Энергия магнитного поля реферат

Обновлено: 02.07.2024

Если по катушке идет переменный ток, то магнитный поток, пронизы-вающий катушку, меняется. Поэтому возникает ЭДС индукции в том же самом проводнике, по которому идет переменный ток. Это явление называют самоиндукцией.

При самоиндукции проводящий контур играет двоякую роль: по нему протекает ток, вызывающий индукцию, и в нем же появляется ЭДС индукции. Изменяющееся магнитное поле индуцирует ЭДС в том самом проводнике, по которому течет ток, создающий это поле.

В момент нарастания тока напряженность вихревого электрического поля в соответствии с правилом Ленца направлена против тока. Следовательно, в этот момент вихревое поле препятствует нарастанию тока. Наоборот, в момент уменьшения тока вихревое поле поддерживает его.

Это приводит к тому, что при замыкании цепи, содержащей источник постоянной ЭДС, определенное значение силы тока устанавливается не сразу, а постепенно с течением времени (рис. 9). С другой стороны, при отключении источника ток в замкнутых контурах прекращается не мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника, так как изменение тока и его магнитного поля при отключении источника происходит очень быстро.


Явление самоиндукции можно наблюдать на простых опытах. На рисунке 10 показана схема параллельного включения двух одинаковых ламп. Одну из них подключают к источнику через резистор R, а другую — последовательно с катушкой L с железным сердечником. При замыкании ключа первая лампа вспыхивает практически сразу, а вторая — с заметным запозданием. ЭДС самоиндукции в цепи этой лампы велика, и сила тока не сразу достигает своего максимального значения.


Появление ЭДС самоиндукции при размыкании можно наблюдать на опыте с цепью, схематически показанной на рисунке 11. При размыкании ключа в катушке L возникает ЭДС самоиндукции, поддерживающая первоначальный ток. В результате в момент размыкания через гальванометр течет ток (штриховая стрелка), направленный против начального тока до размыкания (сплошная стрелка). Причем сила тока при размыкании цепи превосходит силу тока, проходящего через гальванометр при замкнутом ключе. Это означает, что ЭДС самоиндукции Eis больше ЭДС E батареи элементов.


Индуктивность

Величина магнитной индукции B, создаваемой током в любом замкнутом контуре, пропорциональна силе тока. Так как магнитный поток Ф пропорционален В, то можно утверждать, что

где L – коэффициент пропорциональности между током в проводящем контуре и созданным им магнитным потоком, пронизывающим этот контур. Величину L называют индуктивностью контура или его коэффициентом самоиндукции.

Используя закон электромагнитной индукции, получим равенство:

если считать, что форма контура остается неизменной и поток меняется только за счет изменения тока.

Из полученной формулы следует, что

индуктивность – это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

Индуктивность подобно электроемкости, зависит от геометрических факторов: размеров проводника и его формы, но не зависит непосредственно от силы тока в проводнике. Кроме геометрии проводника, индуктивность зависит от магнитных свойств среды, в которой находится проводник.

Единицу индуктивности в СИ называют генри (Гн). Индуктивность проводника равна 1 Гн, если в нем при изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В:

1 Гн = 1 В / (1 А/с) = 1 В·с/А = 1 Ом·с

Энергия магнитного поля

Найдем энергию, которой обладает электрический ток в проводнике. Согласно закону сохранения энергии энергия тока равна той энергии, которую должен затратить источник тока (гальванический элемент, генератор на электростанции и др.) на создание тока. При прекращении тока эта энергия выделяется в той или иной форме.

Энергия тока, о которой сейчас пойдет речь, совсем иной природы, чем энергия, выделяемая постоянным током в цепи в виде теплоты, количество которой определяется законом Джоуля-Ленца.

При замыкании цепи, содержащей источник постоянной ЭДС, энергия источника тока первоначально расходуется на создание тока, т. е. на приведение в движение электронов проводника и образование связанного с током магнитного поля, а также отчасти на увеличение внутренней энергии проводника, т.е. на его нагревание. После того как установится постоянное значение силы тока, энергия источника расходуется исключительно на выделение теплоты. Энергия тока при этом уже не изменяется.

Выясним теперь, почему же для создания тока необходимо затратить энергию, т.е. необходимо совершить работу. Объясняется это тем, что при замыкании цепи, когда ток начинает нарастать, в проводнике появляется вихревое электрическое поле, действующее против того электрического поля, которое создается в проводнике благодаря источнику тока. Для того чтобы сила тока стала равной I, источник тока должен совершить работу против сил вихревого поля. Эта работа и идет на увеличение энергии тока. Вихревое поле совершает отрицательную работу.

При размыкании цепи ток исчезает и вихревое поле совершает положительную работу. Запасенная током энергия выделяется. Это обнаруживается по мощной искре, возникающей при размыкании цепи с большой индуктивностью.

Найдем выражение для энергии тока I, текущего по цепи с индуктивностью L.

Работа А, совершаемая источником с ЭДС E за малое время Δt, равна:

\(~A = E \cdot I \cdot \Delta t\) . (1)

Согласно закону сохранения энергии эта работа равна сумме приращения энергии тока ΔWm и количества выделяемой теплоты \(~Q = I^2 \cdot R \cdot \Delta t\):

\(~A = \Delta W_m + Q\) . (2)

Отсюда приращение энергии тока

\(~\Delta W_m = A - Q = I \cdot \Delta t \cdot (E - I \cdot R)\) . (3)

Согласно закону Ома для полной цепи

\(~I \cdot R = E + E_\) . (4)

где \(~E_ = - L \cdot \frac\) — ЭДС самоиндукции. Заменяя в уравнении (3) произведение I∙R его значением (4), получим:

\(~\Delta W_m = I \cdot \Delta t \cdot (E - E - E_) = - E_ \cdot I \cdot \Delta t = L \cdot I \cdot \Delta I\) . (5)

На графике зависимости L∙I от I (рис. 12) приращение энергии ΔWm численно равно площади прямоугольника abcd со сторонами L∙I и ΔI. Полное изменение энергии при возрастании тока от нуля до I1 численно равно площади треугольника ОВС со сторонами I1 и LI1. Следовательно,


Энергия тока I, текущего по цепи с индуктивностью L, равна

Энергию магнитного поля, заключенную в единице объема пространства, занятого полем, называют объемной плотностью энергии магнитного поля ωm:

Если магнитное поле создано внутри соленоида длиной l и площадью витка S, тогда, учитывая, что индуктивность соленоида \(~L = \frac<\mu_0 \cdot N^2 \cdot S>\) и модуль вектора индукции магнитного поля внутри соленоида \(~B = \frac<\mu_0 \cdot N \cdot I>\) , получаем

Так как V = S∙l, то плотность энергии магнитного поля

Магнитное поле, созданное электрическим током, обладает энергией, прямо пропорциональной квадрату силы тока. Плотность энергии магнитного поля пропорциональна квадрату магнитной индукции.

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Когда два параллельных проводника подключены к источнику питания таким образом, что через них протекает электрический ток, проводники либо отталкиваются, либо втягиваются, в зависимости от направления тока в них.

Объяснение этого явления возможно с точки зрения возникновения вокруг проводников особого вида материи — магнитного поля.

Силы, с которыми проводники взаимодействуют с током, называются магнитными.

Магнитное поле — особый вид материи, особенностью которого является действие на движущийся электрический заряд, на проводники с током, на тела с магнитным моментом, где сила зависит от вектора скорости заряда, от направления тока в проводнике и от направления магнитного момента тела.

Магнитные полюса взаимодействуют друг с другом: отталкиваются полюса с одним и тем же именем и притягиваются полюса с разными именами. По аналогии с понятием электрического поля, окружающего электрический заряд, вводится идея магнитного поля вокруг магнита.

В 1820 году Эрстед (1777-1851) обнаружил, что магнитная стрелка рядом с электрическим проводником отклоняется при протекании тока вдоль проводника, т.е. вокруг проводника создается магнитное поле с током. Когда мы берем рамку с током, внешнее магнитное поле взаимодействует с магнитным полем рамки и оказывает на нее токопроводящее воздействие, т.е. есть положение рамки, в котором внешнее магнитное поле оказывает на нее максимальное вращательное воздействие, и есть положение, в котором вращательный момент сил равен нулю.

Магнитное поле в любой точке может быть охарактеризовано вектором B, который называется вектором магнитной индукции или магнитной индукции в этой точке.

Магнитная индукция B — это векторная физическая величина, которая является силовой характеристикой магнитного поля в точке. Он равен отношению максимального механического момента сил, действующих на раму, когда ток находится в однородном поле, к произведению силы тока в раме на ее поверхности.

Направление вектора магнитной индукции В — это направление положительного эталона к раме, которая по правилу правого винта подключается к току в раме в механический момент, равный нулю.

Так же, как были показаны линии напряженности электрического поля, показаны и линии индукции магнитного поля. Индукционная линия магнитного поля — это воображаемая линия, касательная которой совпадает с направлением B в точке.

Направления магнитного поля в определенной точке также можно определить как направление, указанное северным полюсом стрелки-компаса, расположенной в этой точке. Предполагается, что индукционные линии магнитного поля направлены от северного полюса к южному.

Направление линий

Направление линий магнитной индукции магнитного поля, создаваемого электрическим током, проходящим по прямому проводнику, определяется правилом сверла или правым винтом. Направление линий магнитной индукции принимается за направление вращения головки винта, которое обеспечит его поступательное движение в направлении электрического тока.

В отличие от линий электростатического поля, которые начинаются с положительного заряда и заканчиваются отрицательным, линии индукции магнитного поля всегда закрыты. Магнитный заряд не обнаруживается так же, как и электрический заряд.

За единицу индукции принимается корпус (1 Тел) — индукция такого однородного магнитного поля, в котором максимальный механический момент сил, равный 1 Н — м, действует на раму площадью 1 м2, на которую протекает ток в 1 А.

Индукцию магнитного поля можно также определить по силе, воздействующей на проводник с током в магнитном поле.

Амперная сила действует на проводник с током в магнитном поле, величина которого определяется следующим выражением.

Направление ампер-силы может быть определено по правилу левой руки: Положим ладонь левой руки так, чтобы линии магнитной индукции проникали в ладонь, четырьмя пальцами в направлении тока в проводнике, затем согнутый большой палец указывает направление амперной силы.

Определите силу, прилагаемую магнитным полем к одной заряженной частице, движущейся в магнитном поле.

Эта сила известна как сила Лоренца (1853-1928). Направление силы Лоренца может быть определено по правилу левой руки: Ладонь левой руки расположена так, чтобы линии магнитной индукции проникали в ладонь, четыре пальца указывают направление положительного заряда, большой изогнутый палец указывает направление силы Лоренца.

Сила взаимодействия двух параллельных проводников, на которых токи I1 и I2 равны.

l является частью проводника, который находится в магнитном поле. Если токи равны в одном направлении, то проводники притягиваются (рис. 60), если в противоположном направлении, то они отталкиваются. Силы, действующие на каждый проводник, одинаковы в модуле, в противоположном направлении. Формула (3.22) является базовой формулой для определения единицы тока 1 ампер (1 А).

Магнитные свойства вещества характеризуются скалярной физической величиной — магнитной проницаемостью, которая показывает, как часто индукция магнитного поля в веществе, полностью заполняющем поле, отличается по модулю от индукции магнитного поля B0 в вакууме.

По своим магнитным свойствам все материалы делятся на надиамагнитные, парамагнитные и ферромагнитные.

Рассмотрим природу магнитных свойств веществ

Электроны в оболочке атомов материи движутся по разным орбитам. Для простоты эти орбиты считаются круговыми, и любой электрон, вращающийся вокруг ядра атома, может рассматриваться как круговой электрический ток. Как круговой ток, каждый электрон генерирует магнитное поле, которое мы называем орбитальным. Кроме того, электрон в атоме имеет собственное магнитное поле, называемое спином.

Если при введении во внешнее магнитное поле с индукцией В =1).

В разных областях индукция магнитных полей имеет разные направления и в большом кристалле они компенсируют друг друга.

Когда ферромагнитный образец помещается во внешнее магнитное поле, границы отдельных доменов смещаются таким образом, что объем доменов, выровненных с внешним полем, увеличивается.

С увеличением индукции внешнего поля В0 увеличивается магнитная индукция намагниченного вещества. При некоторых значениях B0 индукция останавливает сильное увеличение. Это явление называется магнитным насыщением.

Характерной особенностью ферромагнитных материалов является явление гистерезиса, заключающееся в неоднозначной зависимости индукции в материале от индукции внешнего магнитного поля по мере его изменения.

Петля магнитного гистерезиса представляет собой замкнутую кривую (cdc`d`c), выражающую зависимость индукции в материале от амплитуды индукции внешнего поля с периодическими, достаточно медленными изменениями последнего.

Петля гистерезиса характеризуется следующими значениями Bs, Br, Bc. Bs — максимальное значение индукции материала при B0s; Vg — остаточная индукция, равная значению индукции в материале при снижении индукции внешнего магнитного поля с B0s до нуля; -Bs и All — коэрцитивная сила — величина, равная индукции внешнего магнитного поля, необходимой для изменения индукции в материале с остаточной до нуля.

Для каждого ферромагнита существует температура (точка Кюри (J. Curie, 1859-1906)), выше которой ферромагнит теряет свои ферромагнитные свойства.

Существует два способа размагничивания намагниченного ферромагнитного материала: а) нагрев и охлаждение выше точки Кюри; б) намагничивание материала переменным магнитным полем с медленно уменьшающейся амплитудой.

Заключение

Ферромагнитные материалы с низкой остаточной индукцией и коэрцитивной силой называются магнитомагнетиками. Они используются в устройствах, в которых ферромагнитные материалы часто должны быть намагничены (сердечники трансформаторов, генераторы и т.д.).

Для постоянных магнитов используются магнитожесткие ферромагнитные материалы с высоким коэрцитивным сопротивлением.

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Самоиндукция – это значимый частный случай электромагнитной индукции, когда магнитный поток, изменяясь и вызывая ЭДС индукции, создается током в самом контуре.

В случае, когда ток рассматриваемого контура по каким-либо причинам изменен, то имеет место изменение и магнитного поля этого тока, а значит и собственного магнитного потока, проходящего через контур. В контуре создается ЭДС самоиндукции, создавая препятствие для изменений тока в контуре (по правилу Ленца).

Собственный магнитный поток Φ , который проходит через контур или катушку с током, является пропорциональным силе тока I : Φ = L I .

Коэффициент пропорциональности L в формуле Φ = L I есть коэффициент самоиндукции или индуктивность катушки. Единица индуктивности в С И носит название генри ( Г н ) . Индуктивность контура или катушки равна 1 Г н , когда при силе постоянного тока 1 А собственный поток составляет 1 В б : 1 Г н = 1 В б 1 А .

Расчет индуктивности

Для наглядности произведем расчет индуктивности длинного соленоида, который имеет N витков, площадь сечения S и длину l . Соленоид – это цилиндрическая катушка индуктивности, у которой длина много больше диаметра. Магнитное поле соленоида задается формулой:

где I является обозначением тока в соленоиде, n = N e указывает число витков на единицу длины соленоида.

Магнитный поток внутри катушки соленоида, проходящий через все N витков, составляет:

Φ = B · S · N = μ 0 n 2 S l

Таким образом, индуктивность соленоида будет выражена формулой:

L = μ 0 n 2 S · l = μ 0 n 2 V ,

где V = S l – объем соленоида, содержащий магнитное поле.

Результат, который мы получили, не берет в расчет краевых эффектов, а значит он является приближенно верным лишь для катушек достаточной длины. Когда соленоид заполнен веществом, имеющим магнитную проницаемость μ , при заданном токе I индукция магнитного поля будет возрастать по модулю в μ раз, а значит и индуктивность катушки с сердечником тоже получит увеличение в μ раз:

L μ = μ · L = μ 0 · μ · n 2 · V .

ЭДС самоиндукции, которая возникает в катушке при постоянном значении индуктивности, в соответствии с законом Фарадея записывается в виде формулы:

δ и н д = δ L = - ∆ Φ ∆ t = - L ∆ I ∆ t .

ЭДС самоиндукции является прямо пропорциональной индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле выступает носителем энергии. Так же, как заряженный конденсатор обладает запасом электрической энергии, катушка, по виткам которой проходит ток, обладает запасом магнитной энергии. Включив электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, при размыкании ключа будем наблюдать короткую вспышку лампы (рис. 1 . 21 . 1 ). Ток в цепи появится под влиянием ЭДС самоиндукции. Источником энергии, которая будет выделяться в этом процессе электрической цепью, будет служить магнитное поле катушки.

Рисунок 1 . 21 . 1 . Магнитная энергия катушки. В момент размыкания ключа K лампа ярко вспыхнет.

Закон сохранения энергии позволяет говорить, что вся энергия, составляющая запас катушки, будет выделена в виде джоулева тепла. Обозначим как R полное сопротивление цепи, тогда за время Δ t будет выделено количество теплоты Δ Q = I 2 · R · Δ t .

Ток в цепи составляет:

I = δ L R = - L R ∆ I ∆ t

Выражение для Δ Q можем записать так:

∆ Q = - L · I · ∆ I = - Φ ( I ) ∆ I

В данной записи Δ I 0 ; значение тока в цепи постепенно снижается от изначального I 0 до нуля. Полное количество теплоты, которое выделится в цепи, возможно получить, осуществив действие интегрирования в пределах от I 0 до 0 . Тогда получим:

Графический вывод формулы

Существует возможность получить записанную формулу, используя графический метод. Для этого отобразим на графике зависимость магнитного потока Φ ( I ) от тока I (рис. 1 . 21 . 2 ). Полное количество выделившейся теплоты, которое равно изначальному запасу энергии магнитного поля, определится как площадь получившегося на рис. 1 . 21 . 2 треугольника:

Рисунок 1 . 21 . 2 . Вычисление энергии магнитного поля.

В итоге формула энергии W м магнитного поля катушки с индуктивностью L , создаваемого током I , будет записана в виде формулы:

W м = Φ I 2 = L I 2 2 = Φ 2 2 L

Используем выражение, которое мы получили, для энергии катушки к длинному соленоиду с магнитным сердечником. Применяя указанные выше формулы для коэффициента самоиндукции L μ соленоида и для магнитного поля B, создаваемого током I , получим запись:

W м = μ 0 · μ · n 2 · I 2 2 V = B 2 2 μ 0 · μ V

В этой формуле V является объемом соленоида. Полученное выражение демонстрирует нам, что магнитная энергия имеет локализацию не в витках катушки, по которым проходит ток, а распределена по всему объему, в котором возникло магнитное поле.

Объёмная плотность магнитной энергии – это физическая величина, которая равна энергии магнитного поля в единице объема: W м = B 2 2 μ · μ .

В свое время Максвелл продемонстрировал, что указанная формула (в нашем случае выведенная для длинного соленоида) верна для любых магнитных полей.

Гост

ГОСТ

Магнитное поле имеет энергию. Это можно показать экспериментальным путем. Например, рассмотрим процесс убывания силы тока в катушке, если от нее отключить источник тока.

Эмпирическое доказательство наличия энергии магнитного поля

Пусть до размыкания ключа (рис.1(a)) в катушке имеется ток $I$. Данный ток порождает магнитное поле. Если ключ разомкнут, то мы получаем последовательное соединение катушки и сопротивления (рис. 1(b)). Ток в катушке из-за процесса самоиндукции уменьшается постепенно. На сопротивлении при этом выделяется теплота. Но мы помним, что источник отключен, появляется вопрос об источнике энергии, которая тратится на тепло. Поскольку убывает ток и, соответственно, создаваемое им магнитное поле, то можно говорить об энергии тока или энергии магнитного поля, которое он создает.

Рисунок 1. Энергия магнитного поля тока. Автор24 — интернет-биржа студенческих работ

Если магнитное поле создается постоянным током, то понять, где сосредоточена энергия невозможно, поскольку ток создает магнитное поле, а магнитные поля всегда сопровождаются токами.

Рассмотрим переменное магнитное поле в электромагнитной волне. В такой волне магнитные поля могут существовать при отсутствии токов. Известно, что электромагнитные волны переносят энергию, на этом основании сделаем вывод о том, что энергия заключена в магнитном поле.

И так, энергия электрического тока локализована в магнитном поле, то есть в среде, которая окружает этот ток.

Вычисление энергии магнитного поля

По закону сохранения энергии имеем, что в эксперименте рис.1 (a-b), вся энергия магнитного поля в результате выделяется в виде Джоулева тепла на сопротивлении $R$.

Готовые работы на аналогичную тему

Уменьшение энергии магнитного поля можно найти как работу индукционного тока:

$-\Delta E_=A_\left( 1 \right)$.

Конечные величины силы тока, индукции магнитного поля и энергии равны нулю, обозначим начальное значение энергии магнитного поля как $E_m$, соответственно:

Элементарную работу, совершаемую током, найдем как:

$dA_=Ɛ_Idt=-L\, I\fracdt=-L\, IdI\left( 3 \right),$

где $dt$ – время совершения работы током индукции; $Ɛ_=-L\, \frac$ – ЭДС самоиндукции.

Возьмем интеграл от (3) учитывая, что ток изменяется от I до 0:

Выражение (4) является справедливым для всякого контура, она указывает на связь энергии магнитного поля, создаваемого током от силы тока и индуктивности контура.

Сопоставим выражение (4) с выражением для кинетической энергии поступательного движения:

Это сравнение показывает, что индуктивность контура связана с инерционностью контура. Нельзя остановить перемещающееся тело, без превращений энергии, так нет возможности остановить электрический ток без трансформации энергии.

Связь энергии магнитного поля и его основных характеристик

Рассмотрим энергию магнитного поля длинного соленоида. Пусть рассматриваемое нами поле можно считать однородным, и находится оно внутри соленоида. Тогда сила тока, текущая по соленоиду может быть выражена как:

где $H$ – напряженность магнитного поля соленоида; $l$ – длина соленоида; $N$ – число витков соленоида. Для соленоида:

$L=\mu \mu_n^Sl\, \left( 7 \right)$.

где $μ$ – магнитная проницаемость сердечника соленоида; $S$ – площадь сечения соленоида; $n=\frac$.

Принимая во внимание формулы (6) и (7) выражение (4) приведем к виду:

Часто в качестве энергетической характеристики магнитного поля используют такой параметр, как плотность энергии магнитного поля:

Формула (9) применима для любого магнитного поля независимо от его происхождения, она показывает энергию магнитного поля в единице его объема.

Для магнитоизотропной среды мы можем записать:

$\vec=\mu \mu_\vec\left( 10 \right)$.

Тогда уравнение (9) представим как:

Если магнитное поле является неоднородным, то его разбивают на элементарные объемы ($dV$) (малые объемы в которых магнитное поле можно считать однородным). Энергию магнитного поля, которая заключена в этих объемах, считают равной:

$dE_=wdV\left( 12 \right)$.

В таком случае суммарная энергия магнитного поля может быть найдена как:

где интегрирование проводят по всему объему, который занимает магнитное поле.

Ограничения в применении формулы для вычисления плотности энергии магнитного поля

При получении формулы (9) считалось, что:

  1. индуктивность контура, следовательно, магнитная проницаемость вещества не изменяются,
  2. вся энергия источника тока переходит в энергию магнитного поля.

Эти условия справедливы точно, только для вакуума (при $\mu$=1). При помещении контура с током в вещество, следует учитывать:

  • Намагничивание вещества, что ведет к увеличению ее температуры.
  • Объем и плотность вещества в магнитном поле способны меняться даже при неизменной температуре.

Данные нюансы указывают на то, что магнитная проницаемость вещества ($\mu$), которая изменяется при изменении температуры и плотности среды не может быть неизменной при намагничивании.

Кроме того, работа источника ЭДС не целиком переходит в энергию магнитного поля.

Выше сказанное дает основание полагать, что в общем случае формула (2) не выражает в точности работу при намагничивании и выражение (9) не дает объемную плотность энергии магнитного поля в веществе.

Допустим, что изменение объема вещества мало. Температура среды постоянна. Внешняя работа расходуется на рост энергии магнитного поля $E_m$ и на теплоотдачу $(Q)$, для поддержания постоянной температуры. Работа внешних сил, в нашем случае источника тока, которая совершается над телом при квазистатическом изотермическом процессе, будет равна приращению свободной энергии тела. Получается, что формула (9) отражает часть свободной энергии намагниченного вещества, которая связана с магнитным полем.

Если количества теплоты ($Q$) в сравнении с энергией поля $E_m$ мало, тогда выполняется равенство (2).

Условие неизменности магнитной проницаемости вещества, означает, что справедлива линейная зависимость (10). Даная зависимость выполняется для вакуума. Ее можно применять для парамагнетиков и диамагнетиков. Но для ферромагнетиков связь между магнитной индукцией и напряженностью магнитного поля является сильно нелинейной даже при $T=const$, поэтому выражение (9) для этих веществ не применяется.

Читайте также: