Элементы теории вероятности реферат

Обновлено: 02.07.2024

Цель изучения - развить навыки составления и анализа математических моделей несложных задач прикладного характера, связанных со случайными явлениями, научить способам вычисления вероятностей простых и сложных событий, методам оценки неизвестных параметров на основе экспериментальных данных, методам проверки гипотез и правилам принятия решений.

Данная тема включает в себя:

· Основные понятия и определения.

· Действия над случайными событиями.

· Классическое определение вероятности.

· Свойства вероятностей.

· Случайные величины.

Изучив эту тему, студент должен:

Знать:

· правила вычисления вероятностей случайных событий;

· способы определения и построения законов распределения вероятностей случайных величин и вычисления их числовых характеристик.

Уметь:

· вычислять вероятности простых и сложных событий;

· находить необходимые характеристики случайных величин по известным законам.

При изучении темы необходимо:

В розыгрыше кубка страны по футболу берут участие 17 команд. Сколько существует способов распределить золотую, серебряную и бронзовую медали?

Поскольку медали не равноценны, то количество способов распределить золотую, серебряную и бронзовую медали среди команд будет равно числу размещений из 17-ти элементов по 3, т.е. = 4080.

Произведено три выстрела по мишени. Рассматриваются такие элементарные события: А – попадание в мишень при i-том выстреле; – промах по мишени при i-том выстреле. Выразить через А и следующие события:

А – все три попадания; В – ровно два попадания; С – все три промаха; D – хотя бы одно попадание; Е – больше одного попадания; F – не больше одного попадания.

А – все три попадания, т.е. совместное появления трех событий А1, А2 и А3

В – ровно два попадания, т.е. два попадания и один промах

С – все три промаха, т.е. совместное появления трех событий 1 и 2, 3

D – хотя бы одно попадание, т.е. или одно попадание, или два попадания или три попадания

Е – больше одного попадания, т.е. или два попадания или три попадания

F – не больше одного попадания, т.е. одно попадание и два промаха

Игральный кубик бросают два раза. Описать пространство элементарных событий. Описать события: А – сумма появившихся очков равна 8; В – по крайней мере один раз появится 6.

Будем считать пространством элементарных событий множество пар чисел (i, j), где i (соответственно j) есть число очков, выпавших при первом (втором) подбрасывании, тогда множество элементарных событий будет таким:

А – сумма появившихся очков равна 8. Этому событию благоприятствуют такие элементарные события А=.

В – по крайней мере один раз появится 6. Этому событию благоприятствуют такие элементарные события В=.

В вазе с цветами 15 гвоздик: 5 белых и 10 красных. Из вазы наугад вынимают 2 цветка. Какова вероятность того, что эти цветки: а) оба белые; б) оба красные; в) разного цвета; г) одного цвета.

а) Пусть событие А состоит в том, что оба вынутых из вазы цветка белые.

Количество возможных способов взять 2 цветка из 15-ти равно , т.е. = 7×15 = 105, а количество возможных способов взять 2 белых цветка из 5-ти белых равно = 2×5 = 10. Тогда по классическому определению вероятность события А равна

б) Пусть событие В состоит в том, что оба вынутых из вазы цветка красные.

Количество возможных способов взять 2 цветка из 15-ти равно , т.е. = 7×15 = 105, а количество возможных способов взять 2 красных цветка из 10-ти красных равно = 9×5 = 45. Тогда по классическому определению вероятность события В равна

в) Пусть событие С состоит в том, что оба вынутых из вазы цветка разного цвета, т.е. один белый и один красный.

Количество возможных способов взять 2 цветка из 15-ти равно , т.е. = 7×15 = 105, а количество возможных способов взять 1 красный цветок из 10-ти красных И 1 белый цветок из 5-ти белых равно * = 10×5 = 50. Тогда по классическому определению вероятность события С равна

г) Пусть событие D состоит в том, что оба вынутых из вазы цветка одного цвета, т.е. или оба белые (событие А) или оба красные (событие В). По теореме сложения независимых событий вероятность события D будет равна

Р(D) = Р(А или В) = Р(А) + Р(В) = 0,095 + 0,43 = 0,525

Решение:(для пунктов а) и б) одинаково)

Вероятность того, что в течении одной смены возникнет поломка станка равна 0,05. Какова вероятность того, что не возникнет ни одной поломки за три смены?

Пусть событие А состоит в том, что в течении одной смены возникнет поломка станка. По условию задачи вероятность этого события равна Р(А) = 0,05. Противоположное событие состоит в том, что в течении одной смены поломка станка НЕ возникнет. Вероятность противоположного события

Р( ) = 1– Р(А) = 1 – 0,05 = 0,95.

Искомая вероятность равна

Р(В) = Р( и и ) = Р( )×Р( )×Р( )= 0,95×0,95×0,95 = 0,95 3 = 0,86

Студент пришел на зачет зная только 30 вопросов из 50. Какова вероятность сдачи зачета, если после отказа отвечать на вопрос преподаватель задает еще один?

Вероятность того, что преподаватель задал студенту вопрос, на который он не знал ответа (событие А) равна Р(А) = . Найдем вероятность того, что на второй вопрос преподавателя студент знает ответ (событие В) при условии, что ответа на первый вопрос студент не знал. Это условная вероятность, так как событие А уже произошло. Отсюда РА(В) = . Искомую вероятность определим по теореме умножения вероятностей зависимых событий.

Поскольку количество испытаний невелико (n = 8), то для нахождения вероятности того, что событие А появится точно k = 3 раза воспользуемся формулой Бернулли:

, где q = 1 – p

По условию задачи вероятность дождя равна p = 12/30 = 6/15, (в сентябре 30 дней).

Значит вероятность ясного дня равна q = 1 – p = 1 – 6/15 = 9/15.

С помощью наблюдений установлено, что в некоторой местности в сентябре в среднем бывает 25 дней без дождя. Какова вероятность того, что 1-го и 2-го сентября дождя не будет?

Вероятность того, что 1-го сентября дождя не будет (событие А) равна Р(А) = . Найдем вероятность того, что и 2-го сентября дождя не будет (событие В) при условии, что 1-го сентября дождя не было. Это условная вероятность, так как событие А уже произошло. Отсюда РА(В) = . Искомую вероятность определим по теореме умножения вероятностей зависимых событий.

Число m0 называется наивероятнейшим в n независимых испытаниях, если вероятность наступления события А при этом числе наибольшая.

n·pqm0n·p + p

По условию задачи 8 вероятность дня без дождя равна p = 9/15, значит вероятность дождливого дня равна q = 6/15. Составим неравенство

17,6 ≤m0≤18,6 Þm0 = 18

Наивероятнейшее число дней без дождя равно 18. Поскольку количество испытаний велико (n = 30) и нет возможности применить формулу Бернулли, то для нахождения вероятности наивероятнейшего числа дней без дождя воспользуемся локальной теоремой Лапласа:

и j(х) – диф. функция Лапласа –Гаусса

Определим аргумент функции Лапласа-Гаусса х: .

По таблице значений функции Гаусса определяем, что j(0) = 0,3989. Теперь

Вероятность получения удачного результата при проведении сложного химического опыта равна 3/4. Найти вероятность шести удачных результатов в 10-ти опытах.

Поскольку количество испытаний невелико (n = 10), то для нахождения вероятности того, что событие А появится точно k = 6 раз воспользуемся формулой Бернулли:

, где q = 1 – p

По условию задачи p = 3/4, значит q = 1 – p = 1 – 3/4 = 1/4.

Вероятность рождения мальчика равна 0,515, девочки – 0,485. В некоторой семье шестеро детей. Найти вероятность того, что среди низ не больше двух девочек.

Пусть событие А состоит в том, что в семье, где шестеро детей, не больше двух девочек, т.е. в указанной семье или одна девочка или две девочки или все мальчики. Поскольку количество испытаний невелико (n = 6), то для нахождения вероятности события А воспользуемся формулой Бернулли:

, где q = 1 – p

По условию задачи вероятность рождения девочки равна p = 0,485 и вероятность рождения мальчика равна q = 0,515, тогда искомая вероятность будет равна

Что вероятнее: выиграть у равносильного противника (включая ничью) три партии из пяти или пять из восьми?

Вероятность выиграть у равносильного противника равна p = 0,5, соответственно вероятность проиграть у равносильного противника равна q = 1 – p = 1 – 0,5 = 0,5.

Найдем и сравним такие вероятность Р5(3) и Р8(5)

Поскольку количество испытаний невелико (n = 5 и n = 8), то для нахождения вероятности того, что событие А появится точно k = 3 раза (k = 8 раз) воспользуемся формулой Бернулли:

, где q = 1 – p

Сравнивая полученные значения вероятностей Р5(3) = 0,3125 > Р8(5) = 0,2186 получаем, что вероятнее выиграть у равносильного противника три партии из пяти чем пять из восьми.

Из партии, в которой 25 изделий, среди которых 6 бракованных, случайным образом выбрали 3 изделия для проверки качества. Найти вероятность того, что: а) все изделия годные, б) среди выбранных изделий одно бракованное; в) все изделия бракованные.

а) Пусть событие А состоит в том, что все выбранные изделия годные. Количество возможных способов взять 3 изделия из 25-ти равно , т.е. = 2300, а количество возможных способов взять 3 годных изделия из (25 – 6) = 19-ти годных равно = 1938. Тогда по классическому определению вероятность события А равна

б) Пусть событие В состоит в том, что среди выбранных изделий одно бракованное, т.е. одно бракованное и два годных. Количество возможных способов взять 3 изделия из 25-ти равно = 2300, а количество возможных способов взять одно бракованное изделие из 6-ти бракованных И два годных изделия из (25 – 6) = 19-ти годных равно * = 6×153 = 738. Тогда по классическому определению вероятность события В равна

в) Пусть событие С состоит в том, что все выбранные изделия бракованные. Количество возможных способов взять 3 изделия из 25-ти равно = 2300, а количество возможных способов взять 3 бракованные изделия из 6-ти бракованных равно = 20. Тогда по классическому определению вероятность события С равна

В условиях задачи 13 найти наивероятнейшее число удачных опытов и вероятность его появления. (Задача 11. Вероятность получения удачного результата при проведении сложного химического опыта равна 3/4. Найти вероятность шести удачных результатов в 10-ти опытах).

Число m0 называется наивероятнейшим в n независимых испытаниях, если вероятность наступления события А при этом числе наибольшая.

n·pqm0n·p + p

По условию задачи 11 вероятность проведения удачного опыта равна p = 3/4, значит вероятность неудачного опыта равна q = 1/4. Количество опытов равно п = 10. Составим неравенство

7,25 ≤m0≤8,25 Þm0 = 8

Наивероятнейшее число удачных опытов равно 8. Поскольку количество испытаний невелико (n = 10), то для нахождения вероятности того, что событие А появится точно k = 8 раз воспользуемся формулой Бернулли:

, где q = 1 – p

В белом ящике 12 красных и 6 синих шаров. В черном – 15 красных и 10 синих шаров. Бросают игральный кубик. Если выпадет количество очков, кратное 3, то наугад берут шар из белого ящика. Если выпадет любое другое количество очков, то наугад берут шар из черного ящика. Какова вероятность появления красного шара?

Возможны две гипотезы:

Н1 – при бросании кубика выпадет количество очков, кратное 3, т.е. или 3 или 6;

Н2 – при бросании кубика выпадет другое количество очков, т.е. или 1 или 2 или 4 или 5.

По классическому определению вероятности гипотез равны:

Поскольку гипотезы составляют полную группу событий, то должно выполняться равенство

Пусть событие А состоит в появлении красного шара. Условные вероятности этого события зависят от того, какая именно гипотеза реализовалась, и составляют соответственно:

Тогда по формуле полной вероятности

вероятность события А будет равна:

Вероятность появления события А по крайней мере один раз в 5-ти независимых испытаниях равна 0,9. Какова вероятность появления события А в одном испытании, если при каждом испытании она одинаковая?

Воспользуемся формулой для вероятности появления хотя бы одного события

Р(А) = 1 – q n

По условию задачи Р(А) = 0,9 и n = 5. Составим уравнение

0,9 = 1 – q 5

q 5 = 1 – 0,9 = 0,1

= 0,63 – вероятность Не появления события А в одном испытании, тогда

р = 1 – q = 1 – 0,63 = 0,37 – вероятность появления события А в одном испытании.

Из каждых 40-ка изделий, изготовленных станком-автоматом 4 бракованных. Наугад взяли 400 изделий. Найти вероятность того, что среди них 350 без дефекта.

Поскольку количество испытаний велико (n = 400) то для нахождения вероятности того, что событие А появится ровно k = 350 раз воспользуемся локальной теоремой Лапласа:

и j(х) – диф. функция Лапласа –Гаусса

По условию задачи вероятность бракованного изделия равна q = 4/40 = 0,1, Значит вероятность изделия без дефекта равна р = 1 – q = 1 – 0,1 = 0,9.

Определим аргумент функции Лапласа-Гаусса х: .

Вероятность присутствия студента на лекции равна 0,8. Найти вероятность того, что из 100 студентов на лекции будут присутствовать не меньше 75 и не больше 90.

Поскольку количество испытаний велико (n = 100), то для нахождения вероятности того, что событие А появится от 75 до 90 раз воспользуемся интегральной теоремой Лапласа:

и Ф(х) – интегральная функция Лапласа

Определим аргументы интегральной функции Лапласа х1 и х2:

Учитывая что функция Ф(х) является Нечетной, т.е. Ф(–х) = – Ф(х) по таблице значений интегральной функции Лапласа находим:

Ф(–1,25) = – Ф(1,25) = –0,39435 и Ф(2,5) = 0,49379, тогда

Р100(75 £k£ 90) = Ф(х2) – Ф(х1) = Ф(2,5) – Ф(–1,25) = 0,49379 +0,39435 = 0,888.

Сколько раз необходимо кинуть игральный кубик, чтобы нивероятнейшее число появления тройки равнялось 55?

Число m0 называется наивероятнейшим в n независимых испытаниях, если вероятность наступления события А при этом числе наибольшая.

n·pqm0n·p + p

По условию задачи т0 = 55, вероятность появления тройки равна p = 1/6, значит вероятность НЕ появления тройки равна q = 5/6. Составим неравенство

получили линейную систему неравенств

п – 5 ≤330 п ≤335

п + 1 ≥ 330 п ≥ 329

Таким образом получили, что игральный кубик необходимо кинуть от 329 до 335 раз.

действие событие величина

Ткач обслуживает 1000 веретен. Вероятность обрыва нитки на одном из веретен в течении одной минуты равна 0,005. Найти вероятность того, что в течении одно минуты обрыв произойдет на 7 веретенах.

Поскольку количество испытаний велико (n = 1000), а вероятность отдельного испытания очень мала (р = 0,005) то для вычисления искомой вероятности воспользуемся формулой Пуассона:

Параметр распределения l = 1000 ×0,005 = 5, тогда искомая вероятность равна

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Теория вероятности — это отрасль математики, в которой исследуются законы случайных явлений: Случайные события, случайные переменные, их свойства и операции над ними.

Появление теории вероятностей как науки относится к средневековью и к первым попыткам математического анализа азартных игр (орлы, кости, рулетка). Первоначально его базовые понятия не имели строго математической формы, их можно было трактовать как некие эмпирические факты, как свойства реальных событий, и они формулировались в визуальных представлениях. Яков Бернулли внес важный вклад в теорию вероятности: он предоставил доказательства закона больших чисел в простейшем случае независимых тестов. В первой половине 19 века теория вероятности начала применяться для анализа ошибок наблюдения; Лаплас и Пуассон доказали первые предельные теоремы. Во второй половине XIX века основной вклад в это дело внесли русские ученые П. Л. Чебышев, А. А. Марков и А. М. Ляпунов. В то время был доказан закон больших чисел, центральная предельная теорема и теория цепей Маркова. Современный тип теории вероятностей был выигран на основе аксиоматизации, предложенной Колмогоровым Андреем Николаевичем. В результате теория вероятностей приняла строгую математическую форму и в конечном итоге стала восприниматься как один из разделов математики.

Теория вероятности возникла как наука из убеждения, что массовые случайные события основываются на детерминистических законах. Теория вероятности исследует эти законы.

Тест представляет собой выполнение определенного набора условий, которые могут быть воспроизведены неограниченное количество раз. В этом случае набор условий включает случайные факторы, реализация которых приводит к неоднозначности результата теста для каждого теста.

Достоверный (всегда результат теста).

Невозможно (никогда не бывает).

Столь же вероятно (та же вероятность возникновения), менее вероятно и более вероятно.

Случайность (может произойти или не произойти в результате теста).

Например: Когда кубик брошен, невозможное событие — кубик стоит на краю, случайное событие — падение с любого края, случайность — кубик стоит на прямой кромке.

Определенный результат теста называется элементарным событием.

В результате проверки происходят только элементарные события.

Сочетание всех возможных, различных, специфических результатов испытаний называется элементарным пространством событий.

Набор элементарных событий — это пространство элементарных событий.

Сложное событие — это произвольное подмножество пространства элементарных событий.

Сложное тестовое событие возникает тогда и только тогда, когда тест приводит к элементарному событию, принадлежащему сложному событию.

Таким образом, если в результате теста может произойти только одно элементарное событие, то все сложные события, составляющие эти элементарные события, происходят.

Например: Тест — это бросок кубиков.

Введите следующие описания:

  • Р — случайное событие;
  • Рик — событие, заслуживающее доверия;
  • U — невозможное событие.

Классическое определение вероятности

Если пространство элементарных событий состоит из их конечного числа, то все элементарные события равны, т.е. ни одно из них не может быть предпочтительным перед тестом, поэтому их можно считать равными.

Если элементарные события равны и, следовательно, равны, то вероятность наступления произвольного события равна доле, числитель которой равен количеству элементарных событий, содержащихся в спецификации, и знаменателем которой является общее количество элементарных событий. Такое определение вероятности впервые дано в работах французского математика Лапласа и считается классическим.

Вероятное событие находится между нулем и единицей.

2o P(E)=1 Вероятность надежного события равна единице.

3o P(U)=0 Вероятность невозможного события равна нулю.

Рассмотрим случайный эксперимент, который может закончиться одним из возможных исходов, все из которых одинаково вероятны.

Бросаются сразу три монеты.

Определите вероятность этого:

  • 3 орла выпадут;
  • 2 орла и 1 хвост выпадут
  • две балки и выпал орел
  • Три батончика выпадают.

Частота наступления события

Пространство элементарных событий должно естественным образом состоять из m элементарных событий. В этом случае в качестве возможных результатов тестирования рассматриваются многие подмножества пространства элементарных событий и невозможное событие V.

Назовем систему этих событий F. Возьмем случайное событие A F. Выполним серию тестов в количестве n, где n — это количество тестов в каждом из которых произошло событие A.

Частота наступления события A в n экспериментах — это отношение числа наступлений этого события к общему числу проведенных экспериментов.

Разрешите результат теста для случая А. Подводя итог, можно сказать, что в этом тесте произошло событие Аи. Так как все события несовместимы парами, это означает, что никакое другое событие Aj (i j ) не может произойти в этом тесте.

С помощью теории вероятности описываются только те те тесты, для которых сделано следующее предположение: Для каждого события А частота, с которой это событие происходит в бесконечной серии тестов, имеет один и тот же предел, который называется вероятностью наступления события А.

Поэтому, когда мы рассматриваем вероятность возникновения произвольного события, то понимаем это число следующим образом: Это частота возникновения события в бесконечной (достаточно длинной) серии тестов.

К сожалению, попытка определить вероятность как предел частоты не увенчалась успехом, а количество тестов нацелилось на бесконечность. Хотя американский ученый Мизес создал теорию вероятности на основе этого определения, она не была принята из-за большого количества внутренних логических противоречий.

В повседневной жизни мы часто сталкиваемся с проблемами, для которых есть не одно, а несколько различных решений. Для принятия правильных решений очень важно не пропустить ни одного из них. Для этого необходимо просмотреть все возможные варианты или, по крайней мере, рассчитать их количество. Такие задачи называются комбинаторными.

Но прежде чем мы обратимся к задаче, мы должны познакомиться с комбинаторными элементами.

Однако существует единый подход к решению разнообразных комбинаторных задач путем создания специальных правил. Внешне эта схема напоминает дерево, отсюда и название — дерево возможных вариантов. Если дерево построено правильно, то ни один из возможных вариантов решения не теряется.

Рассмотрим это в качестве примера для следующей задачи: Сколько двухзначных чисел я могу сформировать из цифр 1, 4 и 7?

Может существовать огороженная территория G, в которой находится территория g. Точка А спонтанно расположена в области G. Эта точка может войти в область g. В этом случае вероятность того, что точка A войдет в область g, определяется по формуле.

Вероятности, определяемые измерениями, называются геометрическими.

Существует целый ряд задач, где, как говорят математики, определение вероятности случайного события может быть подведено по-разному по геометрическим соображениям.

Операции по событиям

С-событие называется суммой A+B, если оно состоит из всех элементарных событий, которые содержатся как в A, так и в B

В этом случае, если элементарное событие происходит как в A, так и в B, то оно происходит один раз в C. В результате теста возникает событие С, когда событие происходит либо в A, либо в B. Сумма любого количества событий состоит из всех элементарных событий, содержащихся в одном из Ай, i=1, …, m.

Событие С называется растением А и В, если оно состоит из всех элементарных событий, которые содержатся как в А, так и в В. Работа с любым количеством событий — это событие, состоящее из элементарных событий, которые содержатся во всех Ai, i=1, …, m.

Различие событий A-B называется событием C, которое состоит из всех элементарных событий, входящих в A, но не входящих в B.

Событие называется противоположным событию A, если оно соответствует двум характеристикам.

События A и B называются несовместимыми, если они никогда не могут произойти в результате одного и того же теста и если они не имеют одинаковых элементарных событий.

События A и B считаются независимыми, если вероятность наступления одного события не зависит от наступления другого.

Заключение

Теория вероятности применялась не только в математике, но и в таких науках, как физика и статистика.

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Цель работы: донести до слушателя основные сведения об этой теории, показать, как правильно производить расчёты, как нужно рассуждать при решении задачи.

Задачи работы: рассказать о принципах теории, формулах вычисления вероятностей, интересных фактах и практическом применении.

Проблемные вопросы:

Чем занимается теория вероятностей?

Каковы её основные принципы?

С какими другими разделами математики граничит?

Где она применяется?

Актуальность исследования состоит в том, что теория вероятностей имеет практическое применение, в некоторых случаях может встретиться в обыденных ситуациях, таких как участие в лотерее, розыгрыш призов и пр.

Объект исследования: теория вероятностей как раздел математики.

Методы исследования: просмотр сайтов в Интернете, чтение книги, применение собственных знаний, полученных ранее.

Определение

Теория вероятностей – один из разделов математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр, таких как кости, рулетка и др.

Исследуя прогнозирование выигрыша в азартных играх, Блез Паскаль и Пьер Ферма открыли первые вероятностные закономерности, возникающие при бросании костей. Под влиянием поднятых и рассматриваемых ими вопросов решением тех же задач занимался и Христиан Гюйгенс. При этом с перепиской Паскаля и Ферма он знаком не был, поэтому методику решения изобрёл самостоятельно. Также важный вклад в развитие теории вероятностей внесли Якоб Бернулли, Пьер-Симон Лаплас, Симеон Пуассон и некоторые другие. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики.

hello_html_m2015dce5.jpg

Якоб Бернулли Пьер-Симон Лаплас Симеон Пуассон

27 декабря 1654 - 16 августа 1705 23 марта 1749 — 5 марта 1827 21 июня 1781, — 25 апреля 1840

Суть этого раздела математики

Теория вероятностей в общем виде показывает, каковы шансы определенного случая (на математическом языке такие случаи называются благоприятными исходами ). Например, у нас есть монета с орлом и решкой. Какова вероятность того, что, подкинув монету, выпадет орёл? Очевидно, что ½. А какова вероятность того, что выпадет решка? Опять же, ½. Как видим, шансы выпадения орла и решки равны. В таком случае говорят, что события равновероятны. В общем виде равновероятными событиями называются такие события, которые могут случиться с одинаковой вероятностью. Вот еще пример: игральная кость. Если она является правильной фигурой, и её грани отличаются лишь количеством очков, то вероятность выпадения любого числа равна 1/6.

hello_html_77baf36e.jpg

Результаты представлены в таблице:

Как мы знаем, ½ = 50%. Из таблицы видно, что с бОльшим числом бросков отношение выпавших решек и орлов к общему количеству бросков стремится к 50%, то есть к ½.

Комбинаторика и формулы

Определение комбинаторики как раздела математики довольно трудное для понимания, поэтому приведу несколько примеров, чтобы стало понятно, чем же она занимается. Также разберём некоторые формулы, которые помогут нам в дальнейшем.

Пример 1. У нас есть 2 книги, назовём их А и В. Сколько существует способов их размещения по порядку вертикально на пустой полке? Очевидно, можно поставить сначала А, потом В. Или же сначала В, потом А. А еще как-то можно? Нет, больше никак. Значит, существует 2 способа их размещения. Идём дальше.

Пример 3. В забеге участвуют 5 спортсменов. Сколько существует вариантов первых пришедших к финишу троек? Будем считать, что никакие 2 и более участников не пришли одновременно, и все дошли до финиша.

Где А – искомое число благоприятных исходов; n 1, n 2, n k – количество возможных отдельных событий (под каждым множителем стоит отдельное событие).

По формуле получаем: А (троек первых мест) = 5*4*3 = 60

В приведённых выше примерах порядок участников на пьедестале имел значение. Нам было важно, кто будет первым, вторым и третьим. Однако существуют ситуации, когда порядок выбора не важен, и на эти ситуации тоже есть своя формула. Снова для начала рассмотрим пример, затем – формулу.

hello_html_m49f0634a.jpg

Сократим числитель и знаменатель, получим 14*13*12*11 / 4*3*2*1

Продолжим преобразование: 7*13*11 = 1001

Как видим, число получилось намного меньше того, которое мы рассчитали вначале. Поэтому, следует различать случаи в комбинаторике, которые называются РАЗМЕЩЕНИЯМИ и СОЧЕТАНИЯМИ. Размещение требует учёта порядка каких-либо предметов (под этим словом будем понимать элементы множества , множество же – совокупность каких-либо предметов, объединённых общим свойством ); сочетание не требует порядка. Как видно из прошлого примера, это очень важно понимать. А чтобы выяснить, какой из этих случаев содержится в задаче, нужно просто немного подумать, логически поразмышлять: нужно ли учитывать порядок или нет ?

А теперь перейдём к формуле. Приводить ещё один пример не стану, остановимся на этом.

В общем виде выражение выглядит так: 14*13*12*…*5 / 10*9*8*…*1

В некоторых случаях удобно использовать факториал – произведение всех натуральных чисел от 1 до n включительно. Записывается факториал с помощью значка восклицательного знака (!). Например, факториал числа 4 пишется так: 4!. Применим это и к нашему выражению: 14*…*5/10!

Итак, чем же занимается комбинаторика? Комбинаторика занимается вычислением (нахождением) возможных исходов события. Это может помочь находить вероятности каких-либо исходов.

Как подсчитать вероятность?

Для того чтобы найти вероятность какого-либо случая, нужно тоже применять некоторые формулы. Но для начала разберём свойства в теории вероятностей, принимаемые как аксиомы.

1) Любая вероятность, принадлежащая данному множеству, больше либо равна 0.

2) Вероятность достоверного события равна 1.

3) Для совокупности несовместных событий из множества исходов случайного эксперимента справедливо следующее равенство:

где P ( S k ) – вероятность какого-либо события, S 1 , S 2 , S n – события какого-либо эксперимента.

Разберём эти аксиомы.

Первая гласит о том, что любая вероятность события либо равна 0, то есть событие невозможно, либо больше 0, т.е. событие может случиться.

Вторая говорит о том, что событие, которое произойдёт в абсолютно всех экспериментах, имеет вероятность, равную 1.

Третья аксиома о том, что вероятность некоторых несовместных событий (т.е. тех, которые не могут случиться в одних и тех же экспериментах одновременно) можно определить как сумму отдельных вероятностей этих событий. Например, вероятность того, что, подбросив игральный кубик, выпадет либо 1 очко, либо 2 очка, равна сумме отдельных вероятностей этих исходов:

P (1 или 2 очка) = P (1 очко) + P (2 очка) = 1/6 + 1/6 = 1/3

Исходя из этих аксиом, можно найти и другие важные свойства:

1) Вероятность какого-либо события равна 1 минус вероятность противоположного ему события:

где S a и S b – противоположные события.

2) Вероятность любого события меньше либо равна 1, так как достоверное событие обладает наибольшей вероятностью по определению, а оно равно 1.

3) Вероятность невозможного события равна 0:

P ( ) = 0,

где - невозможное событие.

4) Для двух произвольных событий определённого множества исходов какого-либо эксперимента справедливо следующее равенство:

где S 1 и S 2 – произвольные события, P ( S 1 ∪ S 2 ) – вероятность того, что произойдёт либо S 1 , либо S 2, P ( S 1 ⋂ S 2 ) – вероятность того, что эти два события произойдут одновременно.

Теперь, зная аксиомы и свойства событий и вероятностей, перейдём к рассмотрению примеров и формул, с помощью которых мы будем находить искомые вероятности.

hello_html_m377de328.jpg

Пример 1. Снова возьмём игральный кубик. Вероятность того, что выпадет 1 очко (равно как и 2 или 3 или 4 и т.д.), равна 1/6. Как мы нашли это число? Разделили число благоприятных исходов (а именно 1) на число всех возможных исходов (их 6). Чтобы понять, почему производились такие расчёты, давайте снова нарисуем чертёж. Мы знаем, что все исходы броска кубика равновероятны. Помним, что вероятность достоверного события равна 1. Получается, нахождение вероятности сводится к решению уравнения: 6х=1, где х – искомая вероятность. Отсюда х = 1/6.

Чтобы не прибегать к составлению уравнения и решению его, выведем формулу для подсчёта вероятности:

где n – число благоприятных исходов

m – число всех возможных исходов.

ак видим, нам нужно найти вероятность выпадения ОДНОЙ из ВСЕХ сторон, т.е. число благоприятных исходов равно 1, всех возможных – 6 (так как сторон в кубике 6). Отсюда получаем ту же самую вероятность, 1/6.

Если мы захотим рассчитать вероятность для выпадения либо 1, либо 2, либо 3 очков, можем сделать это с помощью тех же формул:

2) 1/6 + 1/6 + 1/6 = 1/2

Напомню, формулы из 3-ей аксиомы действует в том случае, если события НЕ могут произойти одновременно.

Итак, мы разобрали основные формулы нахождения общего числа исходов и вероятностей. С их помощью можно решать различные задачи, не забывая при этом, в каком случае мы применяем тут или иную формулу.

Практическое применение

Страхование

hello_html_34846a52.jpg

Как мы знаем, страховые компании выплачивают деньги застрахованному лицу, если произошёл какой-либо несчастный случай. Сумма, которую должен заплатить человек страховой компании и застраховать тем самым что-либо или кого-либо, рассчитывается определённым образом. Основой, на которую опираются страховые компании, является статистика - отрасль знаний, в которой излагаются общие вопросы сбора, измерения и анализа массовых статистических данных. Эти данные несут информацию о том, сколько за прошедшее время произошло несчастных случаев одного вида (например, аварий, ДТП и пр.), вероятность того, что они произойдут и некоторые другие сведения. Таким образом, для подсчёта стоимости страхового полиса и компенсации, выплачиваемой страховой компанией, требуются накопленные ранее знания о случившихся несчастных случаях, о теории вероятностей и т.д.

Также применение теории вероятностей, статистики, различных таблиц используется, как я уже сказал, в медицине, в механике и инженерном деле. Например, таблицы смертности в медицине, срок полезного функционирования детали или механизма в механике, инженерии. Как видим, математика может пригодиться в вышеприведённых сферах государства, промышленности и т.д.

Интересные факты

Парадокс Монти Холла

hello_html_m3f2cdca1.jpg

Вы попали в финал телевизионного конкурса, и перед вами – три закрытые двери. За одной из них – главный приз, автомобиль, за двумя другими – козы. Нужно выбрать одну из трёх дверей. Когда вы указали на одну из дверей, ведущий должен открыть одну из оставшихся дверей, за которой находится коза. Он даёт вам шанс изменить выбор. Вы можете воспользоваться этим, а можете оставить своё решение без изменения. Как нам поступить, чтобы увеличить шансы на выигрыш? Или же они не изменятся, и от нашего решения вероятность не зависит?

Сперва покажется, что вероятность одинакова и равна ½. Рассуждения таковы: так как перед нами 2 закрытых дверей, и за одной из них находится приз, значит, мы можем с одинаковой вероятностью как выиграть, так и проиграть (не будем принимать козу за выигрыш). Но такой ход мыслей неверен. Рассуждения с математической точки зрения следующие: перед нами 3 двери, на каждую приходится вероятность выигрыша по 1/3. Когда мы выбираем дверь, ведущий показывает, за какой дверью приза нет. Значит, если он открыл именно эту дверь, то, скорее всего, приз находится за той, которую он не открыл. На эту невыбранную закрытую дверь приходится вероятность 2/3. Чтобы лучше понять эту ситуацию интуитивно, изменим количество дверей. Пусть их будет не 3, а 1000. Мы выбрали одну из них, вероятность победы – 1/1000. Ведущий убрал 998 дверей. Скорее всего, приз окажется за той дверью, которую он не открыл. Сначала была вероятность выигрыша 1/1000, теперь, изменив выбор, можно увеличить её на 998/1000. Я думаю, это число показывает, что выгоднее изменить выбор, нежели оставить. Напомню, он открывает только ту дверь или те двери, которые выбраны не были, и за которыми находятся коза или несколько коз. Для подтверждения этих рассуждений можно провести подобный опыт со своим напарником: взять, к примеру, 3 коробка от спичек, 2 монеты по 50 копеек и 1 монету в 1 рубль (можно взять и другие, лишь бы 2 были одинаковы, а 1 – либо больше, либо меньше). Один человек играет роль ведущего, другой – участника. Далее правила ясны: ведущий наугад располагает монеты под коробками, участник не знает, где какая монета. Игрок выбирает любой из них. Ведущий убирает тот коробок, под которым меньшая по достоинству монета, и который не был выбран игроком. Далее участник меняет свой выбор. Если он выиграл, на листок записать букву В, если проиграл – букву П. Желательно проводить этот опыт большое число раз (вспомните закон больших чисел: чем больше количество проводимых экспериментов, тем ближе практическая вероятность будет к теоретической). Лично я со своим папой однажды провёл его 50 раз. Получилось так, что выиграл 31 раз, а проиграл – 19. Не стоит забывать, что монеты желательно располагать в случайном порядке под коробками после проведения очередного опыта.

Парадокс о днях рождения

hello_html_5b2752d.jpg

В классе учатся 23 человека. Какова вероятность того, что хотя бы 2 ученика этого класса родились в один и тот же день?

В очередной раз интуиция подсказывает, что вероятность крайне мала. Но на самом деле это не так. Давайте разберёмся.

Примем, что число дней в году равно 365. Рассмотрим общую ситуацию для N человек, N не больше 365.

Возьмём первого человека, он мог родиться в любой из 365 дней, равно как и второй, третий и т.д. до N . Следовательно, число всех возможных вариантов дней рождений равно 365^ N . Из этих случаев найдём такие, в которых нет совпадающих дат рождения. В таких случаях первый человек мог родиться в любой из 365 дней, второй – в любой из 364, третий – в любой из 363 и т.д. до N человека, отмечающего день рождения в любой из 365 – N + 1 дней. Получается, что число случаев с несовпадающими датами рождения равно 365 * 364 * 363 * … * (365 – N + 1) = 365! / (365 – N )!

Напомню, что для нахождения вероятности нужно число благоприятных исходов разделить на число всех возможных исходов. Поэтому, вероятность того, что все ученики будут отмечать дни рождения в разные дни, равна

. Но нас интересует вероятность рождения как минимум 2 учеников в одинаковые дни. Так как найденная нами вероятность противоположна той, которую мы собираемся найти, то нам нужно из 1 вычесть это выражение, подставить вместо N число 23 и произвести расчёты.

При N = 23 вероятность равна 0,507, т.е. 50,7 %. Именно при этом значении вероятность больше 1/2. При N = 30 она становится больше 70 %, а при N = 45 она примерно равна 94 %. Не так уж всё и очевидно на первый взгляд!

Теория вероятностей – довольно интересный, хотя в некоторых случаях и непростой для понимания, раздел математики. Он связан со многими важными для общества отраслями: медициной, страхованием, статистикой и др. Для понимания теории вероятностей нужно владеть азами некоторых других разделов математики, таких как комбинаторика, теория множеств.

Событие. Достоверное событие. Невозможное событие. Случайное событие.
Элементарное событие. Пространство элементарных событий (полная группа событий). Составное событие. Дополнение. Несовместные события. Равновозможные события.
Независимые события. Зависимые события. Правила действий над событиями.
Аксиомы теории вероятностей. Классическое определение вероятности. Статистическое определение вероятности. Условная вероятность. Теорема умножения вероятностей. Теорема сложения вероятностей. Формула полной вероятности. Формула апостериорной вероятности (формула Бейеса).

Файлы: 1 файл

05-1-Теория вероятностей.doc

Элементы теории вероятностей

Случайные события и их вероятности

Событие. Достоверное событие. Невозможное событие. Случайное событие.

Элементарное событие. Пространство элементарных событий (полная группа событий). Составное событие. Дополнение. Несовместные события. Равновозможные события.

Независимые события. Зависимые события. Правила действий над событиями.

Аксиомы теории вероятностей. Классическое определение вероятности. Статистическое определение вероятности. Условная вероятность. Теорема умножения вероятностей. Теорема сложения вероятностей. Формула полной вероятности. Формула апостериорной вероятности (формула Бейеса).

1. Основные понятия теории вероятностей.

В теории вероятностей событием А называют всё то, что может произойти, а может и не произойти при осуществлении некоторого комплекса условий G. Событие наступает в результате реализации различных процессов, которые называют опытами (экспериментами).

А1 - появление орла при бросании монеты;

А2 - выпадение чётного числа очков при игре в кости;

А3 - выход из строя компьютера после пяти часов работы;

А4 - замерзание воды при сильном морозе;

А5 - после января следует апрель.

Все эти события отличаются в первую очередь тем, что возможность их появления различна. Одно событие (А4) происходит всегда, другое (А5) никогда не наступает, остальные могут произойти или не произойти в результате проведения одного опыта.

Если при реализации условий G событие А всегда происходит, то оно называется достоверным (событие А4). Если же событие при заданных условиях никогда не наступает, то его называют невозможным (событие А5).

Если в результате опыта при реализации определённого комплекса условий данное событие может наступить или не наступить, то оно называется случайным. Условия проведения такого опыта часто называют случайным опытом (экспериментом). Очевидно, что после бросания игральной кости чётное число может выпасть, но оно может и не выпасть. Через пять часов после включения компьютер может быть исправным, но может и выйти из строя.

Элементарными называют события, не разложимые на более простые.

Пусть при данных условиях проводится случайный опыт, в результате которого обязательно наступает одно и только одно из возможных элементарных событий. Множество Q всех элементарных событий wi образует пространство элементарных событий, или полную группу событий. Например, при бросании игральной кости множество элементарных событий Q образует полную группу из шести элементарных событий wi (выпало одно очко, выпало два очка и т. д.):

Наряду с элементарными рассматриваются так называемые составные, или разложимые события. Событие В называется составным, если можно указать, по меньшей мере, два таких элементарных события w1 и w2, что из существования каждого из них в отдельности следует существование события В. Этот факт записывается в виде:

Используя введённую ранее терминологию, случайным событием А называют любое подмножество S пространства элементарных событий (S Ì Q). Содержательно это означает, что появление любого из элементарных событий, входящих в S, влечёт за собой появление события А.

Например, при бросании игральной кости составное событие А = можно записать так: А = , подразумевая при этом, что если выпадет число 2 или 4, или 6, то наступит событие А.

События А1, А2, … Аn называются несовместными, если в результате одного опыта никакие два из них не могут произойти одновременно. Это означает, что среди событий А1, А2, … Аn нельзя найти такую пару событий Аi и Аj, в которой обнаружилось бы хотя бы по одному общему элементарному событию.

Например, при однократном бросании игральной кости выпадение чётного и нечётного числа – несовместные события. Несовместными являются также промах и попадание при одном выстреле по мишени.

События А1, А2, … Аn называются равновозможными, если нет оснований считать, что одно событие встречается чаще, чем другое. Например, выпадение орла или решки при бросании монеты.

События А и В называются независимыми, если появление одного из них не изменяет шансы появления другого. Например, одновременно бросаются две игральные кости. Появление на одной из них трёх очков никоим образом не зависит от того, какое количество очков появилось на верхней грани другой кости.

Если появление одного события влияет на появление другого, то такие события называются зависимыми.

Рассмотрим пример. В урне два красных и два чёрных шара. Вынимается один шар, записывается его цвет, и шар откладывается в сторону. Затем вынимается второй шар. Событие А – первый вынутый шар красный. Событие В – второй вынутый шар тоже красный. Очевидно, что эти события зависимы: если первым вынули красный шар, то шанс вынуть красный шар и во втором опыте будет меньше, чем если бы первым был вынут чёрный шар.

2. Правила действий над событиями.

Объединением (суммой) событий А1, А2, … Аn называется событие А, состоящее в наступлении хотя бы одного из этих событий:

А = А1 А2 … Аn = А1 + А2 + … + Аn.

Пересечением (произведением) событий А1, А2, … Аn называется событие В, состоящее в обязательном наступлении всех этих событий:

В = А1 А2 … Аn = А1 × А2 ´ … ´ Аn.

Разностью событий А и В (А – В) называется событие D, заключающееся в наступлении события А при одновременном ненаступлении события В:

3. Аксиомы теории вероятностей.

Числовая функция Р(А) называется вероятностью события А, если она удовлетворяет следующим аксиомам.

1. Вероятность Р(А) есть неотрицательное число, заключённое между нулём и единицей: 0 £ Р(А) £ 1.

2. Вероятность достоверного события равна единице.

3. Вероятность невозможного события равна нулю.

4. Классическое определение вероятности.

Рассмотрим полную группу из n несовместных равновозможных событий.

Примерами таких групп являются число очков при бросании игральных костей, число попаданий в мишень при выстрелах, проводимых в одинаковых условиях, появление шара с заданным номером при наличии в урне нескольких неразличимых на ощупь шаров.

Пусть среди всех n возможных исходов опыта, только m исходов, образующих m-подмножество в полной группе, влекут за собой наступление события А. Случаи, входящие в m-подмножество будем называть благоприятными.

Например, в урне два белых, три чёрных и пять красных одинаковых на ощупь шаров. Будем считать благоприятным выбор белого шара; таких случаев два. Появление же чёрного или красного шара – случай неблагоприятный; таких случаев восемь.

Классическая вероятность события А вычисляется как отношение числа благоприятных событию А случаев к общему числу исходов опыта:

P(A) = , где m – число элементарных исходов, благоприятных событию А,

n – общее число всех элементарных равновозможных исходов опыта,

Алгоритм применения классической формулы для вычисления вероятностей при решении задач следующий:

  1. удостоверяются в том, что возможные исходы образуют полную группу несовместных равновозможных событий;
  2. выбирается интересующее нас случайное событие А;
  3. вычисляется число возможных исходов (n) и число благоприятных исходов (m);
  4. вычисляется искомая вероятность P(A).

Задача 1. Игральная кость бросается один раз. Какова вероятность выпадения чётного числа очков?

  1. Пусть событие А – выпадение чётного числа очков. Таких исходов может быть три – числа 2, 4 или 6, т.е. m=3.
  2. Общее количество возможных исходов n=6.
  3. Получаем: P(A) .·

Задача 2. Монета бросается один раз. Какова вероятность выпадения герба?

Рассуждая по аналогии с предыдущей задачей, имеем: m=1, n=2.

Искомая вероятность P(A) .·

Задача 3. Монета бросается два раза. Какова вероятность: 1) выпадения орла хотя бы один раз (событие А); 2) двукратного выпадения орла (событие В)?

  1. Равновозможными элементарными исходами здесь являются: ОО, ОР, РО, РР; число их n=4.
  2. Событию А благоприятствуют исходы ОО, ОР, РО, число которых m=3. Следовательно:
  1. Событию В благоприятствует один исход ОО (m¢=1). Поэтому:

Задача 4. Опыт заключается в подбрасывании двух монет: медной и серебряной. Какова вероятность того, что хотя бы на одной монете выпадет орёл?

  1. Равновероятными элементарными исходами опыта являются следующие:

w1 – орёл выпал на обеих монетах,

w2 – орёл выпал только на медной монете,

w3 – орёл выпал только на серебряной монете,

w4 – орёл не выпал ни на одной монете,

  1. Благоприятствуют событию А (появлению орла хотя бы на одной монете) исходы w1, w2 и w3, т.е. m=3.
  2. Получаем: P(A) .·

2) Для выявления в этом опыте множества равновероятных исходов внесём в опыт дополнительный элемент, не нарушающий вероятностной структуры задачи, а именно, перенумеруем все шары. Белым шарам поставим в соответствие номера с 1 по 12, а чёрным — номера с 13 по 20.

При решении задач вычисления вероятностей часто оказываются полезными формулы комбинаторики.

Задача 6. Игральная кость бросается два раза. Какова вероятность того, что сумма выпавших очков равна 6 (событие А)?

Задача 7. Набирая номер телефона, абонент забыл две последние цифры и, помня лишь, что эти цифры различны, набрал их наудачу. Какова вероятность того, что номер набран правильно?

  1. Две последние цифры можно набрать числом способов, равным числу упорядоченных двухэлементных подмножеств у десятиэлементного множества (множества всех цифр). Это число способов равно А102 (см. раздел, посвящённый комбинаторике). Следовательно, всего существует n = А102 исходов.
  2. Благоприятствует событию А (цифры набраны верно) только один исход (m=1).
  3. Получаем: P(A) .·

Задача 8. Среди 100 электроламп 5 испорченных. Какова вероятность того, что выбранные наудачу 3 лампы окажутся исправными?

Читайте также: