Эволюция климат на земле реферат

Обновлено: 05.07.2024

Наша планета образовалась из протопланетного газопылевого облака 4,5 млрд лет назад. В процессе своего развития Земля остывала, формировалась кора, океаны, атмосфера, изменялись конвективные режимы в мантии. Менялись очертания суши – тектоника плит приводила к образованию и распаду суперконтинентов. Установить особенности этих процессов оказалось возможным с помощью современных методов геологических исследований – анализа химического состава пород, их радиоизотопного датирования. Оказалось, что следствием непрерывного экспоненциального остывания планеты стали глобальные геологические процессы с четкой периодичностью: по крайней мере четыре известных на сегодня древних суперконтинента возникали через практически равные промежутки времени

Развитие нашей планеты – от планетного зародыша, сформировавшегося из окружавшего Солнце газопылевого облака, до ее современного состояния – прошло ряд важных стадий. Основным фактором, влияющим на изменение внутреннего и внешнего облика Земли, является ее непрерывное остывание после формирования ее 99,9 % массы, а также ступенчато-прогрессивное окисление ее поверхности и приповерхностных оболочек (земной коры, гидросферы, атмосферы). Информацию об этих изменениях можно получить путем сравнения эндогенных и приповерхностных процессов и явлений, а также анализа геологических данных, включающих содержание различных элементов в коре и ядре, радио­изотопный состав пород, результаты палеомагнитных исследований.

Реконструкция исторической картины происходивших с нашей планетой изменений, позволяет лучше понять ее современное состояние, оценить перспективы развития. Эти познания имеют для человечества значение, которое трудно переоценить.

От Пангеи до Пангеи

Современные астрофизические данные говорят о том, что формирование Земли происходило по механизму горячей аккреции. В результате нагрева от падающих планетных зародышей и распада короткоживущих изотопов молодая планета была горячей, разогретой до достаточно высоких температур. В процессе эволюции Земля остывала – уменьшался средний тепловой поток и средняя температура мантии. Современная температура на границе верхней и нижней мантий составляет 2000—2100 °С, а в конце архея — начале протерозоя (2,6—2,7 млрд. лет назад) достигала 2400 °С. Затем это тепло рассеивалось в виде излучения в окружающее космическое пространство, запас тепловой энергии в недрах уменьшался.

Конвекционные процессы в мантии Земли приводят в движение литосферные плиты. Благодаря этому с определенной периодичностью происходит сборка и распад суперконтинентов. На рисунке приведена схематическая карта последнего из суперконтинентов – Пангеи

РОЖДЕНИЕ ПЛАНЕТ

Планеты Солнечной системы образовались из газопылевого протопланетного диска, окружавшего Солнце. Механизм зарождения крупных объектов из газопылевого облака называется аккрецией, он изучен пока -недостаточно. В течение первых сотен тысяч лет благодаря гравитационным взаимодействиям и столкно­вениям частиц облака сформировались объекты размерами до 10 км. Моделирование этих процессов при помощи систем многих тел показывает, что есть определенный размер планетных зародышей (планете­зималей), после превышения которого их размеры начинают быстро расти. Это происходит из-за того, что наиболее крупные объекты теряют кинетическую энергию за счет внутреннего трения во взаимном гравитационном взаимодействии, а траектории более мелких фокусируются на них. Такой механизм роста зародышей планет называется олигархическим, и этот процесс, по оценкам специалистов, длился несколько миллионов лет. После завершения фазы олигархического­ роста сформировалось несколько десятков объектов с массами порядка нескольких процентов от массы Земли. В дальнейшем скорость их роста уменьшалась экспоненциально и финальная стадия аккреции была достаточно медленной, ее характерное время для Земли составляло десятки миллионов лет. Эта стадия сопровождалась как вылетом зародышей за пределы Солнечной системы в результате рассеяния на крупных телах, так и серией мощных аккреционных столкновений с все более увеличивающимися в размерах объектами (Wood, 2011)

Данные по химическому составу пород, содержащих повышенное количество выносимых из глубины планеты элементов, доказывают, что формирование суперконтинентов проходило вследствие конвективных процессов в мантии. Кривые содержания изотопов стронция в карбо­натных осадках, калиевости гранитов и аркозовых песчаников показывают возрастание их количества в интервале от 3000 до 2000—1700 млн лет и периодические колебания в дальнейшем. Главные максимумы отношений 87 Sr/ 86 Sr и К2O/Na2O, как и максимумы изотопных датировок основных пород, формирующих кору, коррелируют со временем существования суперконтинентов (Condie, 2005)

Непрерывное остывание Земли приводило к перестройке режимов конвекции в мантии. Удивительно то, что приблизительно экспоненциальное падение теплового потока из недр имело следствием хорошо прослеживающуюся периодичность формирования супер­континентов, а следовательно, изменения в конвекции при этом носили так же периодический характер.

Сначала Земля была без Луны…

История Земли как планеты началась 4,55—4,44 млрд лет назад. Длительность первоначального роста и выделения железного ядра решающим образом зависела от динамической вязкости мантии, которая могла изменяться во время аккреции на два-три порядка. Поэтому оценки длительности этого этапа отличаются также на два порядка – от 10 млн лет до 1 млрд лет. Уточнить временные рамки позволили измерения содержания элементов гафния и вольфрама в земных и лунных породах, из которых следует, что земное ядро формировалось практически одновременно с ростом планеты, а именно – в первые 30—50 млн лет ее существования.

Истории образования Земли и ее состояния после аккреции сильно зависит от механизма формирования Луны. Согласно гипотезе мегаимпакта, Луна образовалась примерно 4,48 млрд лет назад в результате удара гипотетической планеты размером с Марс о практически уже сформировавшуюся Землю. К этому времени верхняя оболочка Земли представляла магматический океан глубиной 600—1000 км с тонкой, до 10 км, базальтовой корой, регулярно взламываемой метеоритами. В результате удара часть коры и мантии Земли и столк­нувшегося с ней тела были выброшены на околоземную орбиту, и из них впоследствии сформировалась Луна. Однако, по мнению некоторых исследователей, гипотеза мегаимпакта маловероятна, так как сильный удар массивного небесного тела должен был привести к эксцентриситету орбиты Земли, на порядок превышающему современный.

Так, по представлению художника Николая Ковалева, выглядела Земля в начале своей геологической истории

Согласно другой гипотезе, Луна могла образоваться за счет серии более мелких импактов тел, размером сопоставимых с ней самой. В этой модели Земля могла обладать небольшим по мощности ( ГАФНИЙ И ВОЛЬФРАМ – МЕТКИ ВРЕМЕНИ

Для определения времени формирования металличе­ского ядра Земли исследуют содержание радио­активного изотопа 182 Hf и продукта его распада 182 W в геологических породах. Оба этих элемента тугоплавки, они присутствуют в одной и той же относительной распространенности в планете перед выделением ядра. Со временем благодаря распаду гафния-182 доля вольфрама-182 возрастает относительно других устойчивых, но нерадиогенных вольфрамовых изотопов, таких как 184 W.
В процессе выделения железа из слагавших Землю пород растворимый в железе сидерофильный вольфрам большей частью уходит в ядро, а литофильный гафний остаётся целиком в силикатном слое. Поэтому в этом слое соотношение 182 W/ 184 W из-за радиоактивного распада гафния будет больше, чем это было в первоначальной смеси, и его количество зависит от того, сколько этого элемента еще не успело распасться на момент вымывания вольфрама из породы в ядро. Измеряя соотношение изотопов вольфрама в коре и сравнивая эти данные с содержанием их в хондритах – метеорных телах, сформировавшихся в протопланетном диске во времена, предшествующие началу образования Земли, – можно определить разницу в возрасте между хондритами и древними породами и тем самым датировать время формирования ядра (Wood, 2011)

Главным образом за счет падения комет к концу этапа аккреции была создана горячая атмосфера, состоявшая в основном из водорода и метана. В пересчете на воду ее масса могла составлять от 2 до 10 масс современной гидросферы. Но к рубежу 4,4 млрд лет ранняя атмосфера была потеряна за счет интенсивной диссипации водорода в космос, и началось ее окисление. Окисление атмосферы, поверхности Земли, а затем коры и верхней мантии продолжалось и в последующие этапы.

Хадей – юная Земля, океаны без жизни

Интервал от конца аккреции, 4,44 млрд лет, до 3,9 млрд лет носит название Хадей, или догеологическая стадия, поскольку геологическая летопись этого периода практически не сохранилась. В это время происходило наиболее интенсивное остывание планеты, исчезновение магматического океана, существовавшего в объеме, близком к верхней мантии, и разделение мантии на верхнюю и нижнюю. Начала формироваться кора, в том числе континентального типа, образовался Мировой океан на поверхности. Свидетельством существования в это время континентальной коры и океана считаются окатанные (что свидетельствует о наличии воды в жидком состоянии) цирконы с возрастом 4,0—4,2 млрд лет, а также отдельные цирконы, датируемые временем 4,4 млрд лет, выделенные из более молодых осадочных пород. В этих цирконах в некоторых случаях были найдены микровключения алмазов, для которых микроструктура и распределения тория и ванадия сходны с импактными алмазами на Луне. Этот факт говорит об их происхождении в результате интенсивной бомбардировки крупными метеоритами поверхности Земли.

В процессе эволюции планеты изменялось ее внутреннее строение. Мантия разделилась на два резервуара, различающихся режимами и характером конвекции. Оформилось ядро, в нем выделилась твердая часть; появились твердые силикатные слои – кора и антикора, а также твердый слой толщиной до 100 километров, отделяющий нижнюю мантию от жидкого ядра

Время существования магматического океана и его глубина, как указано выше, зависит от механизма образования Луны и интенсивности метеоритной бомбардировки и колеблется в значительных пределах, но после 4,0 млрд лет наличие магматического океана маловероятно. Тем не менее, B. C. Шкодзинский (2009) считает формирование магматического океана мощно­стью до 1000 км важнейшим событием в истории Земли и допускает наличие реликтов этого океана довольно длительное время (см. статью В. С. Шкодзинского в этом выпуске журнала на стр. 12).

Алмазный рубеж

ГЛУБОКИЙ МАГМАТИЧЕСКИЙ ОКЕАН

В целом к концу архея сформировалось от 20 до 50 % объема континентальной коры.

В любом случае, на рубеже 2,6—2,7 млрд лет режим конвекции в мантии изменился, и это вызвало вышеописанные, а также и другие крупные последствия.

Специального внимания заслуживает период около 750 млн лет назад. До рубежа 1 млрд лет все извлекаемые метаморфические породы свидетельствовали о достаточно небольшом давлении, существовавшем при их формировании. Примерная глубина, на которой может наблюдаться такое давление – порядка 40—60 км. Возрастом в 750 млн лет датируются породы, для образования которых необходимо более высокое давление. Это свидетельствует об увеличении глубины их формирования, 150—200 км, или, что то же самое, о снижении температуры при той же самой глубине. Например, для глубины 100 км температура могла снизиться от 1000 до 400—600 °С.

Это возможно только в том случае, если скорость субдукции (погружения коры в мантию) заметно повысилась и достигла или превысила современную максимальную скорость субдукции (около 10 см/год).

Фотосинтез привел к увеличению содержания кислорода в атмосфере, возникновению озонового слоя, защищающего поверхность от жесткого ультрафиолетового излучения, и на Земле создались условия для возникновения жизни на суше.

Усиление субдукции в интервале 750—600 млн лет дало вспышку островодужного магматизма, сопровождавшегося масштабными извержениями вулканов, массовое, но очень изменчивое поступление СO2 в атмосферу, ее дополнительное окисление и потепление климата. Начиная с 600 млн лет и эндогенные системы, и климат, и биосфера развиваются по сценариям, сходным с современными.

Таким образом, имеющее непрерывный характер остывание и окисление Земли приводило к ряду разнообразных процессов. Менялись конвективные режимы в мантии, из-за чего собирались и распадались суперконтиненты. Росла толщина литосферы и земной коры, остывала поверхность, формировались моря и, соответственно, – осадочные породы. Кристаллизовавшаяся кора погружалась в зонах субдукции в мантию, поднимая находящиеся над ней континенты. Постепенно геологический характер планеты становился все более спокойным, снижалась средняя температура поверхности, возникли условия для жизни и эволюции живых форм.

Несмотря на то, что остывание Земли носило экспоненциальный характер, происходящие в ней тектонические и геологические процессы демонстрируют периодичность. Существует корреляция между химическим составом, возрастом пород, глубиной и температурой их образования, временем существования суперконтинентов, интенсивностью накопления осадков и рядом других показателей. Это указывает на то, что происходившие на планете процессы взаимосвязаны – геологические изменения поверхности являются следствием взаимодействия внутренних и внешних факторов, таких как активность конвекции в мантии, cолнечная активность и др. Это говорит о целостности происходящих на нашей планете явлений, о том, что Земля является единым организмом, живущим и развивающимся в своих различных аспектах согласованным образом.

Добрецов Н. Л. Основы тектоники и геодинамики / учебное пособие / Новосибирск: НГУ, 2011.

Wood B. The formation and differentiation of Earth // Physics Today. December 2011. P 40—45.

В настоящее время активно развивается новая парадигма геологии – глубинная геодинамика, оценивающая природу глобальных процессов с учетом взаимодействия разноглубинных, вплоть до ядра, оболочек Земли. В различных тектонических процессах показано широкое участие плюмов, горячих полей и супер­плюмов (Зоненшайн, Кузьмин, 1983; Hoffman, 1997; Flower, 2000; Кузьмин и др., 2001; Ярмолюк, Коваленко и др., 2002; Добрецов, 2003). При этом происходят сложные процессы взаимодействия глубинного мантийного магматизма с корой и литосферной мантией с формированием бимодальных вулканических ассоциаций, габбро-гранитных серий и траппов. Учебной литературы по данной проблеме практически нет, в то же время в последние годы крупным магматическим провинциям и их металлогении уделяется большое внимание в зарубежных публикациях (Abbott et al., 2002; Ernst et al., 2004). В данной монографии этому разделу глубинной геодинамики уделено большое внимание. При этом приведен не только фактический материал, но и расчеты термохимической модели плюмов различной мощности, отделяющихся от границы ядро – верхняя мантия (слой D``), и их взаимодей­ствия с различными геосферами. В отдельном разделе приведены данные по эволюции биосферы как одной из геосфер Земли. Этот раздел представляет интерес для палеонтологов и биологов.

Заведующий лабораторией петрологии и рудоносности магматических формаций Института геологии и минералогии, профессор, д. г.-м. н. А. Э. Изох

Целью настоящей работы является анализ климатов прошлого, современного и будущего, а также проблем регулирования климата.Материалами для выполнения работы послужили монографии и другие публикации современных отечественных и зарубежных ученых по данной проблеме.

Работа содержит 1 файл

реферат ксе.doc

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Санкт-Петербургский государственный университет

сервиса и экономики

РЕФЕРАТ

Вопрос об изменениях климата привлекал внимание многих исследователей, работы которых были посвящены главным образом сбору и изучению данных о климатических условиях различных эпох. Исследования этого направления содержат обширные материалы о климатах прошлого.

Меньше результатов было получено при изучении причин изменений климата, хотя эти причины уже давно интересовали специалистов, работающих в данной области. Из-за отсутствия точной теории климата и недостатка, необходимых для этой цели материалов специальных наблюдений при выяснении причин изменений климата возникли большие трудности, не преодоленные до последнего времени. Сейчас не существует общепринятого мнения о причинах изменений и колебаний климата, как для современной эпохи, так и для геологического прошлого.

Между тем вопрос о механизме изменений климата приобретает в настоящее время большое практическое значение, которое он еще недавно не имел. Установлено, что хозяйственная деятельность человека начала оказывать влияние глобальные климатические условия, причем это влияние быстро возрастает. Поэтому возникает необходимость в разработке методов прогноза изменений климата для того, чтобы предотвратить опасное для человека ухудшение природных условий.

Очевидно, что такие прогнозы нельзя обосновать только эмпирическими материалами об изменениях климата в прошлом. Эти материалы могут быть использованы для оценки климатических условий будущего путем экстраполяции наблюдаемых сейчас изменений климата. Но этот метод прогноза пригоден лишь для очень ограниченных интервалов времени из-за нестабильности факторов, влияющих на климат.

Для разработки надежного метода прогноза климата будущего в условиях возрастающего влияния хозяйственной деятельности человека на атмосферные процессы необходимо использование физической теории изменений климата. Между тем, имеющиеся численные модели метеорологического режима являются приближенными и их обоснования содержат существенные ограничения.

Очевидно, что эмпирические материалы об изменениях климата имеют очень большое значение, как для построения, так и для проверки приближенных теорий изменений климата. Аналогичное положение имеет место в изучении последствий воздействий на глобальный климат, осуществление которых, по-видимому, возможно в ближайшем будущем.

Целью настоящей работы является анализ климатов прошлого, современного и будущего, а также проблем регулирования климата.

Для выполнения поставленной цели нами сформулированы следующие задачи:

Изучить по литературным источникам климаты прошлых эпох;

Ознакомиться с методами изучения и оценки современного климата и климата будущего;

Рассмотреть прогнозы и перспективы климата в будущем и проблемы его регулирования.

Материалами для выполнения работы послужили монографии и другие публикации современных отечественных и зарубежных ученых по данной проблеме.

Характерной чертой последнего (четвертичного) геологического периода была большая изменчивость климатических условий, в особенности в умеренных и высоких широтах. Природные условия этого времени изучены гораздо подробнее по сравнению с более ранними периодами, но, несмотря на наличие многих выдающихся достижений в изучении плейстоцена, ряд важных закономерностей природных процессов этого времени известен еще недостаточно. К их числу относится, в частности, датировка эпох похолоданий, с которыми связаны разрастания ледяных покровов на суше и океанах. В связи с этим оказывается неясным вопрос об общей длительности плейстоцена, характерной чертой которого было развитие крупных оледенений.

Существенное значение для разработки абсолютной хронологии четвертичного периода имеют методы изотопного анализа, к числу которых относятся радиоуглеродный и калиево-аргонный методы. Первый из указанных методов дает более или менее надежные результаты только для последних 40-50 тыс. лет, то есть для заключительной фазы четвертичного периода. Второй метод применим для гораздо более продолжительных интервалов времени. Однако точности результатов его использования заметно меньше, чем радиоуглеродного метода.

Плейстоцену предшествовал длительный процесс похолодания, особенно заметный в умеренных и высоких широтах. Этот процесс ускорился в последнем отделе третичного периода - плиоцене, когда, по-видимому, возникли первые ледяные покровы в полярных зонах северного и южного полушарий.

Из палеографических данных следует, что время образования оледенений в Антарктиде и Арктике составляет не менее нескольких млн. лет. Площадь этих ледяных покровов вначале была сравнительно невелика, однако постепенно возникла тенденция к их распространению в более низкие широты с последующим отсутствием. Время начала систематических колебаний границ ледяных покровов по ряду причин определить трудно. Обычно считают, что перемещения границы льдов начались около 700 тыс. лет тому назад.

Наряду с этим к эпохе активного развития крупных оледенений часто добавляют более длительный интервал времени – эоплейстоцен, в результате чего длительность плейстоцена возрастает до 1,8 – 2 млн. лет.

Общее число оледенений, по-видимому, было довольно значительным, поскольку установленные еще в прошлом веке главные ледниковые эпохи оказались состоящими из ряда более теплых и холодных интервалов времени, причем последние интервалы можно рассматривать как самостоятельные ледниковые эпохи.

Масштабы оледенений различных ледниковых эпох значительно отличались. При этом заслуживает внимания мнение ряда исследователей, что эти масштабы имели тенденцию к возрастанию, то есть что оледенение в конце плейстоцена были крупнее первых четвертичных оледенений.

Лучше всего изучено последнее оледенение, которое происходило несколько десятков тыс. лет назад. В эту эпоху заметно возросла засушливость климата.

Возможно, это объяснялось разным уменьшением испарения с поверхности океанов из-за распространения морских льдов в более низкие широты. В результате понижалась интенсивность влагооборота, и уменьшалось количество осадков на суше, на которые влияло увеличение площади материков вследствие изъятия воды из океанов, израсходованной при образовании материкового, ледяного покрова. Не подлежит сомнению, что в эпоху последнего оледенения произошло громадное расширение зоны вечной мерзлоты. Это оледенение закончилось 10 – 15 тыс. лет тому назад, что обычно считают концом плейстоцена и началом голоцена – эпохи, в течение которой на природные условия начала оказывать влияние деятельность человека.

Причины изменений климата

Своеобразные климатические условия четвертичного времени, по-видимому, возникли из-за содержания углекислого газа в атмосфере и в результате процесса перемещения континентов и подъема их уровня, что привело к частичной изоляции Северного полярного океана и размещению антарктического материка в полярной зоне южного полушария.

Четвертичному периоду предшествовала обусловленная изменениями поверхности Земли длительная эволюция климата в сторону усиления термической зональности, что выражалось в снижении температуры воздуха в умеренных и высоких широтах. В плиоцене на климатические условия начало оказывать влияние уменьшения концентрации атмосферной углекислоты, что привело к снижению средней глобальной температуры воздуха на 2 – 3 градуса (в высоких широтах на 3 – 5). После чего появились полярные, ледяные покровы, развитие которых привело к снижению средней глобальной температуры.

По-видимому, по сравнению с изменениями астрономических факторов, все другие причины оказывали меньшее влияние на колебания климата в четвертичное время.

По мере отдаления от нашего времени количество сведений о климатических условиях прошлого уменьшается, а трудности интерпритации этих сведений возрастают. Наиболее надежную информацию о климатах отдаленного прошлого мы имеем из данных о непрерывном существовании на нашей планете живых организмов. Мало вероятно, чтобы они существовали вне пределов узкого интервала температуры, от 0 до 50 градусов С, который в наше время ограничивает активную жизнедеятельность большинства животных и растений. На этом основании можно думать, что температура поверхности Земли, нижнего слоя воздуха и верхнего слоя водоемов не выходила из указанных пределов. Фактические колебания средней температуры поверхности Земли за длительные интервалы времени были меньше указанного интервала температур и не превосходили нескольких градусов за десятки млн. лет.

Из этого можно сделать вывод о трудности исследования изменений термического режима Земли в прошлом по эмпирическим данным, так как погрешности определения температуры, как методом анализа изотопного состава, так и другими известными сейчас методами составляют обычно не меньше нескольких градусов.

Другая трудность изучения климатов прошлого обусловлена неясностью положения различных областей по отношению к полюсам в результате движения континентов и возможностью перемещения полюсов.

Климатические условия мезозойской эры и третичного периода характеризировались двумя основными закономерностями:

На протяжении этого времени средняя температура воздуха у земной поверхности была значительно выше современной, в особенности в высоких широтах. В соответствии с этим разность температур воздуха между экватором и полюсами была гораздо меньше современной;

В течение большей части рассматриваемого времени преобладала тенденция к снижению температуры воздуха, в особенности в высоких широтах.

Эти закономерности объясняются изменением содержания углекислого газа в атмосфере и изменением положения континентов. Более высокая концентрация углекислого газа обеспечивала повышение средней температуры воздуха примерно на 5 градусов по сравнению с современными условиями. Низкий уровень континентов повышал интенсивность меридионального теплообмена в океанах, что увеличивало температуру воздуха в умеренных и высоких широтах.

Повышение уровня континентов уменьшало интенсивность меридионального теплообмена в океанах и приводило к постоянному снижению температуры в умеренных и высоких широтах.

При общей высокой устойчивости термического режима в мезозойское и третичное время, обусловленной отсутствием полярных льдов, в течение сравнительно редко коротких интервалов могли происходить резкие понижения температуры воздуха и верхних слоев водоемов. Эти понижения были обусловлены совпадением во времени ряда вулканических извержений взрывного характера.

Современные изменения климата

Наиболее крупное изменение климата за время инструментальных наблюдений началось в конце 19 века. Оно характеризовалось постепенным повышением температуры воздуха на всех широтах северного полушария во все сезоны года, причем наиболее сильное потепление происходило в высоких широтах и в холодное время года. Потепление ускорилось в 10-х годах 20 века и достигло максимума в 30-х годах, когда средняя температура воздуха в северном полушарии повысилась приблизительно на 0,6 градусов по сравнению с концом 19 века. В 40-х годах процесс потепления сменился похолоданием, которое продолжается до настоящего времени. Это похолодание было довольно медленным и пока еще не достигло масштабов предшествующего ему потепления.

Хотя данные о современном изменении климата в южном полушарии имеют менее определенный характер по сравнению с данными для северного полушария, есть основания считать, что в первой половине 20 века в южном полушарии также происходило потепление.

В северном полушарии повышение температуры воздуха сопровождалось сохранением площади полярных льдов, отсутствием границы вечной мерзлоты в более высокие широты, продвижением к северу границы леса и тундры и другими изменениями природных условий.

Существенное значение имело отмечавшееся в эпоху потепления изменение режима атмосферных осадков. Количество осадков в ряде районов недостаточного увлажнения при потеплении климата уменьшилось, в особенности в холодное время года. Это привело к уменьшению стока рек и падению уровня некоторых замкнутых водоемов.

Целью настоящей работы является анализ климатов прошлого, современного и будущего, а также проблем регулирования климата.

Для выполнения поставленной цели нами сформулированы следующие задачи:

Изучить по литературным источникам климаты прошлых эпох;

Ознакомиться с факторами, влияющими на эволюцию климата;

Систематизировать и обобщить всю полученную информацию и выявить главные аспекты.

Эволюция - это развитие, процесс постепенного непрерывного количественного изменения кого-чего-нибудь, подготавливающий качественное изменение (философский словарь).

Эволюция – необратимое и, в известной мере, направленное историческое развитие природы, сопровождающееся изменением генетического состава популяции, формированием адаптаций, появлением и вымиранием видов, преобразованием биогеоценозов и биосферы в целом (словарь биологических терминов).

Эволюционизм – мировоззрение, которое все рассматривает с точки зрения развития (словарь философских терминов).

Климат (греч. κλίμα (klimatos) — наклон) — многолетний режим погоды, одна из основных географических характеристик той или иной местности. Основные особенности климата определяются поступлением солнечной радиации, процессами циркуляции воздушных масс, характером подстилающей поверхности. Из географических факторов, влияющих на климат отдельного региона, наиболее существенны широта и высота местности, близость его к морскому побережью, особенности растительного покрова, наличие снега и льда, степень загрязненности атмосферы. Эти факторы осложняют широтную зональность климата и способствуют формированию местных его вариантов (энциклопедический словарь).

Климат — статистический ансамбль состояний, через который проходит система: гидросфера -> литосфера -> атмосфера за несколько десятилетий

Под климатом принято понимать усреднённое значение погоды за длительный промежуток времени (порядка нескольких десятилетий) то есть климат — это средняя погода. Таким образом, погода — это мгновенное состояние некоторых характеристик (температура, влажность, атмосферное давление). Отклонение погоды от климатической нормы не может рассматриваться как изменение климата, например, очень холодная зима не говорит о похолодании климата. Для выявления изменений климата нужен значимый тренд характеристик атмосферы за длительный период времени порядка десятка лет.

Палеоклиматоло́гия — наука об истории изменений климата Земли.

Материалами для выполнения работы послужили философские, энциклопедичные словари и другие публикации современных отечественных и зарубежных ученых по данной тематике.

Первый раздел. История эволюции климата

Факторы, определяющие климат и его изменение

Изменения климата обусловлены переменами в земной атмосфере, процессами, происходящими в других частях Земли, таких как океаны, ледники, а также эффектами, сопутствующими деятельности человека.

Внешние процессы, формирующие климат, — это:

изменения солнечной радиации и орбиты Земли,

изменение размеров и взаимного расположения материков и океанов,

изменение светимости солнца,

изменения параметров орбиты Земли,

изменение прозрачности атмосферы и ее состава в результате изменений вулканической активности Земли,

изменение концентрации парниковых газов (СО2 и CH5) в атмосфере,

изменение отражательной способности поверхности Земли (альбедо),

изменение количества тепла, имеющегося в глубинах океана.

1. Климатические изменения на Земле

Самые значительные климатические процессы за последние несколько миллионов лет — это гляциальные и интергляциальные циклы текущего ледникового периода, обусловленные изменениями орбиты Земли. Изменение состояния континентальных льдов и колебания уровня моря в пределах 130 метров являются в большинстве регионов ключевыми следствиями изменения климата.

1.2. Климатическая память

В более общем аспекте изменчивость климатической системы является формой гистерезиса, т. е. это значит, что настоящее состояние климата является не только следствием влияния определенных факторов, но также и всей историей его состояния. Например, за десять лет засухи озера частично высыхают, растения погибают, и площадь пустынь увеличивается. Эти условия вызывают, в свою очередь, менее обильные дожди в последующие за засухой годы. Т. о. изменение климата является саморегулирующимся процессом, поскольку окружающая среда реагирует определенным образом на внешние воздействия, и, изменяясь, сама способна воздействовать на климат.

1.3. Изменчивость мирового океана

В масштабе десятилетий климатические изменения могут быть результатом взаимодействия атмосферы и мирового океана. Многие флуктуации климата, включая наиболее известную южную осцилляцию Эль-Ниньо, а также североатлантическую и арктическую осцилляции, происходят отчасти благодаря возможности мирового океана аккумулировать тепловую энергию и перемещению этой энергии в различные части океана. В более длительном масштабе в океанах происходит термогалинная циркуляция, которая играет ключевую роль в перераспределении тепла и может значительно влиять на климат.

2. Неклиматические факторы и их влияние на изменение климата

2.1. Парниковые газы

Последние исследования показывают, что парниковые газы являются главной причиной глобального потепления. Парниковые газы имеют также значение для понимания климатической истории Земли. Согласно исследованиям, парниковый эффект, возникающий в результате нагревания атмосферы тепловой энергией, удерживаемой парниковыми газами, является ключевым процессом, регулирующим температуру Земли.

Растущий уровень диоксида углерода считается главной причиной глобального потепления, начиная с 1950 года. Согласно данным Межгосударственной группы экспертов по изменению климата (МГЭИК) от 2007 года, концентрация СО 2 в атмосфере в 2005 году составила 379 чнм 3 , в доиндустриальный период она составляла 280 чнм 3 .

Чтобы предотвратить резкое потепление в ближайшие годы, концентрация углекислоты должна быть снижена до уровня, существовавшего до индустриальной эпохи - до 350 частей на миллион (0,035%) (сейчас - 385 частей на миллион и увеличивается на 2 миллионные доли (0,0002%) в год, в основном из-за сжигания ископаемого топлива и вырубки лесов).

Имеется скептическое отношение к геоинженерным методам изъятия углекислоты из атмосферы, в частности, к предложениям захоранивать углекислый газ в тектонических трещинах или закачивать его в породы на океанском дне: изъятие 50 миллионных долей газа по этой технологии будет стоить, по меньшей мере, 20 триллионов долларов, что в два раза больше национального долга США.

2.2. Тектоника литосферных плит

На протяжении длительных отрезков времени тектонические движения плит перемещают континенты, формируют океаны, создают и разрушают горные хребты, т. е. создают поверхность, на которой существует климат. Недавние исследования показывают, что тектонические движения усугубили условия последнего ледникового периода: около 3 млн. лет назад северо- и южноамериканская плиты столкнулись, образовав Панамский перешеек и закрыв пути для прямого смешивания вод Атлантического и Тихого океанов.

Похожие страницы:

Климат в прошлом и настоящем, и долгосрочные прогнозы

. видимому, возможно в ближайшем будущем. Климат Климат - [греч. klima наклон (земной . изменениями поверхности Земли длительная эволюция климата в сторону усиления термической . изменений солнечной радиации, обусловленных эволюцией солнца. Также изменения .

Эволюция атмосферы в истории Земли

. земной атмосфере, тем самым меняя климаты Земли. СЛАЙД 7 Рассчитывая эффект . только привлекая дополнительную информацию по климатам Земли, существовавшим в прошлые . рассчитанный Н.О. Сорохтиным (2001) график эволюции парциального давления углекислого газа в .

Эволюция науки об управлении. Специфика и особенности развития управления в России

Эволюция науки об управлении. Специфика и . администрации; создание благоприятного социально-психологического климата как в обществе в целом, так и в . проблема в первую очередь заключается в создании климата, благоприятствующего их применению. Структура такой .

Эволюция развития градостроительных систем

. территориально-пространственного развития. Эволюция развития градостроительных систем. . и часть Нуэво-Леона. Засушливый климат, пустынная и полупустынная растительность, . под влиянием влажного субтропического климата. Средняя температура воздуха .

Эволюция материальных носителей информации

. Предмет работы – поэтапное рассмотрение эволюции материальных носителей информации. Хронологические . кодекс. В условиях жаркого климата записи на восковых дощечках были . только в Египте благодаря уникальному климату. Находки греческих папирусов в Египте .

Гост

ГОСТ

Климат — это характерный для определенной местности устойчивый погодный режим.


Климатообразующие факторы. Автор24 — интернет-биржа студенческих работ">

Рисунок 1. Климатообразующие факторы. Автор24 — интернет-биржа студенческих работ

Климат оказывает огромное воздействие на живую и неживую природу. В тесной зависимости от данного фактора находятся все водные объекты, растительность, почва и животные. Отдельные сферы современной экономики, среди которых сельское хозяйство, также находятся во власти климата.

Климат формируется при взаимодействии многих обстоятельств:

  • количества получаемой солнечной радиации;
  • циркуляции атмосферы;
  • характера подстилающей поверхности.

При этом все климатообразующие факторы напрямую зависят от общегеографических условий определенной местности, прежде всего от географической широты.

Огромное влияние на климат оказывают и морские течения. Теплые воздушные потоки согревают атмосферу в тех областях, где они протекают.

Например, теплое Северо-Атлантическое течение формирует крайне благоприятные условия для выращивания тропических лесов в южной части Скандинавского полуострова, при этом практически вся часть острова Гренландия, расположенного приблизительно на тех же широтах, но находящегося вне зоны воздействия теплого течения, покрыта толстым слоем льда в течение всего года.

Готовые работы на аналогичную тему

В формировании климата Земли большую роль отводят рельефу. Известно, что с каждым подъемом конкретной местности на один километр температура воздуха постепенно начинает снижаться. В результате чего на известных высокогорных склонах Памира средняя годовая температура воздуха фиксируется на отметке в -1°С, хотя находится данная местность чуть севернее тропика.

Существенное влияние на климат нашей планеты оказывает порядок расположение горных хребтов. Горы могут задерживать влажные морские ветры, а на их наветренных склонах впоследствии выпадает значительно больше осадков, чем на подветренных. При этом горные равнины выполняют роль преграды для холодных северных ветров.

Климатические свойства Земли характеризуются статистическими выводами из многолетних рядов исследований и наблюдений за погодой, которые предназначаются в основном для следующих метеорологических элементов:

  • атмосферного давления;
  • направления ветра;
  • температуры и влажности воздуха;
  • облачности и атмосферных осадков.

Климатические пояса

Многолетний средний показатель указанных метеорологических, их суммы, повторяемости и сезонности носят название климатических норм: определенные величины конкретных дней, месяцев, лет, которые исследуются как отклонение от этих принципов.

Карты с важными показателями климатических явлений называют климатическими, предназначенные для правильного распределения температуры, давления и влажности.

В зависимости от существующих температурных условий, преобладающих ветров и воздушных масс на сегодняшний день выделяют такие климатические пояса:

  • два тропических;
  • экваториальный;
  • два умеренных;
  • арктический;
  • антарктический.

Между центральными поясами находятся многочисленные переходные климатические зоны: субтропический, субэкваториальный, субарктический и субантарктический. В промежуточных поясах абсолютно все воздушные массы меняются по сезонам, которые поступают из соседних областей, поэтому климат субэкваториальных территорий в теплый период года сходен с климатом экваториального пояса, а зимой — с климатом умеренных поясов. Это напрямую связано с сезонной трансформацией атмосферного давления над земным шаром.

Исследователи подразделяют климатические пояса на климатические области.

Например, на территории тропического пояса Африки существуют области сухого и влажного климата, а на поверхности Евразии субтропический пояс формируется на области континентального и муссонного климата.

Разнообразие климата Земли

Классификация климатов предоставляет достаточно упорядоченную и комплексную систему для грамотной характеристики всех типов климата, их картографирования и районирования. Необходимо более детально рассмотреть особенности формирования климатических поясов на обширных территориях Земли.

Антарктический и арктический климат в основном можно наблюдать в Гренландии и Антарктиде, где показатель средней месячной температуры воздуха фиксируется на отметке ниже 0°С. В зимнее темное время года эти области совсем не получают солнечной радиации, хотя там иногда бывают полярные сияние и непродолжительные сумерки. Даже летом лучи солнца падают на поверхность под крайне ничтожным углом, что значительно снижает эффективность земного прогрева.

Существенная часть поступающей солнечной радиации отражается посредством льда. Как летом, так и зимой на территории самых возвышенных районов Антарктического покрова преобладают крайне низкие температуры. Климат внутренних областей Антарктиды намного холоднее климата Арктики, так как южный материк обладает высотами и большими размерами, а Северный Ледовитый океан постепенно смягчает климат, несмотря на широкое размещение многовековых паковых льдов. Иногда дрейфующий лед начинает таять во время коротких потеплений, а осадки на ледниковых покровах выпадают в виде мелких частичек ледяного тумана и снега.

Субарктический континентальный климат господствует на севере материков: зимой здесь наблюдается сухой арктический воздух, который формируется в районах высокого давления. На восточные территории Канады холодный воздух распространяется из Арктики.

В субарктическом поясе лето довольно теплое, хоть и короткое. Средняя месячная температура летом достигает 18 °С. В течение всего теплого периода выпадает больше половины годовой нормы осадков, составляющей 200-300 мм.

Умеренный климатический пояс формирует ярко выраженные особенности морского климата и характеризуется наличием морских воздушных масс в течение всего года. Данный климат можно наблюдать на территории Атлантического побережья Европы и Тихоокеанского залива. Постоянное перемещение и движение морского воздуха всегда сопровождается большой облачностью, что является причиной затяжной весны. Зима в умеренном поясе достаточно теплая на западных побережьях, так как отепляющее воздействие прилегающих океанов усиливает теплые морские течения. Средняя температура зимой изменяется в направлении с севера на юг от 1 до 7 °С. Указанный вид климата наиболее отчетливо выражен в районах Сибири, севера Монголии и Забайкалья.

Спецификой умеренного континентального климата считается большой годовой размах температуры воздуха, который может достигать 50-60 °С. В зимние месяцы часто происходит частичной замерзание земной поверхности при отрицательном радиационном балансе.

Континентальный субтропический климат характеризуется сезонной сменой тропического и умеренного воздуха. Средний показатель температуры зимой местами ниже нуля, однако на северо-востоке данный коэффициент составляет +5°С. Летом средняя температура воздуха фиксируется в пределах 25-30 °С, при этом дневные максимумы могут превышать отметку в 40-45 °С. В районах Монголии и на севере Китая такая континентальность климата наиболее проявляется в режиме температуры воздуха, где в холодное время года находится центр Азиатского антициклона. В субтропическом поясе резкий перепад температур определяет холодную зиму, прохладное лето и небольшое количество осадков.

Факторы, оказывающие влияние на климат Земли

Климатическая система Земли. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Климатическая система Земли. Автор24 — интернет-биржа студенческих работ

В течение всего своего существования Земля систематически подвергалась разным климатическим процессам и значительным изменениям.

Стоит отметить наиболее значимые факторы, которые оказывают непосредственное влияние на климат нашей планеты. Во-первых, это постоянные тектонические явления, кардинально изменяющие рельеф Земли, нестабильные колебания солнечной активности в разные геологические эпохи, а также эволюция прозрачности воздуха из-за изменения его состава.

От таких природных процессов напрямую зависят крупные преобразования земного климата, которые происходят на протяжении миллионов лет, характеризующиеся масштабным отложениям каменноугольных месторождений. Так, примерно 400 млн. лет назад в результате усиленного горообразования на Земле сформировался умеренный климат и появились высшие растения и подавляющее большинство типов животных на суше.

Во-вторых, это систематические изменения общего числа получаемой планетой солнечной радиации, которая образовывается посредством колебаний размера эксцентриситета земной орбиты, угла наклона земной оси и других факторов. Эти астрономические явления вызывают многолетние климатические колебания с временными периодами в десятки тысяч лет.

В Европе все известные ледниковые покровы эпохи плейстоцена в течение всего существования Земли распространялись медленно и продвижение ледников продолжалось тысячелетиям.

Приблизительно 18 тысяч лет тому назад произошло внезапное потепление климата, а 11 тысяч лет тому назад температура воды во всех океанах стремительно поднялась. Последнее похолодание было зафиксировано 4 тысячи лет тому назад. Этот период обуславливается понижением средней температуры, возникновением огромных горных ледников и уменьшением уровня моря. Большинство геологов отмечают, что сейчас человечество живет в ледниковую эпоху.

За последние 100 лет средний показатель годовой температуры поднялась более чем на 1,1 °С. За первую половину нынешнего столетия редел вечной мерзлоты на территории Сибири постепенно отодвинулась на 50 км к северу. Но такие непродолжительные природные колебания земного климата можно назвать просто обязательной и неотъемлемой особенностью климатического режима, ведь они не оказывают существенного воздействие на жизнедеятельность организмов.

Читайте также: