Физиология бактерий микробиология реферат

Обновлено: 05.07.2024

Физиология микроорганизмов изучает особенности развития, питания, энергетического обмена и других процессов жизнедеятельности микробов в различных условиях среды.

Питание микробов осуществляется путем диффузии через оболочку и мембрану растворенных в поде питательных веществ. Нерастворимые сложные органические соединения предварительно расщепляются вне клетки с помощью ферментов, выделяемых микробами и субстрат.

По способу питания микроорганизмы разделяют на аутотрофные и гетеротрофные.

Аутотрофы способны синтезировать из неорганических веществ (в основном углекислого газа, неорганического азота и воды) органические соединения. В качестве источника энергии для синтеза эти микробы используют световую энергию (фотосинтез) или энергию окислительных реакций (хемосинтез).

Гетеротрофы используют для питания в основном готовые органические соединения. Микробы, питающиеся органическими веществами отмерших животных или растительных организмов, называют сапрофитами. К ним относятся бактерии гниения, грибы и дрожжи. Паратрофные микроорганизмы, или паразиты, живут за счет питательных веществ живых клеток организма хозяина. К паратрофам относится большинство болезнетворных микробов.

Дыхание.Процессы биосинтеза веществ микробной клетки протекают с затратой энергии. Большинство микробов используют энергию химических реакций с участием кислорода воздуха. Этот процесс окисления питательных веществ с выделением энергии называется дыханием. Энергия высвобождается при окислении неорганических (аутотрофы) или органических (гетеротрофы) веществ.

Аэробные микроорганизмы (аэробы) используют энергию, выделяемую при окислении органических веществ кислородом воздуха с образованием неорганических веществ, углекислого газа и воды. К аэробам относятся многие бактерии, грибы и некоторые дрожжи. В качестве источника энергии они чаще всего используют углеводы.

Анаэробные микроорганизмы (анаэробы) не используют для дыхания кислород, они живут и размножаются при отсутствии кислорода, получая энергию в результате процессов брожения. Анаэробами являются бактерии из рода клостридий (ботулиновал палочка и палочка перфрингенс), маслянокислые бактерии и др.

В анаэробных условиях проходят спиртовое, молочнокислое и маслянокислое брожение, при этом процесс превращения глюкозы в спирт, молочную или масляную кислоту происходят с выделением энергии. Около 50% выделенной энергии рассеивается и виде тепла, а остальная часть аккумулируется в АТФ (аденозинтрифосфорная кислота).

Некоторые микроорганизмы способны жить как в присутствии кислорода, так и без него. В зависимости от условий среды они могут переходить с анаэробных процессов получения энергии на аэробные, и наоборот. Такие микроорганизмы называются факультативными анаэробами.

Обмен веществ и состав микроорганизмов. Все реакции обмена веществ в микробной клетке происходят при помощи биологических катализаторов – ферментов. Большинство ферментов состоят из белковой части и простетической небелковой группы. В простетическую группу могут входить такие металлы, как железо, медь, кобальт, цинк, а также витамины или их производные. Некоторые ферменты состоят только из простых белков. Ферменты специфичны и действуют только на одно определенное вещество. Поэтому в каждом микроорганизме находится целый комплекс ферментов, причем некоторые ферменты способны выделяться наружу, где участвуют в подготовке к усвоению сложных органических соединений. Ферменты микроорганизмов используются в пищевой и других видах промышленности.

Вода. Микробная клетка на 75—85 % состоит из воды. Большая часть воды находится в цитоплазме клетки в свободном состоянии. В воде протекают все биохимические процессы обмена веществ, вода является также растворителем этих веществ, так как питательные вещества поступают в клетку только в виде раствора, а продукты обмена удаляются из клетки тоже с водой. Часть воды в клетке находится в связанном состоянии и входит в состав некоторых клеточных структур. В спорах бактерий и грибов количество свободной воды снижено до 50 % и менее. При значительной потере связанной воды микробная клетка погибает.

Органические вещества микробной клетки представлены белками (6—14 %), жирами (1—4 %), углеводами, нуклеиновыми кислотами.

Белки основной пластический материал любой живой клетки, и микробной в том числе. Белки составляют основу цитоплазмы, входят в состав оболочки клетки и некоторые клеточные структуры. Они выполняют очень важную каталитическую функцию, так как входят в состав ферментов, катализирующих реакции обмена в микробной клетке.

В клетке микробов содержатся дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). ДНК находится в основном в ядре клетки или нуклеотидах, РНК — в цитоплазме и рибосомах, где участвует в синтезе белка.

Жиры. Содержание жиров у различных микроорганизмов различно, у некоторых дрожжей и плесеней оно выше в 6—10 раз, чем у бактерий. Жиры (липиды) являются энергетическим материалом клетки. Жиры в виде липопротеидов входят в состав цитоплазматической мембраны, которая выполняет важную функцию в обмене клетки с окружающей средой. Жиры могут находиться в цитоплазме в виде гранул или капелек.

Углеводы входят в состав оболочек, капсул и цитоплазмы. Они представлены в основном сложными углеводами — полисахаридами (крахмал, декстрин, гликоген, клетчатка), могут быть в соединении с белками или липидами. Углеводы могут откладываться в цитоплазме в виде зерен гликогена, как запасного энергетического материала.

Минеральные вещества (фосфор, натрий, магний, хлор, сера и др.) входят в состав белков и ферментов микробной клетки, они необходимы для обмена веществ и поддержания нормального внутриклеточного осмотического давления.

Витамины необходимы для нормальной жизнедеятельности микроорганизмов. Они участвуют в процессах обмена веществ, так как входят в состав многих ферментов. Витамины, как правило, должны поступать с пищей, однако некоторые микробы обладают способностью синтезировать витамины, например В2 или В12.


Данная книга предназначена студентам медицинских образовательных учреждений. Это краткое пособие поможет при подготовке и сдаче экзамена по микробиологии. Материал изложен в очень удобной и запоминающейся форме и поможет студентам за сжатый срок детально освоить основные концепции и понятия курса, а также конкретизировать и систематизировать знания.

Оглавление

  • ЛЕКЦИЯ № 1. Введение в микробиологию
  • ЛЕКЦИЯ № 2. Морфология и ультраструктура бактерий
  • ЛЕКЦИЯ № 3. Физиология бактерий

Приведённый ознакомительный фрагмент книги Микробиология: конспект лекций предоставлен нашим книжным партнёром — компанией ЛитРес.

ЛЕКЦИЯ № 3. Физиология бактерий

1. Рост и размножение бактерий

Рост бактерий — увеличение бактериальной клетки в размерах без увеличения числа особей в популяции.

Размножение бактерий — процесс, обеспечивающий увеличение числа особей в популяции. Бактерии характеризуются высокой скоростью размножения.

Рост всегда предшествует размножению. Бактерии размножаются поперечным бинарным делением, при котором из одной материнской клетки образуются две одинаковые дочерние.

Процесс деления бактериальной клетки начинается с репликации хромосомной ДНК. В точке прикрепления хромосомы к цитоплазматической мембране (точке-репликаторе) действует белок-инициатор, который вызывает разрыв кольца хромосомы, и далее идет деспирализация ее нитей. Нити раскручиваются, и вторая нить прикрепляется к цитоплазматической мембране в точке-прорепликаторе, которая диаметрально противоположна точке-репликатору. За счет ДНК-полимераз по матрице каждой нити достраивается точная ее копия. Удвоение генетического материала — сигнал для удвоения числа органелл. В септальных мезосомах идет построение перегородки, делящей клетку пополам.

Двухнитевая ДНК спирализуется, скручивается в кольцо в точке прикрепления к цитоплазматической мембране. Это является сигналом для расхождения клеток по септе. Образуются две дочерние особи.

На плотных питательных средах бактерии образуют скопления клеток — колонии, различные по размерам, форме, поверхности, окраске и т. д. На жидких средах рост бактерий характеризуется образованием пленки на поверхности питательной среды, равномерного помутнения или осадка.

Размножение бактерий определяется временем генерации. Это период, в течение которого осуществляется деление клетки. Продолжительность генерации зависит от вида бактерий, возраста, состава питательной среды, температуры и др.

Фазы размножение бактериальной клетки на жидкой питательной среде:

1) начальная стационарная фаза; то количество бактерий, которое попало в питательную среду и в ней находится;

2) лаг-фаза (фаза покоя); продолжительность — 3–4 ч, происходит адаптация бактерий к питательной среде, начинается активный рост клеток, но активного размножения еще нет; в это время увеличивается количество белка, РНК;

3) фаза логарифмического размножения; активно идут процессы размножения клеток в популяции, размножение преобладает над гибелью;

4) максимальная стационарная фаза; бактерии достигают максимальной концентрации, т. е. максимального количества жизнеспособных особей в популяции; количество погибших бактерий равно количеству образующихся; дальнейшего увеличения числа особей не происходит;

5) фаза ускоренной гибели; процессы гибели преобладают над процессом размножения, так как истощаются питательные субстраты в среде. Накапливаются токсические продукты, продукты метаболизма. Этой фазы можно избежать, если использовать метод проточного культивирования: из питательной среды постоянно удаляются продукты метаболизма и восполняются питательные вещества.

2. Питание бактерий

Под питанием понимают процессы поступления и выведения питательных веществ в клетку и из клетки. Питание в первую очередь обеспечивает размножение и метаболизм клетки.

Среди необходимых питательных веществ выделяют органогены — это восемь химических элементов, концентрация которых в бактериальной клетке превосходит 10—4 моль. К ним относят углерод, кислород, водород, азот, фосфор, калий, магний, кальций.

Кроме органогенов, необходимы микроэлементы. Они обеспечивают активность ферментов. Это цинк, марганец, молибден, кобальт, медь, никель, вольфрам, натрий, хлор.

Для бактерий характерно многообразие источников получения питательных веществ.

В зависимости от источника получения углерода бактерии делят на:

1) аутотрофы (используют неорганические вещества — СО2);

3) метатрофы (используют органические вещества неживой природы);

4) паратрофы (используют органические вещества живой природы).

Процессы питания должны обеспечивать энергетические потребности бактериальной клетки.

По источникам энергии микроорганизмы делят на:

1) фототрофы (способны использовать солнечную энергию);

2) хемотрофы (получают энергию за счет окислительно-восстановительных реакций);

3) хемолитотрофы (используют неорганические соединения);

4) хемоорганотрофы (используют органические вещества).

Факторами роста бактерий являются витамины, аминокислоты, пуриновые и пиримидиновые основания, присутствие которых ускоряет рост.

Среди бактерий выделяют:

1) прототрофы (способны сами синтезировать необходимые вещества из низкоорганизованных);

2) ауксотрофы (являются мутантами прототрофов, потерявшими гены; ответственны за синтез некоторых веществ — витаминов, аминокислот, поэтому нуждаются в этих веществах в готовом виде).

Микроорганизмы ассимилируют питательные вещества в виде небольших молекул, поэтому белки, полисахариды и другие биополимеры могут служить источниками питания только после расщепления их экзоферментами до более простых соединений.

Метаболиты и ионы поступают в микробную клетку различными путями.

Пути поступления метаболитов и ионов в микробную клетку.

1. Пассивный транспорт (без энергетических затрат):

1) простая диффузия;

2) облегченная диффузия (по градиенту концентрации, с помощью белков-переносчиков).

2. Активный транспорт (с затратой энергии, против градиента концентрации; при этом происходит взаимодействие субстрата с белком-переносчиком на поверхности цитоплазматической мембраны).

Встречаются модифицированные варианты активного транспорта — перенос химических групп. В роли белков-переносчиков выступают фосфорилированные ферменты, поэтому субстрат переносится в фосфорилированной форме. Такой перенос химической группы называется транслокацией.

3. Метаболизм бактериальной клетки

Особенности метаболизма у бактерий:

1) многообразие используемых субстратов;

2) интенсивность процессов метаболизма;

3) направленность всех процессов метаболизма на обеспечение процессов размножения;

4) преобладание процессов распада над процессами синтеза;

5) наличие экзо — и эндоферментов метаболизма.

В процессе метаболизма выделяют два вида обмена:

1) пластический (конструктивный):

а) анаболизм (с затратами энергии);

б) катаболизм (с выделением энергии);

2) энергетический обмен (протекает в дыхательных мезосомах):

В зависимости от акцептора протонов и электронов среди бактерий различают аэробы, факультативные анаэробы и облигатные анаэробы. Для аэробов акцептором является кислород. Факультативные анаэробы в кислородных условиях используют процесс дыхания, в бескислородных — брожение. Для облигатных анаэробов характерно только брожение, в кислородных условиях наступает гибель микроорганизма из-за образования перекисей, идет отравление клетки.

Вода – 75-85% (составляет основную массу микробной клетки, биохимические функции воды аналогичны таковым у эукариотов: часть воды находится в связанном состоянии с белками, углеводами и другими веществами, входя в состав клеточных структур; остальная вода находится в свободном состоянии – служит дисперсной средой для коллоидов и растворителем различных органических и минеральных соединений, с водой все вещества поступают в клетку и выводятся из нее).

Содержание

Химический состав бактериальной клетки.
Пигменты бактерий.
Питание бактерий.
Ферменты бактерий.
Метаболизм бактерий.

Вложенные файлы: 1 файл

№ 3. Биохимия и физиология бактерий..doc

    1. Химический состав бактериальной клетки.
    2. Пигменты бактерий.
    3. Питание бактерий.
    4. Ферменты бактерий.
    5. Метаболизм бактерий.

Физиология бактерий – раздел микробиологии, изучающий процессы роста, размножения и питания бактерий, способы получения энергии для осуществления этих процессов, а также происходящие при этом превращения веществ в клетке.

Химический состав бактериальной клетки.

Микроорганизмы возникли в процессе эволюции из элементов, широко представленных на Земле. Химический состав бактериальной клетки принципиально не отличается от химического состава клеток животных и растений. Соотношение отдельных химических элементов колеблется в зависимости от вида микроорганизма и условий его роста.

Вода – 75-85% (составляет основную массу микробной клетки, биохимические функции воды аналогичны таковым у эукариотов: часть воды находится в связанном состоянии с белками, углеводами и другими веществами, входя в состав клеточных структур; остальная вода находится в свободном состоянии – служит дисперсной средой для коллоидов и растворителем различных органических и минеральных соединений, с водой все вещества поступают в клетку и выводятся из нее).

Сухое вещество – 15-25%, состоит из органических веществ и минеральных элементов:

  • органические вещества:
          • белки – 50-80% (основные компоненты клетки, в бактериальной клетке насчитывается более 2 тыс. различных белков, представлены в виде простых (протеины) и сложных (протеиды) соединений, функции их аналогичны белкам эукариот – входят в состав различных структур клетки, являются строительным материалом и выполняют ферментативные функции);
          • нуклеиновые кислоты – 10-30% (представлены в виде РНК и ДНК – ДНК обеспечивает наследственность и изменчивость бактерий, а РНК ответственны за биосинтез клеточных белков);
          • углеводы – 12-28% (содержатся в виде моно-, ди- и полисахаридов, а также связаны с белками и липидами, входят в состав клеточных структур, используются для синтеза различных веществ и в качестве энергетического материала, часто откладываются в виде запасных питательных веществ);
          • липиды – 3-10%, у некоторых бактерий, например, микобактерий – возбудителей туберкулеза и лепры, содержание липидов достигает до 30-40% (представлены в трех фракциях – фосфолипиды, воски и жирные кислоты, являются необходимыми компонентами клеточной стенки и ЦПМ, также используются для синтеза различных веществ).
            • минеральные вещества – 5-15%, по количественному содержанию у бактерий можно разделить на 4 группы:
            • большие молекулы (макромолекулы):
              • белки;
              • нуклеиновые кислоты;
              • полисахариды;
              • липиды.

              У прокариотов имеются новые соединения, не встречающиеся в клетках эукариот: пептидогликан, корд-фактор, дипиколиновая кислота, тейхоевые и липотейхоевые кислоты и т.д.

              Пигменты бактерий – это специфические фоторецепторные молекулы, вторичные метаболиты, образующиеся на свету и придающие бактериям окраску. (Наличие у бактерий пигментов обычно связано с их способностью существовать за счет энергии света. Некоторые микроорганизмы утратили способность к фотосинтезу, но сохранили пигменты. Способность образовывать пигменты детерминирована генетически и используется в качестве диагностического признака. Образование пигментов зависит от состава среды и условий культивирования. У многих микроорганизмов образование пигмента происходит только на свету. Пигменты различают по химическому составу и цвету.)

              Классификация пигментов по химическому составу и цвету:

              Пигментообразующие микрооргани змы

              Коринеактерии, псевдомоны, артробактерии

              Красный, оранжевый, желтый, белый

              Сарцины, актиномицеты, стафилококки, микрококки, коринебактерии, дрожжи

              Сине-зеленый (щелочная среда) или красный (кислая среда)

              Классификация пигментов по растворимости:

              • жирорастворимые (каротиноидные, хиноновые, азахиноновые);
              • водорастворимые (фенозиновые, пиразиновые) – хромопарные (способны диффундировать в окружающую среду и окрашивать не только колонии, но и питательные среды);
              • спирторастворимые (каротиноидные, пирроловые);
              • нерастворимые ни в воде, ни в сильных кислотах (меланиновые).
              • защита от действия видимого света и УФ-лучей;
              • ассимилируют углекислый газ;
              • обезвреживают токсичные кислородные радикалы;
              • участвуют в синтезе витаминов;
              • обладают антибиотическим действием и свойствами биологически активных веществ;
              • цвет пигмента используют в идентификации бактерий.

              Типы питания бактерий.

              Особенности питания бактерий:

              • экзогенный тип питания (выделяя гидролитические ферменты в окружающую среду, расщепляют макромолекулы до более простых соединений, которые поступают внутрь клетки);
              • голофитный тип питания (поступление веществ из вне только в растворенном состоянии);
              • поступление веществ происходит через всю поверхность бактериальной клетки;
              • потребление веществ в сутки в 20-30 раз больше своей массы;
              • интенсивность метаболизма у прокариотов выше, чем у эукариотов на 50-60% (в 100 раз);
              • очень высокая адаптивность к различным условиям существования.

              Для микроорганизмов характерно многообразие способов питания. Классификация микроорганизмов по типам питания:

                1. По источнику азота:
                • аминоавтотрофы используют атмосферный азот и минеральные соединения азота для построения органических соединений (почвенные бактерии);
                • аминогетеротрофы получают азот для синтеза белков из органических соединений (патогенные бактерии).
                  1. По способности синтезировать необходимые питательные вещества:
                • прототрофы – это микроорганизмы, способные синтезировать все необходимые им органические соединения из глюкозы и солей аммония;
                • ауксотрофы не способны синтезировать некоторые органические соединения, ассимилируя их в готовом виде из окружающей среды или организма хозяина.

                Факторы роста – это вещества, необходимые микроорганизмам, не продуцирующим какое-либо вещество, в готовом виде для их роста и размножения:

                  • аминокислоты (стептококки);
                  • пуриновые и пиримидиновые основания (стрептококки, микоплазмы, лактобациллы);
                  • витамины (никотиновая, пантотеновая и фолиевая кислоты, флавин, тиамин, биотин, В6 и В12 – микобактерии туберкулеза);
                  • железопорфирины;
                  • липиды (микоплазмы);
                  • соли.

                  Механизм поступления веществ в клетку (сложный физико-химический процесс, в котором большую роль играют концентрация веществ, их строение, растворимость, размеры молекул, проницаемость ЦПМ, наличие ферментов, pH среды, изоэлектрическая точка вещества цитоплазмы):

                  • пассивная диффузия – питательные вещества в клетку перемещаются по градиенту концентрации без затрат энергии (когда концентрация вещества снаружи значительно превышает концентрацию внутри); этим путем в бактериальную клетку поступает ограниченное количество веществ – H2O, O2, CO2 и NH3;
                  • облегченная диффузия осуществляется тоже по градиенту концентрации без затрат энергии, но с помощью особых белков-пермеаз, которые находятся в цитоплазматической мембране;
                  • активный транспорт осуществляется пермеазами против градиента концентрации (концентрация вещества в клетке может быть значительно больше, чем в питательной среде), сопровождается затратой энергии;
                  • транслокация (фосфорилирование) – химическая модификация вещества при переносе через ЦПМ с помощью белков-транслоказ; так, например, поступает в клетки глюкоза;
                  • обменная адсорбция – способность электрически заряженной поверхности микробной клетки притягивать вещества с противоположным зарядом.

                  Выход продуктов метаболизма из микробной клетки:

                  • диффузия (пассивная, облегченная, активная);
                  • экзоцитоз – путем почкования мембраны – выделяемое вещество упаковано в мембранный пузырек и отшнуровывается в окружающую среду; например, токсин холерного вибриона;
                  • фосфотранспорт – химическая модификация вещества при переносе через ЦПМ.
                  • контрансляционная секреция – внутри клеточной стенки и ЦПМ формируется белковый канал, через который молекулы вещества выделяются наружу, например, токсины возбудителей столбняка и дифтерии.

                  Ферменты – это высокоспециализированные белки, специфически катализирующие многочисленные химические реакции, происходящие в микробной клетке.

                  Гост

                  ГОСТ

                  Физиология бактерий – раздел микробиологии, изучающий процессы, протекающие в бактериальной клетке.

                  Основные процессы, входящие в понятие физиология - метаболизм (питание, энергетический обмен, рост и размножение), взаимодействие бактерий с окружающей средой. На знаниях о метаболизме бактерий основываются методы их культивирования, получения чистых культур и таксономическое определение.

                  Подробности физиологических процессов патогенных и условно-патогенных микроорганизмов важны при изучении патогенеза инфекционных заболеваний, при постановке микробиологического диагноза, лечении и профилактике инфекций.

                  Кроме того знание физиологии, биохимии и молекулярной биологии бактериальной клетки необходимы для возможности использования их в биотехнологиях в качестве живых микроскопических биохимических реакторов.

                  Химический состав бактериальной клетки

                  Доля сухого вещества бактериальной клетки составляет около 10%, остальное приходится на воду, которая может находиться в связанном и свободном состоянии. Вода выполняет роль жидкости, поддерживающей тургор в клетке, принимает участие в гидролитических реакциях и выступает как растворитель и средообразователь Высушивание бактерий приводит к остановке метаболизма, и нередко к их гибели.

                  Однако в высушивание в условиях вакуума и глубокой заморозки – лиофилизация, позволяет сохранить жизнеспособность многих бактерий, сто применяется при изготовлении вакцин, транспортировки и хранении культур.

                  Сухое вещество бактерий:

                  • 52% белки
                  • 17% - углеводы
                  • 9% - липиды
                  • 16% - РНК
                  • 3% - ДНК
                  • 3% - минеральные вещества.

                  Готовые работы на аналогичную тему

                  Типы питания бактерий Все организмы в зависимости от их источника углерода подразделяются на автотрофов (используют неорганический источник углерода -углексилый газ) и гетеротрофов (используют в качестве источника углерода готовые органические вещества). Самыми простыми для усвоения бактериями формами углерода являются аминокислоты, липиды, многоатомные спирты и углеводы.

                  Автотрофы

                  Среди автотрофов выделяются две большие группы:

                  Фотоавтотрофы

                  Фотоавтотрофы характеризуются тем, что усваивают неорганический углерод в виде углекислого газа. В качестве источника энергии при этом используется ультрафиолетовый свет. Данный процесс помогает жить автономно многим видам бактерий-продуцентов. Фотоавтотрфы среди бактерий используют два основных вида фотосинтеза. Большинство использует только одну фотосистему, что не сопровождается фотолизом воды и, как следствие, выработкой кислорода.

                  Хемоавтотрофы

                  Хемоавтотрофы характеризуются тем, что усваивают неорганический углерод при помощи энергии, выделяющейся при разрушении химических связей, которая вырабатывается при взаимодействии с неорганическими соединениями. Хемоавтотрофы подразделяются на литрофов и органотрофов в зависимости от источника электронов в реакциях обмена веществ. Среди литотрофов есть бактерии перерабатывающие Н2, NH3, H2S, Fe2+.

                  Среди гетеротрофов также выделяются несколько типов:

                  • сапрофиты (используют в качестве источника углерода мертвые органические материалы и не зависят от других организмов)
                  • паразиты – (получают питательные вещества от макроорганизма-хозяина).

                  Паразиты бывают облигатные и факультативные. В первом случае паразиты не имеют возможность существовать вне клеток организма хозяина. Основные представители бактерий-паразитов, имеющих значение в медицине – риккетсии и хламидии. Факультативные паразиты могут существовать вне организма хозяина.

                  Читайте также: