределами субсинаптической, имеются потенциалозависимые каналы.

Механизм передачи возбуждения в химических возбуждающих синапсах. В синапсах с химической передачей возбуждение передатся с помощью медиаторов (посредников). Медиаторы - это химические вещества, которые обеспечивают передачу возбуждения в синапсах. Медиаторы в зависимости от их природы делятся на несколько групп:

моноамины (ацетилхолин, дофамин, норадреналин, серотонин и др.);

Аминокислоты (гамма-аминомасляная кислота - ГАМК, глутаминовая кислота, глицин и др.);

нейропептиды (вещество Р, эндорфины, нейротензин, АКТГ, ангиотензин, вазопрессин, соматостатин и др.). Медиатор в молекулярном виде находится в пузырьках пресинаптического утолщения (синаптической бляшке), куда он поступает:

из околоядерной области нейрона с помощью быстрого аксо- нального транспорта (аксотока);

за счет синтеза медиатора, протекающего в синаптических терминалях из продуктов его расщепления;

за счет обратного захвата медиатора из синаптической щели в неизменном виде.

Когда по аксону к его терминалям приходит возбуждение, пресинаптическая мембрана деполяризуется, что сопровождается поступлением ионов кальция из внеклеточной жидкости внутрь нервного окончания. Поступившие ионы кальция активируют перемещение синаптических пузырьков к пресинаптической мембране, их соприкосновение и разрушение (лизис) их мембран с выходом медиатора в синаптическую щель. В ней медиатор диффундирует к суб-синаптической мембране, на которой находятся его рецепторы. Взаимодействие медиатора с рецепторами приводит к открытию преимущественно каналов для ионов натрия. Это приводит к деполяризации субсинаптической мембраны и возникновению так называемого возбуждающего постсинаптического потенциала (ВПСП). В нервно-мышечном синапсе ВПСП называется потенциалом концевой пластинки (ПКП). Между деполяризованной субсинаптической мембраной и соседними с ней участками постсинаптической мембраны возникают местные токи, которые деполяризуют мембрану. Когда они деполяризуют мембрану до критического уровня, в постсинаптической мембране мышечного волокна возникает потенциал действия, который распространяется по мембранам мышечного волокна и вызывает его сокращение.

Химические тормозные синапсы. Эти синапсы по механизму передачи возбуждения сходны с синапсами возбуждающего действия. тормозных синапсах медиатор (например, глицин) взаимодействует с рецепторами субсинаптической мембраны и открывает в ней хлорные каналы, это приводит к движению ионов хлора по концентрационному градиенту внутрь клетки и развитию гиперполяризации на субсинаптической: мембране. Возникает так называемый тормозной постсинаптический потенциал (ТПСП).

Ранее полагали, что каждому медиатору соответствует специфическая реакция постсинаптической клетки - возбуждение или торможение в той или иной форме. В настоящее время установлено, что одному медиатору чаще всего соответствует не один, а несколько различных рецепторов. Например, ацетилхолин в нервно-мышечных синапсах скелетных мышц действует на Н-холинорецепторы (чувствительные к никотину), которые открывают широкие каналы для натрия (и калия), что порождает ВПСП (ПКП) В ваго-сердечных синапсах тот же ацетилхолин действует на М-холинорецепторы (чувствительные к мускарину), открывающие селективные каналы для ионов калия, поэтому здесь генерируется тормозной постсинаптический потенциал (ТПСП). Следовательно, возбуждающий или тормозной характер действия медиатора определяется свойствами субсинаптической мембраны (точнее, видом рецептора), а не самого медиатора.

Особенности проведения сигнала через химический синапс

Особенности проведения сигнала через химический синапс определяются особенностями его структуры.

  • электрический сигнал от одной клетки передается к другой при помощи химического посредника - медиатора
  • электрический сигнал передается только в одном направлении, что определяется особенностями строения синапса.
  • существует небольшая задержка в проведении сигнала, время которой определяется временем диффузии медиатора по синаптической щели.
  • проведение через химический синапс можно блокировать различными способами.
  • синапсы обладают низкой лабильностью;
  • синапсы обладают высокой утомляемостью;
  • синапсы обладают высокой чувствительностью к химическим (в том числе и к фармакологическим) веществам.

Регуляция работы химического синапса

Работа химического синапса регулируется как на уровне пресинапса, так и на уровне постсинапса. В стандартном режиме работы из пресинапса после поступления туда электрического сигнала выбрасывается медиатор, который связывается с рецептором постсинапса и вызывает возникновение нового электрического сигнала. До поступления в пресинапс нового сигнала количество медиатора успевает восстановиться. Однако, если сигналы от нервной клетки идут слишком часто или длительное время, количество медиатора там истощается и синапс перестает работать.

Ряд экспериментов показал, что симпатическое постганглионарное волокно, участвующее в ускорении ритма сердца, может выделять симпатин - вещество, сходное с адреналином, однако стимуляции следующего дендрита или мышцы не происходит. Оказалось, это связано с тем, что в области синапса высокая концентрация фермента ацетилхолинас -теразы, который гидролизует ацетилхолин, т.е. инактивирует его. В области синапса содержится также фермент, окисляющий симпатин. Было показано, что двигательные нервы освобождают ацетилхолин отдельными "порциями", содержащими большое число молекул. Для выделения ацетилхолина необходимы ионы кальция, а ионы магния тормозят его выделение. Вероятно, при каждом нервном импульсе содержимое одного из синаптических пузырьков освобождается в синаптическое пространство, способствуя передаче импульса.

Вместе с тем синапс можно "приучить" к передаче очень частых сигналов в течение длительного времени. Этот механизм крайне важен для понимания механизмов памяти. Показано, что в везикулах, кроме вещества, играющего роль медиатора, находятся и другие вещества белковой природы, а на мембране пресинапса и постсинапса находятся специфические рецепторы, их узнающие. Эти рецепторы к пептидам принципиально отличаются от рецепторов к медиаторам тем, что взаимодействие с ними не вызывает возникновения потенциалов, а запускает биохимические синтетические реакции.

Таким образом, после прихода импульса в пресинапс вместе с медиаторами выбрасываются и регуляторные пептиды. Часть из них взаимодействует с пептидными рецепторами на пресинаптической мембране, и это взаимодействие включает механизм синтеза медиатора. Следовательно, чем чаще выбрасывается медиатор и регуляторные пептиды, тем интенсивнее будет проходить синтез медиатора. Другая часть регуляторных пептидов вместе с медиатором достигает постсинапса. Медиатор связывается со своим рецептором, а регуляторные пептиды со своим, и это последнее взаимодействие запускает процессы синтеза рецепторных молекул к медиатору. В результате подобного процесса рецепторное поле, чувствительное к медиатору, увеличивается для того, что бы все без остатка молекулы медиатора связались со своими рецепторными молекулами. В целом, этот процесс приводит к так называемому облегчению проведения через химический синапс.

Электрические синапсы возбуждающего действия. Кроме синапсов с химической передачей возбуждения преимущественно в центральной нервной системе (ЦНС) встречаются синапсы с электрической передачей. Возбуждающим электрическим синапсам свойственны очень узкая синаптическая щель и очень низкое удельное сопротивление сближенных пре- и постсинаптических мембран, что обеспечивает эффективное прохождение локальных электрических токов. Низкое сопротивление, как правило, связано с наличием поперечных каналов, пересекающих обе мембраны, т. е. идущих из клетки в клетку (щелевой контакт). Каналы образуются белковыми молекулами (полумолекулами) каждой из контактирующих мембран, которые соединяются комплементарно. Эта структура легко проходима для электрического тока.

Схема передачи возбуждения в электрическом синапсе: ток, вызванный пресинаптическим потенциалом действия, раздражает постсинаптическую мембрану, где возникает ВПСП и потенциал действия.

Поперечные каналы объединяют клетки не только электрически, но и химически, так как они проходимы для многих низкомолекулярных соединений. Поэтому возбуждающие электрические синапсы с поперечными каналами формируются, как правило, между клетками одного типа (например, между клетками сердечной мышцы).

Общими свойствами возбуждающих электрических синапсов являются:

быстродействие (значительно превосходит таковое в химических синапсах) ;

слабость следовых эффектов при передаче возбуждения (в результате этого в них практически невозможна суммация последовательных сигналов);

высокая надежность передачи возбуждения.

Возбуждающие электрические синапсы могут возникать при благоприятных условиях и исчезать при неблагоприятных. Например, при повреждении одной из контактирующих клеток ее электрические синапсы с другими клетками ликвидируются. Это свойство называется пластичностью.

Электрические синапсы могут быть с односторонней и двусторонней передачей возбуждения.

Электрический тормозный синапс. Наряду с электрическими синапсами возбуждающего действия могут встречаться электрические тормозные синапсы. Примером такого синапса может служить синапс, который образует нервное окончание на выходном сегменте маутнеровского нейрона у рыб. Тормозящее влияние возникает за счет действия тока, вызванного потенциалом действия пресинапти-ческой мембраны. Пресинаптический потенциал вызывает значительную гиперполяризацию сегмента и гиперполяризующий ток мгновенно тормозит генерацию потенциала действия в начальном сегменте аксона.

Читайте также: