Энтропия идеального газа реферат

Обновлено: 05.07.2024

Документ из архива "Энтропия", который расположен в категории " ". Всё это находится в предмете "химия" из раздела "", которые можно найти в файловом архиве Студент. Не смотря на прямую связь этого архива с Студент, его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "химия" в общих файлах.

Онлайн просмотр документа "Реферат Энтропия"

Текст из документа "Реферат Энтропия"

Статистический смысл понятия энтропии…………………………4-5

Энтропия как мера степени неопределенности……………………5-6

Понятие об информации.

Негативное влияние информации……………………………………..8

Энергоинформационная (квантово-механическая) мера……..11

Теорема Шеннона о кодировании при наличии помех……………. 11-12

Пример использования энтропии в прогнозировании.

Ее значение для прогнозирования………………………………..12-14

Применение к рискам…………………………………………. …14-15

Предмет работы: энтропия и информация.

Цель работы: изучение энтропии и информации, а так же: какое применение имеют данные понятия к рискам.

В ходе данной работы предстоит решить несколько задач: рассмотрение понятия энтропии и информации, статистического и термодинамического смысла энтропии, так же определение данного понятия, как меры степени неопределенности, теоремы Шеннона о кодировании при наличии помех, использования энтропии в прогнозировании и применения энтропии к рискам.

Данная тема является злободневной, так как широко пользуются в физике, химии, биологии и теории информации. Клаузиузус первым же в 1865 году положил начало применению понятия энтропия на основе анализа тепловых машин. Трудно найти определения более общие для всех наук (не только естественных), чем энтропия и информация. Возможно, это связано с самими названиями. С тех пор энтропия многократно фигурировала в знаменитых спорах. Например, в исторической науке энтропия имеет не малое значение для объяснения экспликации феномена вариативности истории.

Существующему давно понятию “информация” , был придан математически точный смысл К.Шенноном. Это как приводило, так и приводит ко многим недоразумениям, поэтому очень важно уделить данному понятию должное внимание. Никакая информация, никакое знание не появляется сразу - этому предшествует этап накопления, осмысления, систематизации опытных данных, взглядов. Информация является общим компонентом для всех наук, она связывает между собой различные по характеру и содержанию науки, поэтому информационные процессы, которые изучаются информатикой, имеют место во многих предметных областях.

Нельзя ограничивать информационные процессы рамками вычислений и пассивного получения или преобразования информации. Эти процессы сложны и многообразны. Важно научить новое поколение это понимать. Информация не всегда связана с компьютером. Чаще всего именно человек активно ее обрабатывает. Умение в процессе обработки не только анализировать, но и синтезировать из отдельных крупинок информации целое - весьма ценное качество человека будущего.

Я согласна с необходимостью изучения понятия энтропии, синергетики, социальной информатики, эволюции и т.п.

Статистический смысл понятия энтропии.

Вероятностное толкование понятия энтропии было дано в статистической физике Людвигом Больцманом. Введем для начала понятие термодинамической вероятности (W). Термодинамическая вероятность означает число возможных неотличимых микроскопических состояний системы реализующих определенное макроскопическое состояние этой системы.


Б удем рассматривать простую систему всего из двух неотличимых молекул, которые находятся в некотором объеме. Мысленно разделим этот объем на две части, и, пронумеровав молекулы, найдем число способов, которым можно разместить их в этих двух частях.

ы можем увидеть, что всего 4 способа, но два нижних неотличимы, так как молекулы 1 и 2 совершенно одинаковы, и соответствуют одному и тому же макроскопическому состоянию системы. Таким образом, мы имеем три различных макроскопических состояния системы, два из которых (верхних) , реализуемых только одним способом, а третье, нижнее двумя. Число способов-термодинамическая вероятность W. Все четыре способа равновероятны, поэтому большую часть времени система будет находиться в третьем состоянии.

Мы рассматривали только 2 молекулы. Число способов размещения n молекул в двух частях объема равно 2 n , а число способов размещения всех молекул в одной половине объема равно 1. Энтропия термодинамического состояния системы определяется через термодинамическую вероятность:

S = k·lnW, где k – постоянная Больцмана. Данное выражение называется принципом Больцмана [2].

В статистической термодинамике энтропия так же характеризует меру беспорядка и хаоса.

Энтропия как мера степени неопределенности.

Существование неопределённости связано с участием вероятностей в осуществлении событий. Устранение неопределённости есть увеличение вероятности наступления того, что задано как цель. Поэтому вероятности должны участвовать в математической формулировке величины устранённой неопределённости.

Первая удачная попытка реализовать определение информации на такой основе осуществлена в 1928 г. Л. Хартли. Пусть возможно в данных условиях n вариантов некоторого результата. Целью является один из них. Хартли предложил характеризовать неопределённость логарифмом числа n [1].

Количественная мера s полученной информации (устранённой неопределённости)выражается логарифмом отношения вероятностей:


Есть один недостаток-это определение справедливо только в приближении равновероятности всех исходов. Это выполняется далеко не всегда. В пределе в этом определении невероятному исходу приравнивается неизбежный. В 1948 г. это исправил К. Шеннон.


В качестве меры априорной неопределенности системы (или прерывной случайной величины ) в теории информации применяется специальная характеристика, называемая энтропией. Понятие об энтропии является в теории информации основным.

Энтропией системы называется сумма произведений вероятностей различных состояний системы на логарифмы этих вероятностей, взятая с обратным знаком:


. (18.2.2)

Энтропия обладает рядом свойств, которые оправдывают выбор данного понятия в качестве характеристики степени неопределенности. Во-первых, обращение энтропии в нуль объясняется достоверностью состояния системы при других-невозможных. Во-вторых, энтропия о бращается в максимум при равновероятности состояний, а при увеличении числа состояний - увеличивается. Главное: свойство аддитивности.

Энтропию дискретного опыта удобно находить как вес следую­щего графа:

Понятие об информации.

Понятие информации (informatio - разъяснение, осведомление, изложение) – это основное понятие не только в информатике (в информологии - области знаний, изучающей проявление информации, её представление, измерение и т.д.),но и в математике, в физике и др., плохо формализуется и структурируется. Из-за его объёмности, расплывчатости оно часто понимается неточно и неполно не только обучаемыми.

Информация может существовать в пассивной (не актуализированной) и активной (актуализированной) форме.

Информация по отношению к окружающей среде (или к использующей ее среде) бывает трех типов: входная, выходная и внутренняя.

Информация по отношению к конечному результату проблемы бывает: исходная (на начало актуализации этой информации); промежуточная (от начала до завершения актуализации информации); результирующая (после завершения её актуализации).

Информация по изменчивости при её актуализации бывает: постоянная (не изменяемая никогда при её актуализации); переменная (изменяемая при актуализации); смешанная - условно - постоянная (или условно-переменная).

Негативное влияние информации.

Информация может оказаться и вредной, влияющей негативно на сознание, например,воспитывающей восприятие мира от безразличного или же некритического - до негативного, "обозлённого", неадекватного. Информационный поток -достаточно сильный раздражитель.

Пример. Негативной информацией - раздражителем может быть информация о крахе коммерческого банка, о резком росте (спаде) валютного курса, об изменении налоговой политики и др. [5].

Пусть имеется N состояний системы S или N опытов с различными, равновозможными, последовательными состояниями системы. Наименьшее число, при котором это возможно, называется мерой разнообразия множества состояний системы и задается формулой Р. Хартли:

H=klogаN, где k - коэффициент пропорциональности (масштабирования, в зависимости от выбранной единицы измерения меры), а - основание системы меры. Если измерение ведется в экспоненциальной системе, то k=1, H=lnN (нат); если измерение было произведено в двоичной системе, то k=1/ln2, H=log2N (бит); если измерение было произведено в десятичной системе, то k=1/ln10, H=lgN (дит).

Пример. Чтобы узнать положение точки в системе из двух клеток т.е. получить некоторую информацию, необходимо задать 1 вопрос:

("Левая или правая клетка?").

Узнав положение точки, мы увеличиваем суммарную информацию о системе на 1 бит (I=log22). Для системы из четырех клеток необходимо задать 2 аналогичных вопроса, а информация равна 2 битам (I=log24). Если же система имеет n различных состояний, то

максимальное количество информации будет определяться по формуле: I=log2n.

Справедливо утверждение Хартли: если в некотором множестве X=

x2, . xn> необходимо выделить произвольный элемент xi X, то для того, чтобы выделить (найти) его, необходимо получить не менее logan (единиц) информации [4].

Шеннон вывел это определение энтропии из следующих предположений: мера должна быть непрерывной; т. е. изменение значения величины вероятности на малую величину должно вызывать малое результирующее изменение энтропии.

Шеннон показал, что любое определение энтропии, удовлетворяющее этим предположениям, должно быть в форме:

Гост

ГОСТ

Что такое энтропия

Энтропией называют функцию состояния системы (S), дифференциал которой в бесконечно малом обратимом процессе равен:

где $\delta Q$- элементарное тепло, сообщенное системе, T -- температура системы.

По знаку изменения энтропии системы в обратимом процессе можно судить о направлении обмена теплом. С помощью формулы (1) можно найти только изменение энтропии. Отметим, что выражение (1) справедливо только для обратимых процессов.

Определим физический смысл энтропии, обратившись к модели идеального газа. Возьмем один моль газа. Запишем первое начало термодинамики в дифференциальной форме:

\[\delta Q=dU+pdV\ \left(2\right).\]

Разделим правую и левую части выражения (2) на температуру T, получим:

где $с_<\mu V>=\fracR$. Используем уравнение Менделеева -- Клайперона, выразим из него $\frac

$:

Подставим (4) в (3), получаем:

В правой части выражения (5) мы получили полный дифференциал, следовательно, слева должен быть так же полный дифференциал. В выражении (1) это дифференциал назван $dS$.

Применим формулу (5) для вычисления $\triangle S$ в изотермическом процессе. При T=const внутренняя энергия системы не изменяется. Получаем, что

Используем связь объема, который занимает газ в состоянии равновесия с числом пространственных микросостояний частиц газа, которая дается формулой:

где $Г_0$- полное число микросостояний системы, $N$ - число ячеек, в которые можно поместить частицы системы, $n$ - количество частиц. Мы рассматриваем 1 моль газа, следовательно, $n = N_A.$ Поэтому формула (7) для объемов $V_1\ $и $V_2$ из (6) имеет вид:

где $N_1=\frac$, $N_2=\frac,\ l=^м.$ Используем формулу Стирлинга (при больших $n\ n!\approx <\left(\frac\right)>^n$), получаем:

Найдем логарифм от выражения (9), получим:

где $k$ - постоянная Больцмана.

Формула Больцмана

Вид формулы (11) говорит о том, что энтропия S определяется логарифмом числа микросостояний, с помощью которых реализуется макросостояние, которое рассматривается:

Равенство (12) называется формулой Больцмана. Она позволяет сказать, что чем более упорядочена система, тем меньше количество микросостояний, которыми осуществляется макросостояние. Поэтому говорят, что энтропия -- мера упорядоченности системы. В состоянии равновесия энтропия максимальна.

Энтропия величина аддитивная. Изоэнтропийным называют процесс при S=const. Энтропия физически однородной системы является функцией двух независимых параметров состояния (масса считается постоянной).

Задание: Идеальный газ расширяется изотермически, сравните изменение энтропии, если объем изменяется от $V_1$до $V_2$, температура в первом процессе $T_1$ во втором $T_2$ ($T_2>T_1$).

Используя определение энтропии, то, что в идеальном газе процессы обратимы, получим формулу для нахождения $\triangle S$ при $T=const$:

Запишем первое начало термодинамики, учитывая, что при $T=const$ $dU=0$:

\[\delta Q=pdV\ \left(1.2\right).\]

Из уравнения Менделеева -- Клайперона выразим давление:

Подставим (1.3), (1.2) в (1.1), получим:

Ответ: Изменение энтропии в изотермическом процессе не зависит от температуры согласно формуле (1.4), следовательно, изменения энтропии для процессов, заданных в условиях задачи равны.

Готовые работы на аналогичную тему

Задание: На рис 1. представлены два обратимых процесса (I и II). Сравните количество теплоты, которую поглощает система в этих процессах.

Пример 2

За основу решения примем определение энтропии для обратимых процессов:

Выразим $\delta Q\ $из уравнения (2.1), получим:

Для того, чтобы определить количество тепла, подведенного к системе, в процессе необходимо проинтегрировать (2.2).

Используя геометрическое свойство интеграла (о площади) и рассматривая рис.1, можно сделать вывод, о том, что, так как площадь, ограниченная кривой процесса I осью S и изоэнтропами, проведенными перпендикулярно оси S и проходящими через начало и конец процесса, больше, чем площадь для процесса II, то $Q_I>Q_$.

Ответ: Количество теплоты, которую поглощает система в процессе I больше, чем количество теплоты, которое поглощается в процессе II.

С точки зрения термодинамики, деятельность человека, во-первых, имеет направленный, организующий характер, ведь в конечном счете цель человеческой деятельности — превращение окружающего мира в упорядочение работающую систему. Этот процесс организации среды приводит к уменьшению беспорядка и, следовательно, к уменьшению энтропии. Таким образом, деятельность человека, строго говоря, «работает… Читать ещё >

  • механика. молекулярная физика и термодинамика. колебания и волны

Энтропия идеального газа ( реферат , курсовая , диплом , контрольная )

Рассмотрим изменение энтропии идеального газа при изотермическом расширении его от объема V1 до V2.

Согласно формуле (2.38) совершаемая при этом механическая работа.

Энтропия идеального газа.

Энтропия идеального газа.

При изотермическом процессе работа равна теплу, переданному или отданному системой A = ДQ. По определению и, стало быть, энтропия.

Энтропия идеального газа.

Это же выражение можно получить и непосредственно из определения (2.62). Пусть молекула газа находятся в объеме V. Вероятность нахождения одной молекулы в объеме V пропорциональна объему V. Вероятность нахождения N молекул в этом же объеме пропорциональна VN, поскольку эта вероятность представляет собой вероятность N независимых событий. Таким образом, изменение энтропии при расширении газа есть.

Энтропия идеального газа.

что аналогично формуле (2.64).

Энтропия и информация

При рассмотрении процесса передачи тепла от более нагретого к менее нагретому телу было введено понятие энтропии. Этот процесс необратим, и энтропия служит мерой его необратимости. Физическая причина необратимости — переход от состояния, характеризуемого упорядоченным распределением какой-либо физической величины, к состоянию беспорядка, и, следовательно, энтропия — это количественная мера возникающего беспорядка. Последнее обстоятельство позволяет использовать понятие энтропии более широко: для характеристики и анализа любых необратимых процессов в окружающем нас мире, в том числе связанных с деятельностью человека, который является частью природы и часто вносит в нее необратимые изменения.

С технической и научной точки зрения XX век поставил перед человечеством три наиболее значительных проблемы: проблему энергетики, проблему обработки и передачи информации и, наконец, проблему экологии — борьбы с загрязнением окружающей среды. Эти проблемы тесно связаны друг с другом и иногда, успешно решая одну из них, мы ухудшаем состояние двух других. Поэтому необходимо уметь оценивать все стороны того или иного технического решения, количественно рассчитывать не только выигрыш, получаемый от реализации этого решения, но и плату за него. Одной из величин, которые позволяют производить такие расчеты, является энтропия.

Другая проблема, в которой широко используется понятие энтропии, — это проблема экологии. Необратимые изменения в окружающей среде, возникающие в процессе человеческой деятельности, также подчиняются законам термодинамики. Их отличие, правда, состоит в том, что мир, в котором мы существуем, представляет собой не замкнутую, а открытую систему, постоянно взаимодействующую со всей Вселенной путем энергои массообмена. Термодинамика такой открытой системы очень сложна, и поэтому выводы, следующие из рассмотренной термодинамики замкнутой системы, к ней неприменимы. Однако методы рассмотрения, основанные на статистическом подходе, остаются прежними и позволяют сделать важные заключения о процессах, происходящих в живой природе.

В этой статье мы расскажем, что такое энтропия идеального газа и в чем заключается ее физический смысл. Начнем с определения.

Энтропия – это функция состояния системы ( S ) с дифференциалом в бесконечном обратимом процессе, равным d S = δ Q T .

Параметр δ Q обозначает элементарное тепло, которое сообщается системе. Соответственно, T – это общая температура системы.

Если у системы в обратимом процессе изменяется знак энтропии, то это говорит о смене направления обмена теплом. Основная формула дает нам возможность найти, на сколько изменилась величина энтропии. Важно подчеркнуть, что она будет верной только в том случае, если процесс будет обратим.

В чем состоит физический смысл энтропии

Свойства идеального газа таковы, что с их помощью удобно пояснять физический смысл энтропии. Допустим, у нас есть один моль некоторого газа, для которого мы можем записать первое правило термодинамики (в дифференциальной форме):

δ Q = d U + p d V .

Выполним деление левой и правой части выражения на температуру. У нас получится, что:

δ Q T = d U T + p d V T = c μ V d T T + p d V T .

Здесь c μ V = i 2 R . С помощью уравнения Менделеева-Клайперона мы можем выразить из него p T и получить:

p V = R T → p T = R V .

Подставляем это в исходное выражение:

δ Q T = c м V d T T + R d V V = d c м V ln T + R ln V .

Правая часть уравнения у нас получилась полностью дифференциальной, значит, и слева тоже должен быть полный дифференциал. Назовем его d S . С помощью одной из приведенных выше формул вычислим ∆ S в изотермическом процессе. Если температура остается постоянной, то и внутренняя энергия системы также остается прежней. Получаем следующее:

d S = R d ln V → ∫ ( 1 ) ( 2 ) d S = R ∫ ( 1 ) ( 2 ) d ln V = S 2 - S 1 = R ln V 2 V 1 .

Нам известно, что объем, занимаемый газом в равновесном состоянии, связан с количеством пространственных микросостояний частиц формулой Г 0 = N ! N - n ! ( Г 0 – общее количество микросостояний, N – количество ячеек, в которые помещены частица системы, n – общее количество частиц). Поскольку исходный объем идеального газа равен одному молю, то n = N A . Выведем формулу объемов V 1 и V 2 из выражения выше. Она будет иметь следующий вид:

Г 01 = N 1 ! N 1 - N A ! , Г 02 = N 2 ! N 2 - N A ! .

Здесь N 1 = V 1 l 3 , N 1 = V 2 l 3 , l = 10 - 10 м .

Для дальнейших преобразований нам потребуется формула Стирлинга (для больших n , n ! ≈ N 2 N 1 N A = V 2 V 1 N A ):

Г 02 Г 01 ≈ N 2 N 1 N A = V 2 V 1 N A .

Берем логарифм от этого выражения и получаем:

ln V 2 V 1 = 1 N A ln Г 02 Г 01 .

Таким образом, S 2 - S 1 = R ln V 2 V 1 = R N A ln Г 02 Г 01 = k ln Г 02 - k ln Г 01 .

Здесь параметр k обозначает постоянную Больцмана.

Формула Больцмана

Сам вид формулы энтропии говорит нам о том, что она может быть определена через логарифм числа микросостояний, образующих макросостояние, рассматриваемое как S = k ln Г .

Выведенное выше равенство называется формулой Больцмана. Она позволяет сделать вывод, что чем больше упорядоченность системы, тем меньше в ней микросостояний, с помощью которых достигается макросостояние. Поэтому энтропия является мерой упорядоченности системы. Максимальная энтропия достигается в состоянии упорядоченности.

Энтропия является аддитивной величиной. При S = c o n s t процесс называется изоэнтропийным. Если система является физически однородной, то ее энтропия выражается как функция двух независимых параметров состояния (масса считается постоянной).

Условие: есть идеальный газ, в котором происходит изотермическое расширение, при этом объем меняется от V 1 до V 1 . При этом температура системы в первом процессе равна T 1 , а во втором T 2 , причем вторая температура меньше, чем первая. Определите, как будет меняться значение энтропии.

Решение

Зная основное определение энтропии и обратимость процессов в идеальном газе, мы можем использовать формулу для вычисления ∆ S при постоянной температуре.

∆ S = ∫ ( 1 ) ( 2 ) δ Q T = 1 T ∫ ( 1 ) ( 2 ) δ Q .

Идеальный газ в физике – это понятие, подразумевающее, что мы можем пренебречь взаимодействием между его молекулами. Если V = c o n s t , то работа идеального газа равна 0 .

Обратимся к первому правилу термодинамики, зная, что при постоянной температуре d U = 0 :

Выражаем давление из уравнения Менделеева-Клайперона:

p V = ν R T → p = v R T V .

Подставляем в исходную формулу и получаем:

∆ S = 1 T ∫ ( 1 ) ( 2 ) н R T V d V = R T н T ∫ ( 1 ) ( 2 ) d V V = v R ln V 2 V 1

Ответ: поскольку не существует зависимости энтропии от температуры в изотермическом процессе, то в заданных условиях оба процесса будут иметь одинаковую энтропию.

Условие: на рисунке схематично обозначены обратимые процессы. Сопоставьте, какие количества теплоты будут поглощаться системой в ходе обеих процессов.

Формула Больцмана

Решение

Данная задача решается на основе определения энтропии для обратимых процессов.

Выражаем показатель δ Q из уравнения, выведенного ранее, и получаем:

Для определения объема подведенного к системе тепла нам нужно проинтегрировать выражение:

∆ Q = ∫ S 1 S 2 T d S .

Теперь, используя геометрическое свойство интеграла (по площади) и рисунок, мы можем подытожить, что площадь, ограниченная кривой процесса, изоэнтропами, перпендикулярными S , и осью S , больше площади для процесса 2 , значит, Q I > Q I I .

Ответ: в первом процессе поглощается большее количество теплоты, чем в во втором.

Читайте также: