Факторы жизни растений реферат

Обновлено: 03.07.2024

1.Земные и космические факторы жизни растений, способы их регулирования.

2. Законы земледелия.

Земные и космические факторы жизни растений, способы их регулирования.

Факторы жизни растений, без которых невозможна их жизнедеятельность подразделяются на земные и космические.

Космические факторы жизни растений практически не регулируются в земледелии. К ним относятся:

1. Свет. Свет обеспечивает необходимую энергию, которую растения используют в процессе фотосинтеза для образования органического вещества. Однако растения используют не все лучи солнечного света, а с длиной волны 380-710 Нм (10 -9 м). Этот участок оптического излучения обеспечивает фотосинтез растений и получил название фотосинтетически активная радиация (ФАР). Культурные растения используют лишь незначительную часть ФАР – 0,5-2,5 %. Наивысшим фотосинтетическим потенциалом обладают растения при площади листовой поверхности 40 000м2 /га.

Культурные растения предъявляют различные требования к продолжительности и интенсивности освещения. Одни требуют более длительного освещения – это культуры длинного дня (пшеница, рожь, овес, ячмень). Другие ускоряют плодоношение при менее продолжительном освещении – это культуры короткого дня (просо, кукуруза, гречиха).

Хотя свет не относится к факторам, регулируемым земледелием, однако существуют приемы позволяющие более полно использовать солнечное излучение:

1) направление рядков с севера на юг (увеличивает урожайность на 2-3 ц/га по сравнению с размещением с запада на восток). 2) норма высева. 3) способы посева (узкорядный, широкорядный, гнездовой). 4) своевременное прореживание. 5) борьба с вредителями, болезнями, сорняками. 6) искусственная освещенность.

2. Тепло. Главный источник тепла – солнечная радиация. Из всего количества тепла почва поглощает 43 % и излучает примерно 24 %. Лишь 1 % этой энергии участвует в процессе фотосинтеза. В течение вегетационного периода растений, на территории Республики Беларусь на 1 см 2 поверхности почвы приходится за 1 сутки 1 ккал. тепла.

Растения предъявляют различные требования к теплу. По этому показателю они подразделяются на6

б) холодостойкие (семена прорастают при температуре +2-5 0 С и требуют суммы активных температур 1200-1800 0 С).

Незначительному регулированию подлежит лишь температурный режим почвы: 1) увеличение влажности (полив) способствует снижению температуры. 2) снегозадержание. 3) использование навоза, компостов. 4) мульчирование. 5) искусственный обогрев. 6) теплицы, парники.

Земные факторы жизни растений регулируются и благодаря им можно создавать оптимальные условия для роста и развития растений.

1. Вода. В большинстве зеленых и свежеубранных растений содержится 75-90 % воды. Например, в семенах содержится 7-15 %, в стеблях до 50%, листьях, корнях, клубнях до 75-93 %.

Поступающая вместе с питательными веществами вода в растении используется не полностью. Установлено, что из 1000 частей воды прошедшей через растение только 1,5-2,0 части расходуются на питание, остальная испаряется через листья. Растительная клетка должна быть постоянно насыщена водой. С током воды поступают в растения и передвигаются питательные вещества. Вода участвует в фотосинтезе и других процессах, поддерживает температуру в растении (не дает перегреваться растениям).

Количество воды (в г.), расходуемой растением на образование 1 г. сухого вещества называется транспирационным коэффициентом. Величина ТК зависит от вида растений и условий их возделывания. У большинства сельскохозяйственных культур он колеблется от 300 до 500 (зерновые), у некоторых возрастает до 800 и 1000 (овощные, травы). Источником воды в неполивных условиях являются осадки и грунтовые воды.

Регулировать водный режим возможно путем осушительно-осушительных мелиоративных мероприятий:

1. осушением заболоченных земель.

2. воздействие на микроклимат древесных насаждений и искусственных водоемов.

3. накопление, сохранение и рациональное использование влаги в почве.

2. Воздух. Он необходим как источник кислорода для дыхания растений и почвенных м/о, а также как источник углекислого газа, используемого в процессе фотосинтеза. Воздух служит для растений и источником азота.

Оптимальное содержание в пахотном слое воздуха – для зерновых 15-20 %, для пропашных 20-30 %, для многолетних трав 17-21 %. Благоприятное для растений содержание кислорода в почвенном воздухе 7-12 %, углекислого газа, примерно, 1 %.

Количество и состав почвенного воздуха можно регулировать, изменяя содержание влаги в почве путем ее рыхления или уплотнения. Состав почвенного воздуха регулируют внесением органических удобрений, что приводит к повышению концентрации углекислого газа и снижению концентрации кислорода. Наилучший воздушный режим для большинства сельскохозяйственных культур: примерно 25 % воздуха от общего объема почвы.

3. Питательные вещества. В процессе роста и развития растения потребляют из почвы разные элементы питания, которые по количеству их потребления разделяются на макро- и микроэлементы.

К макроэлементамотносится углерод, кислород, водород, азот, фосфор, калий, кальций, магний, железо, сера. Микроэлементы: бор, марганец, медь, цинк, молибден, кобальт. Макроэлементы требуются в больших количествах, микроэлементы – в меньших. Углерод, кислород и водород растения потребляют из воздуха, остальные элементы – из почвы.

Использование элементов питания растениями зависит от факторов: влажности, температуры почвы, освещенности, доступности, возраста растений. Отличительной особенностью с.-х. растений является то, что максимальное потребление питательных элементов приходится на конкретный период развития. У зерновых – это фаза выхода в трубку – колошение, у зернобобовых – цветение - бобообразование. Поэтому недостаток питания в эти периоды снижает продуктивность растений.

Недостаток элементов питания восполняют внесением органических и минеральных удобрений, возделыванием бобовых культур.

Законы земледелия.

Воздействие всех факторов на жизнь растений – явление сложное и многообразное, поэтому всегда оно являлось объектом пристального изучения. В результате чего, появилась возможность сформулировать ряд закономерностей действия факторов, как законы земледелия. Законы земледелия – выражение законов природы, проявляющихся в результате деятельности человека по возделыванию с.-х. культур. Они раскрывают существующие связи растений с условиями внешней среды и определяют пути развития земледелия.

1. Закон равнозначимости и незаменимости факторов жизни растений. Согласно ему, для нормальной жизнедеятельности растений должен быть обеспечен приток всех факторов как земных, так и космических. Проявление этого закона носит абсолютный и относительный характер. Абсолютное значение выражается в том, что в каком бы количестве факторов не нуждалось растение, отсутствие любого приводит к снижению урожайности или гибели. Однако, в конкретных производственных условиях, этот закон приобретает относительное значение. Т.к. затраты на обеспечение растений различными факторами не одинаковы.

Поэтому, учитывая действие закона минимума, необходимо в первую очередь проводить мероприятия, которые будут воздействовать на фактор, находящийся в данный момент в относительном минимуме (например снабжать растения влагой при ее недостатке). В то же время необходимо учитывать другие факторы, которые могут оказаться в минимуме после удовлетворения потребности растений в первом факторе и предусмотреть мероприятия, направленные на регулирование факторов, которые находятся во втором и последующих минимумах.

3. Закон совокупного действия факторов жизни растений. Все факторы жизни растений действуют не изолированно друг от друга, а в тесном взаимодействии. Установлено, что в соответствии с эти законом действие отдельного фактора, находящегося в минимуме тем интенсивнее, чем больше других факторов есть в оптимуме.

В производственных условиях с изменением воздействия на растения одного из факторов неизбежно нарушается возможность в условиях продуктивного использования других. Исходя из этого закона все мероприятия, направленные на повышение эффективности использования земли необходимо осуществлять комплексно. Комплекс условий должен представлять единое целое, т.к. воздействие на один из элементов непрерывно повлечет за собой необходимость воздействия и на все остальные.

4. Закон плодосмена. Сущность его заключается в том, что более высокие урожаи получаются при чередовании культур в пространстве и во времени, чем при бессменных посевах. В основе этого закона лежит закон единства и взаимосвязи растительных организмов и условий среды. Необходимость чередования культур на полях обуславливается тем, что культуры по разному оказывают влияние на: 1) свойства почвы и окружающую среду; 2) агрофизические свойства почвы, водный, воздушный, тепловой и пищевые режимы; 3) на почвенную микрофлору и интенсивность развития отдельных групп м/о. На основе этого закона разрабатываются принципы построения севооборотов.

6. Закон прогрессивного роста эффективного плодородия почв. Суть его в непрерывности увеличения продуктивности почв при одновременном повышении их плодородия, росте продукции растениеводства с единицы площади с наименьшими затратами. Одним из непременных условий эффективного действия этого закона является строгое соблюдение других законов земледелия, особенно закона возврата питательных веществ.

Таким образом, руководствуясь законами земледелия, необходимо практически применять систему агротехнических мероприятий с учетом требований растений к конкретным условиям среды.

Контрольные вопросы:

1.Назовите факторы жизни растений.

2. Способы регулирования света?

3. Способы регулирования тепла?

4. Способы регулирования водного режима почвы?

5.В чем сутьзакона равнозначимости и незаменимости факторов жизни растений.

6. Сформулируйте закон минимума, максимума , отпимума.

7. Что означает закон совокупного действия всех факторов жизни растений?

8. Как звучит закон возврата?

9. Какие еще законы земледелия вы знаете?

Алгоритм выполнения задания:
1. В рабочей тетради записать дату занятия, тему занятия, план занятия.
2. Внимательно изучить содержание вопросов темы.

3. Составить краткий конспект темы по вопросам плана.

Конфликтные ситуации в медицинской практике: Наиболее ярким примером конфликта врача и пациента является.

Факторы жизни растений — условия внешней среды, необходимые для роста и развития растений.

К факторам жизни растений относятся свет, воздух, вода, тепло и питательные вещества. Оптимальное соотношение перечисленных факторов позволяет полностью удовлетворить потребности растений, что обеспечивает хороший рост, развитие и плодоношение. Несоответствие условий потребностям может приводить к задержке в росте и гибели растений.

Факторы жизни растений делят на:

  • земные, то есть получаемые из почвы и атмосферы — вода, воздух, питательные вещества;
  • космические, то есть получаемые за счет солнечной энергии — свет, тепло.

Навигация

Факторы жизни растений (English version)

Состав почвы и её роль в жизни растений

Почва представляет собой гомогенную систему, состоящую из трех фаз: твердой, жидкой и газообразной.

Твердая фаза состоит из минеральной и органической части и представляет скелет почвы. Она включает твердые частицы, между которыми находятся свободные пустоты — поры, заполненные водой или воздухом.

Соотношение твердой, жидкой и газообразной фаз определяет режим обеспеченности растений земными факторами жизни. Для разных типов почв оно различно, а его изменение позволяет регулировать условия жизни растений. Оптимальным принято считать соотношение 2:1:1, то есть твердой фазы — 50%, жидкой и газообразной — по 25%.

Создавание и поддержание оптимального соотношения объемов фаз почвы достигается рядом приемов обработки почвы, мелиорацией, внесением удобрений, благодаря чему улучшается водный, тепловой, воздушный, питательный режимы, создавая тем самым благоприятные условия роста и развития растений.


Сравнительные объемы компонентов почвы в пахотном слое

Требования растений к свету

Световая энергия используется растениями для фотосинтеза, её количество лимитирует скорость процесса. Интенсивность и спектральный состав света влияют на рост и развитие растений. Недостаток приводит к замедлению фотосинтетических процессов, что приводит к голоданию, задержке в росте и гибели растений. Избыток световой энергии — к угнетению и ожогам.

Световую энергию растения получают от Солнца, в некоторых случаях применяют искусственное освещение, например при досвечивании рассады, в теплицах и т.п.

Солнечный свет включает ультрафиолетовый спектр, который оказывает бактерицидное действие на микроорганизмы.

Требования растений к теплу

Как отмечал К.А. Тимирязев в жизни растений ведущую роль занимает температурный фактор. Сельскохозяйственная наука к настоящему моменту накопила достаточно сведений о потребности культур в тепле.

Условной единицей измерения количества тепла является сумма активных температур, то есть более 10 °С, за период вегетации. Потребность растений в тепле колеблется в зависимости от вида и сорта, а также периода вегетации.

Определение требований к теплу дает возможность оценить условия возделывания культур в конкретной зоне. Теплообеспеченность имеет особое значение в период прорастания семян. Поэтому знание этих факторов позволяет определить точные сроки посева, выстроить систему обработки почвы и истребительные мероприятия по борьбе с сорной растительность.

Требования к теплу определяют устойчивость растений к заморозкам, условиям зимовки и жароустойчивости.

Требования растений к влаге

Вода — ключевой фактор жизни растений. Без неё не начинаются ростовые процессы в семенах, она участвует в синтезе органических веществ, является средой для превращения питательных веществ и биохимических реакций.

Оптимальная влажность почвы в корнеобитаемом слое, при которой обеспечиваются наилучшие условия роста, находится в пределах 65-90% наименьшей влагоемкости.

Транспирационный коэффициент — количество воды, расходуемое растением на создание единицы сухого вещества. Является одним из показателей влагопотребления.

Потребность во влаге может колебаться в зависимости от фаз развития растения. Критическая фаза роста — фаза развития, при которой влагопотребление максимально.

Суммарное водопотребление — количество воды, расходуемое растениями на 1 гектаре, выраженное в м 3 или мм.

Коэффициент водопотребления — расход воды растениями на создание 1 т урожая. Имеет важное значение при расчете возможной урожайности.

Требования растений к элементам питания

Растения для своего роста, развития и формирования урожая используют органические и минеральные вещества, в процессы фотосинтеза которые трансформируются в сложные органические соединения.

В элементном составе растения содержат углерод, кислород, водород, азот и многие другие элементы. На долю углерода, кислорода и водорода суммарно приходится 94% сухого вещества, по элементно: на долю углерод — 45%, кислорода — 42%, водорода — 7%. Остальные 6% сухой массы состоят из азота и минеральных элементов.

Основным питательным веществом является углекислый газ CO2. Ежегодно растения поглощают из атмосферного воздуха около 20 млрд т углерода.

На сегодняшний день накоплены большие знания о питании растений. Практически все химические элементы были найдены в различных растительных частях, доказано участие 27 элементов в биохимических процессах, 15 из них являются необходимыми для роста и развития.

Человек, в результате применения удобрений, агротехнологий, мелиорации, различных видов и сортов, оказывает значительное воздействие на состав и почвенные процессы.

В экстенсивном земледелии единственным источником минеральных веществ для растений был естественный их запас в почве. При истощении естественного плодородия люди исключали эти земли из обработки и осваивали новые. Оставленные участки восстанавливали плодородие за счет природных процессов длительное время. Наиболее яркими примерами такого подхода являются переложная и залежная системы земледелия.

Трансформационная способность почвы, то есть способность снабжать растения элементами питания и водой, внесенных извне, в интенсивных системах земледелия играет важную роль. Однако и этой способности бывает недостаточно, в условиях современного интенсивного земледелия. Кроме того, к почве предъявляются повышенные требования к фитосанитарному состоянию и агротехнологические свойства. В следствии чего, требуется улучшение всего комплекса свойств почвы, за счет использования новейших технологий для расширенного воспроизводства плодородия. Возможность решения этой задачи заложена природой самой почвы, как возобновляемого ресурса. Но неправильное применение почвы способно приводит к потере плодородия.

Информационно-аналитический портал
для крестьянских фермерских хозяйств

14 Ноябрь 2012 г. 21:25

Факторы жизни растений и законы земледелия

Вода. В жизни растений вода имеет огромное значение, так как все процессы жизнедеятельности происходят с ее участием. Все питательные вещества усваиваются только в растворах. С водой в растение из почвы поступают питательные вещества, испарение воды листьями обеспечивает нормальные температурные условия жизнедеятельности растений.

Почвообразование и формирование почвенного плодородия происходят только при обеспечении почвы водой. Без нее невозможно развитие почвенной фауны и микрофлоры.

Многие сельскохозяйственные растения нуждаются в большом количестве влаги, поэтому их надо регулярно поливать. Некоторые растения очень требовательны к влажности воздуха, например, капуста. другие больше используют почвенную влагу - тыква, арбузы, свекла и др.

По отношению к влаге кормовые растения подразделяются на следующие экологические типы: мезофиты, гигрофиты и ксерофиты. Гигрофиты (осока, ситник) растут на влажных лугах, болотах, побережьях рек; ксерофиты (полынь, ковыль) - в условиях недостатка влаги; мезофиты (тимофеевка луговая, люцерна, клевер) - в районах среднего увлажнения.

Периоды наибольшей потребности в воде называют критическими. Так, для большинства зерновых культур это фазы выхода в трубку и колошения, для кукурузы - цветения и молочно-восковой спелости, а для картофеля - цветения и клубнеобразования. Установлено, что растения резко снижают продуктивность при недостатке воды в период образования репродуктивных органов. Иногда на сельскохозяйственных угодьях оказывается избыток влаги, и это угнетает растения. Здесь приходится проводить осушение переувлажненных почв.

Для определения суммарной потребности растений в воде применяют транспирационный коэффициент. Это отношение массы израсходованной растениями воды к массе сухого вещества урожая Транспирационный коэффициент зависит от вида растений, стадии их развития, почвенных и погодных условий, насыщенности питания и т.д. В разных регионах для растений транспирационный коэффициент колеблется от 200 до 1000. Только ничтожно малая часть воды (меньше 1 %) идет на создание урожая, а остальная часть расходуется на испарение.

Воздух. Из воздуха растения получают кислород, необходимый для дыхания. Для образования органических веществ в зеленых клетках растение использует из воздуха углекислый газ.

Дыхание корней растений и жизнедеятельность почвенных микроорганизмов обеспечиваются почвенным воздухом. Он участвует в биохимических процессах превращения питательных элементов.

Избыточная влажность приводит к резкому ухудшению воздушного режима растений. Хорошо дренированные почвы с высокой общей скважностью лучше обеспечены воздухом.

Газообмен между почвой и атмосферой осуществляется при изменении барометрического давления, температуры почвы и воздуха вследствие поступления в почву воды, воздействия ветра и других факторов.

Чтобы усилить приток воздуха к корням растений, осуществляют рыхление почвы, что позволяет создавать необходимое строение пахотного слоя и тем самым обеспечивать условия нормального газообмена.

Фотосинтезом называется процесс образования зелеными растениями органического вещества из воды и углекислого газа в результате поглощения энергии солнечного света.

Зеленый цвет листьев растений зависит от особых зеленых пластид - хлоропластов, находящихся в их клетках. Почти у всех растений хлоропласты округлой или слегка вытянутой формы. В каждой клетке имеется несколько десятков, а иногда и свыше сотни хлоропластов. Они состоят из бесцветной цитоплазматической основы и зеленого пигмента хлорофилла, который поглощает световые лучи, но не все видимые лучи спектра, а лишь красные и сине-фиолетовые.

Зеленый лист - источник жизни на нашей планете. Хлоропласты листа- это единственная в мире лаборатория, в которой из простых неорганических веществ - воды и диоксида углерода - создаются органические вещества - сахар и крахмал.

При фотосинтезе усваивается всего лишь 1…2 % энергии солнечных лучей, падающих на растение. Однако и этого вполне достаточно, чтобы растения могли прокормить весь животный мир.

Свет к растениям поступает с солнечными лучами, которые распространяются неравномерно на юге их больше, а на севере меньше. Соответственно и растения, произрастающие в разных местах, привыкли или к обилию света, или к его недостатку. Поэтому их подразделяют на светолюбивые и теневыносливые.

Наиболее требовательны к свету южные растения - арбуз, тыква, баклажаны, фасоль, тропические травы и др. У этих растений при коротком световом дне быстрее образуются плоды и семена, а цветут они в конце лета или осенью.

Пшеницу, рожь, ячмень, овес относят к теневыносливым и холодостойким растениям, у которых цветение и плодоношение наступают при максимальной длине дня.

Продолжительность светового дня можно искусственно регулировать для растений, выращиваемых в теплицах и оранжереях.

Теплота. На рост растений с первых стадий их развития влияет температура почвы. Основным источником теплоты в почве являются солнечные лучи. Другим, но значительно меньшим источником служит теплота, выделяемая в результате биохимических превращений органических веществ, а также поступающая из глубинных слоев Земли.

Физиологические процессы, происходящие в растениях, жизнедеятельность микроорганизмов и почвенной фауны, биохимические процессы превращения веществ и энергии возможны только при определенных температурах.

К теплолюбивым культурам относятся кукуруза, сорго, фасоль, томат, арбуз, дыня, перец.

К пониженным температурам устойчивы чеснок, лук. Неплохо переносят пониженные температуры пшеница, рожь, ячмень, овес, горох, капуста и многие корнеклубнеплоды.

Элементы минерального питания. Из почвы растения получают все необходимые элементы минерального питания калий, кальций, железо, магний, серу, фосфор и азот. Калий необходим для роста растения, кальций - для развития их корневой системы. Магний и железо участвуют в образовании хлорофилла. Без азота, серы и фосфора не образуются белки, входящие в состав цитоплазмы и ядра.

Долгое время ученые-аграрии считали, что только эти элементы необходимы для нормального развития растения, но потом выяснилось, что нужны также очень небольшие количества многих других химических элементов, которые назвали микроэлементами. К наиболее важным в жизни растений микроэлементам относятся марганец, бор, медь, цинк, молибден, кобальт.

Урожай сельскохозяйственных культур зависит от генетических особенностей растений и условий окружающей среды. Получению максимальных урожаев с единицы площади и обеспечению повышения почвенного плодородия способствует знание основных законов земледелия - общебиологических основ формирования урожая.

Закон прогрессивного роста эффективного плодородия почвы. Он гласит, что формирование и увеличение плодородия почвы в течение времени заложены в самой природе почвообразовательного процесса, но его действие возможно лишь при соблюдении правил обработки почвы и выращивания сельскохозяйственных культур по мере интенсификации земледелия.

Почва могла возникнуть лишь после появления живых организмов на Земле. Образование почвы, или почвообразовательный процесс, происходит благодаря глубокому и сложному взаимодействию между живыми организмами и окружающими их условиями внешней среды, к которым прежде всего следует отнести материнские (горные) породы и атмосферу, а также главное условие, обеспечивающее непрерывность этого процесса, - приток солнечной энергии на поверхность земли.

При таком постоянном и непрерывном почвообразовательном процессе происходят взаимный обмен и переход одной формы материи в другую. Мертвая минеральная природа переходит в органическую и живую, а последняя, отмирая и разлагаясь, снова переходит в мертвую минеральную. Постоянное взаимодействие между мертвой и живой природой, а также их переход друг в друга в поверхностных слоях земли и составляет суть почвообразовательного процесса и развития основного и специфического свойства почвы - ее плодородия.

С развитием природного почвообразовательного процесса улучшаются многие показатели плодородия почвы - механические, водные и воздушные свойства. Это свидетельствует о том, что развитие жизни на Земле происходит по восходящей кривой; следовательно, в самой жизни заключен объективный фактор ее умножения, а развитие природного почвообразовательного процесса в целом приводит к улучшению плодородия почвы.

Закон прогрессивного роста плодородия почв имеет принципиальное значение для развития и функционирования процветающего и высокопродуктивного земледелия. Он позволяет людям иметь реальные условия и основания для понимания того, что на Земле имеется возможность удовлетворить потребность населения нашей планеты в продуктах питания.

Закон минимума, оптимума и максимума действий факторов жизни растений. Иногда его называют просто законом минимума. Им определено, что минеральные вещества и другие факторы урожайности одинаково нужны растениям и не могут заменить друг друга.

Закон возврата веществ в почву. В соответствии с этим законом при нарушении баланса усвояемых питательных веществ в почве в результате их потерь при выносе с урожаем или вследствие других причин его необходимо восстановить путем внесения удобрений и выполнения других технологических приемов.

Этот закон также был открыт Юстусом Либихом. Он доказал, что перегной нерастворим в воде и не может служить питанием для растений. Навозом удобряют поле потому, что при его разложения (минерализации) освобождаются аммиак, фосфорная и серная кислота, которые усваивают растения.

Когда земледелец убирает урожай, он отнимает у почвы нужные растениям вещества в несравненно большем количестве, чем возвращает в почву с навозом. Ведь большая часть минеральных веществ корма идет на образование мяса, молока и других продуктов животноводства. Поэтому при одном удобрении навозом поля ежегодно недополучают вещества, которые они отдают растениям. Либих писал о необходимости вносить в почву наряду с навозом минеральные вещества, а тех хозяев, которые не заботятся о соблюдении закона возврата, обвинял в хищничестве, в разграблений плодородия почвы.

Либих призывал правительства и народы европейских государств, чтобы они прислушались к предостерегающему голосу истории и науки и обратили должное внимание на оскудение полей.

Закон возврата получил высокую оценку у агрономов и ученых. В частности, русские ученые К. А. Тимирязев и Д.Н. Прянишников считали открытие этого закона одной из заслуг Ю.Либиха, а сам закон называли величайшим достижением науки.

Соблюдение закона возврата питательных веществ имеет важное значение не только для сохранения и повышения плодородия почвы, достижения высокого урожая, но и для получения продукции нужного биологического качества.

Практика показывает, что можно вырастить высокий урожай, но с низким качеством продукции, например с недостатком, биологически важных микроэлементов, белков, имеющих нужное соотношение аминокислот, с отсутствием необходимого набора витаминов и т. д. Довольно часто при посеве сильных сортов пшеницы по плохим предшественникам и недостаточном внесении азотных и фосфорных удобрений хозяйства получают зерно, не соответствующее установленным кондициям по количеству и качеству клейковины. Это объясняется не только несоблюдением элементарных правил агрономии, но и тем, что не учитывается закон возврата питательных веществ в почву, не вносится нужного количества удобрений для получения запланированного урожая.

Закон совокупного действия факторов роста и развития растений. Наивысшую эффективность в земледелии нельзя обеспечить каким-либо одним агрономическим приемом, даже весьма сильным, ее можно достичь лишь применением всего комплекса агротехнических мероприятий.

Известно, что отдельные факторы жизни растений тесно взаимодействуют, друг с другом. Растения непрерывно испытывают влияние всего комплекса факторов. Научные эксперименты, проводимые в вегетационных сосудах и полевых условиях, показали, что факторы жизни растений в наибольшей степени проявляют свою силу только при совместном действии. В полевых условиях с изменением воздействия на растения одного из факторов неизбежно нарушаются возможность и условия продуктивности использования других факторов.

Например, с повышением температуры воздуха увеличивается расход воды из почвы на испарение и жизнедеятельность растений. При этом повышается содержание воздуха в почве, усиливается деятельность аэробных бактерий, больше накапливается доступной для растений пищи. Но процесс накопления питательных веществ происходит только при оптимальной температуре и наличии необходимого количества влаги в почве.

С наступлением продолжительного засушливого периода с высокой температурой воздуха почва полностью теряет продуктивную влагу, в результате чего прекращается деятельность полезных микроорганизмов, и растения начинают испытывать дефицит влаги. Примеров взаимодействия различных факторов жизни растений весьма много.

Совокупное действие факторов жизни растений является весьма динамичным и изменчивым. Понимание взаимодействия различных факторов в жизни растений позволяет земледельцу управлять этими процессами и соответственно формировать высокие урожаи даже в сложных погодных условиях.

Закон плодосмена. Сельскохозяйственной наукой и практикой накоплен большой опытный материал, который подтверждает преимущества плодосмена, т. е. выращивания растений в севооборотах, по сравнению с монокультурой для примера приведем результаты опытов, ведущихся с 1912 г. на опытном поле Московской сельскохозяйственной академии им К.А. Тимирязева. При бессменном выращивании ржи без внесения удобрений урожай составил в среднем 8,7 ц/га, а при выращивании этой культуры в севооборотах и также без использования удобрения урожай составил 16,8 ц/га, т е почти в два раза выше

Все указанные законы составляют научную основу культурного земледелия. Эти объективные законы природы неумолимы, они существуют независимо от нашей воли, и их нарушение дорого обходится людям Чтобы добиться успеха в выращивании сельскохозяйственных культур и быть всегда в согласии с природой, надо постоянно изучать объективные законы земледелия и умело применять их на практике. В соответствии с этими законами высокие и устойчивые урожаи, возможно, получить лишь при осуществлении всего комплекса агротехнических и экономических мер, повышающих культуру земледелия. Какой-либо один даже очень эффективный прием не принесет ощутимого успеха, если не выполнять при этом всего комплекса необходимых приемов. Только при соблюдении и умелом использовании объективных законов, действующих в природе, применении правильной агротехники можно обеспечить рост культуры земледелия, повышения плодородия почв.

Растения в течение всей своей жизни постоянно находятся во взаимодействии с внешней средой. Требования растений к факторам жизни определяются наследственностью растений, и они различны не только для каждого вида, но и для каждого сорта той или иной культуры.
Это связанно с тем, что каждому растению нужны конкретные, изменяющиеся во времени количества лучистой энергии, температура среды, вода, разнообразные растворенные химические элементы, газовый состав почвенного и атмосферного воздуха, свойства среды обитания.
Вот почему глубокое знание этих требований дает возможность правильно устанавливать структуру посевных площадей, чередование культур, размещение севооборотов.

факторы жизни растений

Факторы жизни растений подразделяются на космические и земные.
К космическим относятся свет и тепло, к земным - вода, воздух и питательные вещества. Космические факторы имеют существенные особенности, так как практически не регулируются в земледелии.
Для нормальной жизнедеятельности растениям необходимы свет, тепло, вода, питательные вещества, включая углекислоту и воздух.

Рассмотрим влияние основных факторов и условий на рост и развитие растений.

Основным источником света для растений является солнечная радиация. Хотя этот источник находится вне влияния человека, степень использования световой энергии солнца для фотосинтеза зависит от уровня агротехники: способов посева (направление рядков с севера на юг или с востока на запад), дифференцированных норм высева, обработки почвы и др.
Свет, т. е. оптическое излучение солнца в виде электромагнитных волн определенной длины, включающее видимое человеческим глазом инфракрасное и ультрафиолетовое излучение, оказывает большое влияние на рост и развитие растений. Прежде всего, свет – источник энергии для фотосинтеза.

Фотосинтезом называют процесс образования органического вещества из углекислого газа и воды на свету при участии фотосинтетических пигментов. В ходе световой стадии фотосинтеза образуется высокоэнергетические продукты: макроэргическое соединение - АТФ, служащее в клетке источником энергии, и НАДФН, использующийся как восстановитель. В качестве побочного продукта в процессе фотосинтеза выделяется кислород.

Помимо этого, свет оказывает прямое влияние на развитие растений. Без него растения не зацветают и не плодоносят. При недостатке света зерновые, например, плохо кустятся, стебли вытягиваются, растения полегают, зерно получается щуплым, с низким содержанием белка. Свет влияет на качество продукции и других растений: сахарная свекла при хорошем освещении накапливает больше сахара, картофель – крахмала, подсолнечник – жира. Растения реагируют на смену дня и ночи, на изменение интенсивности освещения. Эту реакцию называют фотопериодизмом.

Для нормального развития одних растений нужен длинный световой день, что наблюдается в южных широтах. Так, озимая рожь, овес, пшеница запаздывают с цветением в условиях короткого дня. Другие растения (рис, хлопчатник, сорго, просо, табак) лучше развиваются в широтах с коротким световым днем.

В практике земледелия используют приемы, позволяющие улучшить освещенность растений. К ним относятся правильное ориентирование рядов посевов по отношению к странам света. Например, посев зерновых рядками в меридиональном направлении по сравнению с широтным дает прибавку урожая до 2. 3 ц/га за счет лучшего освещения растений утром и вечером и затенения их друг другом в жаркие полуденные часы.

Необходимо создать правильную густоту стояния растений при посеве, более равномерно распределять их по площади, уничтожать сорные растения, затеняющие культурные. Своевременное прореживание растений и уничтожение сорняков улучшают освещенность растений. Как правило, более ранние сроки посева и посадки способствуют усилению фотосинтетической деятельности и повышению урожая. В условиях длительного лета применяют пожнивные и поукосные посевы, позволяющие полнее использовать солнечную радиацию.

Тепло

Тепло в жизни растений, наряду со светом представляет основной фактор жизни растений и необходимое условие для биологических, химических и физических процессов в почве. Каждое растение на различных фазах и стадиях развития предъявляет определенные, но неодинаковые требования к теплу, изучение которых составляет одну из задач физиологии растений и научного земледелия. Тепло в жизни растений влияет на скорость развития в каждой стадии роста. В задачу земледелия входит также изучение теплового режима почвы и способов его регулирования.

Все процессы, происходящие в растении (прорастание семян, рост, плодообразование, фотосинтез), наилучшим образом протекают при определенной оптимальной температуре. При отклонении ее в ту или иную сторону эти процессы тормозятся, что приводит к снижению урожая. Для каждой фазы развития существуют минимальные и максимальные температуры, при которых физиологические процессы останавливаются, и растения даже могут погибнуть.

По отношению к теплу растения подразделяют на холодостойкие, семена которых прорастают при температуре почвы 2 – 5 ˚С, и за весь вегетационный период им нужна сумма активных (более 10 ˚С) среднесуточных температур воздуха 1200 – 1800 ˚С, и теплолюбивые, семена которых прорастают при температуре почвы 8 –12 ˚С и нуждаются в сумме активных среднесуточных температур воздуха 3000 – 4000 ˚С.
Для многолетних и озимых сельскохозяйственных растений нужна определенная температура почвы в зимний период.

Воздух

Воздух в жизни растений (атмосферный и почвенный) необходим как источник кислорода для дыхания растений и почвенных микроорганизмов, а также как источник углерода, который растение усваивает в процессе фотосинтеза. Кроме того, Воздух в жизни растений необходим для микробиологических процессов в почве, в результате которых органическое вещество почвы разлагается аэробными микроорганизмами с образованием растворимых минеральных соединений азота, фосфора, калия и других элементов питания растений.
Растению необходим углекислый газ, используемый им при фотосинтезе, и кислород – в процессе дыхания, т. е. в процессе окисления, связанном с выделением энергии для других физиологических процессов. Углекислый газ растения поглощает из приземных слоев атмосферы, состав которой человек практически изменить не может.
Кислород растение получает из воздуха и из почвы. Кислородное питание может быть нарушено при затоплении растений или при обильных снегопадах и не промёрзшей почве, когда растения продолжают вегетировать.

Растения чувствительны к составу почвенного воздуха, в частности к содержанию в нем кислорода. Он, прежде всего, необходим для прорастания семян и потребляется корнями растений. Особенно требовательны к кислороду корнеплоды и клубнеплоды, масличные и бобовые культуры. Менее требовательны – зерновые, некоторые из них снабжают корни кислородом, запасенным в воздухоносных полостях стеблей. Эти полости особенно развиты у риса, который может расти на почве, затопленной водой, а также у кукурузы.
Кислород, а также азот нужен многим микроорганизмам, принимающим активное участие в формировании плодородия почвы.

Количество и состав почвенного воздуха можно регулировать, изменяя содержание влаги в почве с помощью орошения или осушения, соответствующей обработке почвы (рыхлением или прикатыванием). Внесение органических удобрений (навоза, компостов, торфа) приводит к увеличению концентрации углекислого газа в почве и уменьшению кислорода. В почвах, содержащих много гумуса, формируется благоприятная структура, что улучшает их воздушный режим.

Вода в жизни растений и питательные вещества, за исключением углекислоты, поступающей как из почвы, так и из атмосферы, представляют почвенные факторы жизни растений. Поэтому воду и питательные вещества называют элементами плодородия почвы.
Значение воды в жизни растений определяется целым рядом ее свойств. Среди них необходимо отметить способность ее быть растворителем и средой, в которой совершается передвижение веществ и их обмен. В растительном организме воды содержится от 70 до 95 %. С поступлением и передвижением ее в растениях связаны все жизненные процессы. При наличии воды и других факторов семена набухают и прорастают, растут ткани, поступают в растения и передвигаются в них питательные элементы, осуществляется фотосинтез и синтезируется органическое вещество.

Вода - незаменимый терморегулятор для растений. Проходя через него, она регулирует температуру растительного организма и повышает его устойчивость к высоким и низким температурам. Вода поддерживает тургор клеток, распределяет по отдельным органам продукты ассимиляции.
Растения нуждаются в воде с момента посева семян и до окончания формирования урожая. При этом в разные периоды жизни растения требуют неодинакового количества воды: меньше - в начальный период, больше - в период формирования мощной вегетативной массы и генеративных органов, к концу жизни потребность в воде уменьшается.

Период острой потребности растения в воде называется критическим, у зерновых он совпадает с фазой выхода в трубку - колошением, у зернобобовых - цветения, у картофеля - цветения и клубнеобразования. Недостаток влаги в это время резко снижает продуктивность растений.
Важной функцией воды является и то, что она влияет на плодородие почвы. Вступая во взаимодействие с ней, вода изменяет физическое состояние, течение микробиологических процессов, химические и другие превращения, становится одним из факторов почвообразовательного процесса, определяет уровень эффективного и потенциального плодородия почвы.
Источник водоснабжения растений - почва. Жизнь растения зависит не только от наличия влаги в почве, но и от ее потенциала, характеризующего степень связности влаги твердой фазой почвы и ее осмотическое давление, зависящее от концентрации почвенных растворов.

Элементы питания растений

В обмене веществ между растениями и окружающей средой важнейшим условием является корневое питание. В состав сухой массы растений входит несколько десятков элементов питания, однако некоторые из них абсолютно необходимы для всех растений. Это макроэлементы – углерод, кислород, водород, азот, фосфор, калий, кальций, магний, железо, сера и микроэлементы – бор, марганец, медь, цинк, молибден, кобальт и др.

факторы жизни растений

Первые четыре макроэлемента (углевод, кислород, водород, азот) входят в состав органической массы растений и называют органогенами, остальные – зольными элементами.
Углевод, кислород и водород, на долю которых приходится около 93 – 94% сухой массы растений, усваиваются растением из воздуха в процессе фотосинтеза, а азот и все зольные элементы растения берут из почвы.
Каждый элемент питания имеет определенное значение в жизни растений.
Углерод, кислород, водород и азот – важнейшие составные части органических веществ – углеводов, белков и жиров.

Азот входит в состав белков, которые являются основой жизни, и влияет главным образом на ростовые процессы. При недостатке азота рост и развитие растений сильно замедляются, растение имеет мало листьев и бледную окраску. Избыток азота значительно увеличивает рост растений, затягивая их созревание.
Фосфор особенно необходим на ранних этапах развития растений и в период плодоношения. Он способствует лучшему развитию семян, плодов и ускорению созревания культур.
Калий накапливается преимущественно в молодых частях растений, играет важную роль в накоплении углеводов, повышает устойчивость растений к заболеваниям. Вместе с фосфором он увеличивает зимостойкость озимых культур.
Кальций способствует развитию мощной корневой системы у растений, уменьшает вредное влияние ионов водорода и алюминия.

Сера, магний, железо участвуют в окислительных процессах. Сера входит в состав белка, магний – хлорофилла, железо – необходимый элемент при образовании хлорофилла, хотя и не входит в его состав.
Микроэлементы входят в состав ферментов, гормонов, витаминов. Они влияют на процессы обмена веществ в растениях и выполняют ряд других специфических функций.

Обобщение многовекового опыта выращивания сельскохозяйственных культур привело к формированию законов земледелия.

Читайте также: