Электромеханический этап развития вычислительной техники реферат

Обновлено: 02.07.2024

Основные этапы развития ВТ можно привязать к следующей хронологической шкале:
ручной - до 17 века
механический – с середины 17 века
электромеханический – с 90 годов 19 века
электронный – с 40 годов 20 века

Содержание

1)Введение
2)Этапы развития вычислительной техники
3)Поколения электро – вычислительных машин
4)Роль ВТ в жизни человека
5)Заключение
6)Литература

Прикрепленные файлы: 1 файл

информатика реферат.doc

Реферат на тему «История возникновения

Выполнила студентка 14 группы

Крошко Анастасия Владимировна.

2)Этапы развития вычислительной техники

3)Поколения электро – вычислительных машин

4)Роль ВТ в жизни человека

Основные этапы развития ВТ можно привязать к следующей хронологической шкале:

  • ручной - до 17 века
  • механический – с середины 17 века
  • электромеханический – с 90 годов 19 века
  • электронный – с 40 годов 20 века

Эти этапы отличались друг от друга более совершенным строением вычислительных аппаратов.

Развитие механики в 17 веке стало предпосылкой вычислительных устройств и приборов, использующих механический принцип вычислений, обеспечивающий перенос старшего разряда. Увеличение во второй половине 19 века вычислительных работ в целом ряде областей человеческой деятельности выдвинуло настоятельную потребность в ВТ и повышение требований к ней.

Первая спроектированная Беббиджем машина, Разностная машина, работала на паровом двигателе. Работающая модель была шестицифровым калькулятором, способным производить вычисления и печатать цифровые таблицы.

Главным достижением этой эпохи можно считать изобретение арифмометра ученым, по имени Однер. Главная особенность детища Однера заключается в применении зубчатых колес с переменным числом зубцов вместо ступенчатых валиков. Оно проще валика конструктивно и имеет меньшие размеры.

Первоначально появление в этот период ЭВМ не очень повлияло на выпуск арифмометров, прежде всего из-за различия в назначении, а также в стоимости и распространенности. Однако, с 60 годов в массовое использование все активнее проникают электронные клавишные вычислительные машины, выпускаемые вначале на лампах, а с 1964 г. на транзисторах. Лидерство в этом направлении сразу же захватила Япония, которая отличалась миниатюризацией электронной техники, включая ВТ.

Электромеханический этап Электромеханический этап развития ВТ явился наименее продолжительным и охватывает около 60 лет – от первого табулятора Г. Холлерита до первой ЭВМ ENIAK (1945). Предпосылками создания проектов этого типа явились как необходимость проведения массовых расчетов, так и развитие прикладной электротехники. Классическим типом средств электромеханического этапа был счетно-аналитический комплекс, предназначенный для обработки информации на перфокарточных носителях.

Значение работ Холлерита для развития ВТ определяется двумя факторами. Во-первых, он стал основоположником нового направления в ВТ – счетно-перфорационного с соответствующим им оборудованием для широкого круга экономических и научно-технических расчетов. Это направление привело к созданию машиносчетных станций, послуживших прообразом современных вычислительных центров. Во-вторых, даже в наше время использование большого числа разнообразных устройств ввода/вывода информации не отменило полностью использование перфокарточной технологии.

Заключительный период электромеханического этапа развития вычислительной техники характеризуется созданием целого ряда сложных релейных и релейно-механических систем с программным управлением, характеризующихся алгоритмической универсальностью и способных выполнять сложные научно-технические вычисления в автоматическом режиме со скоростями, на порядок превышающими скорость работы арифмометров с электропроводом. Эти аппараты можно рассматривать в качестве прямых предшественников универсальных ЭВМ.

Поколения Электро-вычислительных Машин

Историю развития ЭВМ удобно описывать, пользуясь представлением о поколениях вычислительных машин. Каждое поколение ЭВМ характеризуется конструктивными особенностями и возможностями. Приступим к описанию каждого из поколений, однако нужно помнить, что деление ЭВМ на поколения является условным, поскольку в одно и то же время выпускались машины разного уровня.

ЭВМ первого поколения размещались в больших машинных залах, потребляли много электроэнергии и требовали охлаждения с помощью мощных вентиляторов. Программы для этих ЭВМ нужно было составлять в машинных кодах, и этим могли заниматься только специалисты, знающие в деталях устройство ЭВМ.

Скачек в развитии вычислительной техники произошел в 40х годах, после Второй мировой войны, и связан он был с появлением более качественных, новых электронных устройств электронно – вакуумных ламп, работали значительно быстрее, чем схемы на электромеханическом реле, а релейные машины быстро вытеснены более производительными и надежными электронными вычислительными машинами (ЭВМ). Применение ЭВМ значительно расширило круг решаемых задач. Стали доступны задачи, которые раньше просто не ставились: расчеты инженерных сооружений, вычисления движения планет, баллистические расчеты и т.д.

Самая первая ЭВМ создавалась в 1943 – 1946 гг. в США и называлась она ЭНИАК. Эта машина содержала около 18 тысяч электронных ламп, множество электромеханических реле, причем ежемесячно выходило из строя около 2 тысяч ламп. ЦУ машины ЭНИАК, а также у других первых ЭВМ, был серьезный недостаток – исполняемая программа хранилась не в памяти машины, а набиралась сложным образом с помощью внешних перемычек.

Первая ЭВМ с хранимой в памяти программой была построена в Англии в 1949 г. В1951 году в СССР была создана МЭСМ, эти работы проводились в Киеве в Институте электродинамики под руководством крупнейшего конструктора вычислительной техники С. А. Лебедева. ЭВМ постоянно совершенствовались.

К середине 50х годов их быстродействие удалось повысить от нескольких сотен до нескольких десятков тысяч операций в секунду. Однако при этом электронная лампа оставалась самым надежным элементом ЭВМ. Использование ламп стало тормозить дальнейший прогресс вычислительной техники.

Впоследствии на смену лампам пришли полупроводниковые приборы, тем самым завершился первый этап развития ЭВМ.

Когда в середине 50х годов на смену электронным лампам пришли полупроводниковые приборы, начался перевод ЭВМ на полупроводники. Полупроводниковые приборы (транзисторы, диоды) были, во – первых, значительно компактнее своих ламповых предшественников. Во – вторых они обладали значительно большим сроком службы. В – третьих, потребление энергии у ЭВМ на полупроводниках было существенно ниже. С внедрением цифровых элементов на полупроводниковых приборах началось создание ЭВМ второго поколения.

Благодаря применению более совершенной элементной базы начали создаваться относительно небольшие ЭВМ, произошло разделение вычислительных машин на большие, средние и малые.

Смена поколений ЭВМ произошла в конце 60х годов при замене полупроводниковых приборов в устройствах ЭВМ на интегральные схемы. Интегральная схема (микросхема) – это небольшая пластинка кристалла кремния, на которой размещаются сотни и тысячи элементов: диодов, транзисторов, конденсаторов, резисторов и т. д.

Применение интегральных схем позволило увеличить количество электронных элементов в ЭВМ без увеличения их реальных размеров. Быстродействие ЭВМ возросло до 10 миллионов операций в секунду. Кроме того, составлять программы для ЭВМ стало по силам простым пользователям, а не только специалистам – электронщикам.

В процессе совершенствования микросхем увеличивалась их надежность и плотность размещенных в них элементов. Это привело к появлению больших интегральных схем (БИС), в которых на один квадратный сантиметр приходилось несколько десятков тысяч элементов. На основе БИС были разработаны ЭВМ следующего – четвертого поколения.

Благодаря БИС на одном крошечном кристале кремния стало возможным разместить такую большую электронную схему, как процессор ЭВМ. Однокристальные процессоры впоследствии стали называться микропроцессорами. Первый микропроцессор был создан компанией Intel (США) в 1971 г. Это был 4 – разрядный микропроцессор Intel 4004, который содержал 2250 транзисторов и выполнял 60 операций в секунду.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

История развития вычислительной техники

Основная часть. Теоретический обзор литературы. 4

Глава 1. Предпосылки развития вычислительной техники. 4

1.1. Ручной период докомпьютерной эпохи. 4

1.2 Механический этап . 5

1.3. Электромеханический этап. 6

Глава 2. Поколения ЭВМ. 7

2.1 . Первое поколение ЭВМ (1946 – 1958 гг.). 7

2.2. Второе поколение ЭВМ (1959 – 1967 гг.). 8

2.3. Третье поколение ЭВМ (1968 – 1973 гг.). 9

2.4. Четвертое поколение ЭВМ (1974 – 1982 гг.). 10

2.5. Пятое поколение ЭВМ (1983 – . гг.) . 11

Глава 3. Обзор литературы о поколениях ЭВМ. 12
Заключение. Выводы . 13

Список литературы . 14

Приложение 1. Ручной период. 15

Приложение 2. ЭВМ механического этапа. 17

Приложение 3. Первое поколение ЭВМ. 18

Приложение 4. Второе поколение ЭВМ. 19

Приложение 5. Третье поколение ЭВМ. 20

Приложение 6. Четвертое поколение ЭВМ. 21

Приложение 7. Пятое поколение ЭВМ. 22

Потребность в поиске решений все более и более сложных задач и, как следствие, все более сложных и длительных вычислений, поставила человека перед необходимостью находить способы, изобретать приспособления, которые смогли бы ему в этом помочь. Исторически сложилось так, что в разных странах возникли собственные денежные единицы, меры веса, длины, объемов, расстояния и т.п. Для перехода из одной системы измерений в другую требовались вычисления, которые чаще всего могли производить лишь специально обученные люди, постигшие логику математических действий. Их нередко приглашали даже из других стран. И совершенно естественно возникла потребность в изобретении устройств, помогающих счету. Так постепенно стали появляться механические помощники. До наших дней дошли свидетельства о многих таких изобретениях, навсегда вошедших в историю техники.

Компьютер прочно вошел в нашу жизнь, став главным помощником человека. На сегодняшний день в мире существует множество компьютеров различных фирм, различных групп сложности, назначения и поколений. В данном реферате мы рассмотрим историю развития вычислительной техники.

Таким образом, цель нашей работы: рассмотреть историю развития вычислительной техники от древности до наших дней.

Исходя из этого, мы ставим перед собой следующие задачи:

1. Проанализировать литературу и информационные ресурсы по истории вычислительных средств и электронно-вычислительных машин.

2. Составить хронологию событий

На протяжении всего своего существования люди использовали разного рода и конструкции вычислительные аппараты. Некоторые из них и по сей день используются в повседневной жизни, а некоторые затерялись в переулках времени.

Основная часть. Теоретический обзор литературы

В этой части мы рассмотрим основные этапы развития вычислительной техники, проведем теоретический обзор литературы и информационных ресурсов.

Глава 1. Предпосылки развития вычислительной техники

В этой главе мы рассмотрим ручной период докомпьютерной эпохи, механический этап и электромеханический этап развития вычислительной техники.

1.1. Ручной период докомпьютерной эпохи

Ручной период начался на заре человеческой цивилизации. Фиксация результатов счета у разных народов на разных континентах производилась разными способами: пальцевый счет, нанесение засечек, счетные палочки, узелки и т.д. (Приложение1, рис. 1, рис.2)

1.2. Механический этап

1623 г. – немецкий ученый В. Шиккард описывает и реализует в единственном экземпляре механическую счетную машину, предназначенную для выполнения четырех арифметических операций над шестиразрядными числами.

1642 г. – Б.Паскаль построил восьмиразрядную действующую модель счетной суммирующей машины. Впоследствии была создана серия из 50 таких машин, одна из которых являлась десятиразрядной. Так формировалось мнение о возможности автоматизации умственного труда.

1673 г. – немецкий математик Лейбниц создает первый арифмометр, позволяющий выполнять все четыре арифметических операции.

1881 г. – организация серийного производства арифмометров. [3]
Арифмометры использовались для практических вычислений вплоть до шестидесятых годов XX века.

В этот период английский математик Чарльз Бэббидж выдвинул идею создания программно - управляемой счетной машины, имеющей арифметическое устройство, устройство управления, ввода и печати. Первая спроектированная Беббиджем машина, Разностная машина, работала на паровом двигателе. Второй проект Бэббиджа — аналитическая машина , использующая принцип программного управления и предназначавшаяся для вычисления любого алгоритма. Проект не был реализован, но получил широкую известность и высокую оценку ученых.

Работающая модель была шестицифровым калькулятором, способным производить вычисления и печатать цифровые таблицы. Главным достижением этой эпохи можно считать изобретение арифмометра ученым, по имени Однер. Главная особенность изобретения Однера заключается в применении зубчатых колес с переменным числом зубцов вместо ступенчатых валиков. Оно проще валика конструктивно и имеет меньшие размеры. Первоначально появление в этот период ЭВМ не очень повлияло на выпуск арифмометров, прежде всего из-за различия в назначении, а также в стоимости и распространенности. [9] (Приложение 2, рис. 6, рис. 7, рис. 8, рис. 9, рис. 10, рис.11)

1.3. Электромеханический этап

Электромеханический этап развития вычислительной техники явился наименее продолжительным и охватывает около 60 лет – от первого табулятора Г. Холлерита до первой ЭВМ ENIAK (1945).

Предпосылками создания проектов этого типа явились как необходимость проведения массовых расчетов, так и развитие прикладной электротехники. Классическим типом средств электромеханического этапа был счетно-аналитический комплекс, предназначенный для обработки информации на перфокарточных носителях. Значение работ Холлерита для развития ВТ определяется двумя факторами. Во-первых, он стал основоположником нового направления в вычислительной техники – счетно-перфорационного с соответствующим им оборудованием для широкого круга экономических и научно-технических расчетов. Это направление привело к созданию машиносчетных станций, послуживших прообразом современных вычислительных центров. [ 7]

Во-вторых, даже в наше время использование большого числа разнообразных устройств ввода/вывода информации не отменило полностью использование перфокарточной технологии. Заключительный период электромеханического этапа развития вычислительной техники характеризуется созданием целого ряда сложных релейных и релейно-механических систем с программным управлением, характеризующихся алгоритмической универсальностью и способных выполнять сложные научно-технические вычисления в автоматическом режиме со скоростями, на порядок превышающими скорость работы арифмометров с электропроводом. Эти аппараты можно рассматривать в качестве прямых предшественников универсальных ЭВМ.

Глава 2. Поколения ЭВМ

А теперь мы бы хотели рассказать о современных ЭВМ, об их истории и развитии.
Электронно-вычислительные машины у нас в стране принято делить на поколения. Для компьютерной техники характерна прежде всего быстрота смены поколений - за ее короткую историю развития уже успели смениться четыре поколения и сейчас мы работаем на компьютерах пятого поколения. Что же является определяющим признаком при отнесении ЭВМ к тому или иному поколению? Это, прежде всего, их элементная база (из каких в основном элементов они построены), и такие важные характеристики, как быстродействие, емкость памяти, способы управления и переработки информации. Конечно же, деление ЭВМ на поколения в определенной мере условно. Существует немало моделей, которые по одним признакам относятся к одному, а по другим - к другому поколению. И все же, несмотря на эту условность поколения ЭВМ можно считать качественными скачками в развитии электронно-вычислительной техники.

2.1. Первое поколение ЭВМ (1946 — 1958 гг.)

Элементной базой машин этого поколения были электронные лампы – диоды и триоды. В 1946 г. американские инженер-электронщик Дж. П. Эккерт и физик Дж.
У. Моучли в Пенсильванском университете сконструировали, по заказу военного ведомства США, первую электронно-вычислительную машину - “Эниак” (Electronic Numerical Integrator and Computer. Она выполняла за одну секунду 300 умножений или 5000 сложений многоразрядных чисел. Размеры: 30 м в длину, объём - 85 м 3 , вес - 30 тонн. Использовалось около 20000 электронных ламп и 1500 реле. Мощность ее была до 150 кВт.

Первая машина с хранимой программой - ”Эдсак” - была создана в Кембриджском университете (Англия) в 1949 г. Время выполнения сложения было 0,07 мс, умножения - 8,5 мс. В 1948г. году академик Сергей Алексеевич Лебедев предложил проект первой на континенте Европы ЭВМ – Малой электронной счетно-решающей машины (МЭМС). В 1951г. МЭСМ официально вводится в эксплуатацию, на ней регулярно решаются вычислительные задачи. Машина оперировала с 20 ­разрядными двоичными кодами с быстродействием 50 операций в секунду, имела оперативную память в 100 ячеек на электронных лампах. В 1951 г. была создана машина “Юнивак”(UNIVAC) - первый серийный компьютер с хранимой программой. В этой машине впервые была использована магнитная лента для записи и хранения информации. Вводится в эксплуатацию БЭСМ-2 (большая электронная счетная машина) в 1952-1953 гг. с быстродействием около 10 тыс. операций в секунду. Машины, созданные во время этого поколения, предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: М-1, М-2, М-З, “Стрела”, “Минск-1”, “Урал-1”, “Урал-2”, “Урал-3”, M-20, "Сетунь", "Раздан". Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2–3 тысяч операций в секунду, емкость оперативной памяти—2К или 2048 машинных слов (1K=1024) длиной 48 двоичных знаков. В машинах первого поколения были реализованы основные логические принципы построения электронно-вычислительных машин и концепции Джона фон Неймана, касающиеся работы ЭВМ по вводимой в память программе и исходным данным (числам). В вычислительных машинах этого времени использовались электровакуумные лампы и внешняя память на магнитном барабане. В конце этого периода стали выпускаться устройства памяти на магнитных сердечниках. Надежность ЭВМ этого поколения была крайне низкой. [6] (Приложение 3, рис. 12, рис. 13, рис. 14, рис. 15, рис.16)

2.2. Второе поколение ЭВМ (1959 — 1967 гг.)

Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Появление полупроводниковых элементов в электронных схемах существенно увеличило емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом, за счет развития программного обеспечения. Появились также специализированные машины, например ЭВМ для решения экономических задач, для управления производственными процессами, системами передачи информации и т.д. К ЭВМ второго поколения относятся:

ЭВМ М-40, -50 для систем противоракетной обороны;

Урал -11, -14, -16 - ЭВМ общего назначения, ориентированные на решение инженерно-технических и планово-экономических задач;

Минск -2, -12, -14 для решения инженерных, научных и конструкторских задач математического и логического характера;

Минск-22 предназначена для решения научно-технических и планово-экономических задач;

БЭСМ-3 -4, -6 машин общего назначения, ориентированных на решение сложных задач науки и техники;

М-20, -220, -222 машина общего назначения, ориентированная на решение сложных математических задач;

МИР-1 малая электронная цифровая вычислительная машина, предназначенная для решения широкого круга инженерно-конструкторских математических задач,

"Наири" – машина общего назначения, предназначенная для решения широкого круга инженерных, научно-технических, а также некоторых типов планово-экономических и учетно-статистических задач;

Рута-110 – мини ЭВМ общего назначения и ряд других ЭВМ.


ЭВМ БЭСМ-4, М-220, М-222 имели быстродействие порядка 20—30 тысяч операций в секунду и оперативную память—соответственно 8К, 16К и 32К. Среди машин второго поколения особо выделяется БЭСМ-6, обладающая быстродействием около миллиона операций в секунду и оперативной памятью от 32К до 128К (в большинстве машин используется два сегмента памяти по 32К каждый). [7]
Данный период характеризуется широким применением транзисторов и усовершенствованных схем памяти на сердечниках. Большое внимание начали уделять созданию системного программного обеспечения, компиляторов и средств ввода-вывода..
Вычислительные машины этого периода успешно применялись в областях, связанных с обработкой множеств данных и решением задач, обычно требующих выполнения рутинных операций на заводах, в учреждениях и банках. Эти вычислительные машины работали по принципу пакетной обработки данных. По существу, при этом копировались ручные методы обработки данных. Новые возможности, предоставляемые вычислительными машинами, практически не использовались. (Приложение 4, рис. 16, рис. 17, рис. 18, рис. 19)

2.3. Третье поколение ЭВМ (1968 — 1973 гг.)

Элементная база ЭВМ - малые интегральные схемы (МИС). Машины предназначались для широкого использования в различных областях науки и техники (проведение расчетов, управление производством, подвижными объектами и др.). Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличилось быстродействие, повысилась надежность, а потребляемая мощность, занимаемая площадь и масса уменьшились. В СССР в 70-е годы получают дальнейшее развитие. Разрабатываются универсальные ЭВМ третьего поколения ЕС, совместимые как между собой (машины средней и высокой производительности ЕС ЭВМ), так и с зарубежными ЭВМ третьего поколения (IBM-360 и др. - США). В разработке машин ЕС ЭВМ принимают участие специалисты СССР. В то же время в СССР создаются многопроцессорные ЭВМ, выпускаются мини-ЭВМ "Мир-31", "Мир-32", "Наири-34". [2] Для управления технологическими процессами создаются ЭВМ серии АСВТ М-6000 и М-7000 (разработчики В.П.Рязанов и др.). Разрабатываются и выпускаются настольные мини-ЭВМ на интегральных микросхемах М-180, "Электроника -79, -100, -125, -200", "Электроника ДЗ-28", "Электроника НЦ-60" и др. К машинам третьего поколения относились "Днепр-2", ЭВМ Единой Системы (ЕС-1010, ЕС-1020, ЕС-1030, ЕС-1040, ЕС-1050, ЕС-1060 и несколько их промежуточных модификаций - ЕС-1021 и др.), МИР-2, "Наири-2" и ряд других. [4]

Характерной чертой данного периода явилось резкое снижение цен на аппаратное обеспечение. Этого удалось добиться главным образом за счет использования интегральных схем. (Приложение 5, рис. 21, рис. 22)

2.4. Четвертое поколение ЭВМ (1974 — 1982 гг.)

Элементная база ЭВМ - большие интегральные схемы (БИС). Машины предназначались для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, обслуживании и быту. Высокая степень интеграции способствует увеличению плотности компоновки электронной аппаратуры, повышению ее надежности, что ведет к увеличению быстродействия ЭВМ и снижению ее стоимости. Все это оказывает существенное воздействие на логическую структуру (архитектуру) ЭВМ и на ее программное обеспечение. Более тесной становится связь структуры машины и ее программного обеспечения, особенно операционной системы (или монитора) – набора программ, которые организуют непрерывную работу машины без вмешательства человека. К этому поколению можно отнести ЭВМ ЕС: ЕС-1015, -1025, -1035, -1045, -1055, -1065 (“Ряд 2”), -1036, -1046, -1066, СМ-1420, -1600, -1700, все персональные ЭВМ (“Электроника МС 0501”, “Электроника-85”, “Искра-226”, ЕС-1840, -1841, -1842 и др.), а также другие типы и модификации. [5] Первый компьютер появился в 1976 г. К ЭВМ четвертого поколения относится также многопроцессорный вычислительный комплекс "Эльбрус". "Эльбрус-1КБ" имел быстродействие до 5,5 млн. операций, а объем оперативной памяти до 64 Мб. У "Эльбрус-2" производительность до 120 млн. операций в секунду, емкость оперативной памяти до 144 Мб или 16 Мслов (слово 72 разряда), максимальная пропускная способность каналов ввода-вывода - 120 Мб/с. (Приложение 6, рис. 23, рис. 24)

Заключительный период электромеханического этапа развития вычислительной техники характеризуется созданием целого ряда сложных релейных и релейно-механических систем с программным управлением, характеризующихся алгоритмической универсальностью и способных выполнять сложные научно-технические вычисления в автоматическом режиме со скоростями, на порядок превышающими скорость работы арифмометров… Читать ещё >

Электромеханический этап. История развития вычислительной техники ( реферат , курсовая , диплом , контрольная )

Электромеханический этап развития ВТ явился наименее продолжительным и охватывает около 60 лет — от первого табулятора Г. Холлерита до первой ЭВМ ENIAK (1945). Предпосылками создания проектов этого типа явились как необходимость проведения массовых расчетов, так и развитие прикладной электротехники. Классическим типом средств электромеханического этапа был счетно-аналитический комплекс, предназначенный для обработки информации на перфокарточных носителях.

Значение работ Холлерита для развития ВТ определяется двумя факторами. Во-первых, он стал основоположником нового направления в ВТ — счетно-перфорационного с соответствующим им оборудованием для широкого круга экономических и научно-технических расчетов. Это направление привело к созданию машиносчетных станций, послуживших прообразом современных вычислительных центров. Во-вторых, даже в наше время использование большого числа разнообразных устройств ввода/вывода информации не отменило полностью использование перфокарточной технологии.

Заключительный период электромеханического этапа развития вычислительной техники характеризуется созданием целого ряда сложных релейных и релейно-механических систем с программным управлением, характеризующихся алгоритмической универсальностью и способных выполнять сложные научно-технические вычисления в автоматическом режиме со скоростями, на порядок превышающими скорость работы арифмометров с электропроводом. Эти аппараты можно рассматривать в качестве прямых предшественников универсальных ЭВМ.

Классическим типом средств электромеханического этапа был счетно-аналитический комплекс, предназначенный для обработки информации на перфокарточных носителях.

комплекс Холлерита

Первый такой комплекс был создан в США Г. Холлеритом в 1887 г. и состоял из ручного перфоратора, сортировочной машины и табулятора. Он предназначался для обработки результатов переписи населения в нескольких странах, в том числе и в России.

В конце XIX в. перепись населения как одна из важнейших статистических задач проводилась регулярно - через 10 лет, это требование статистики строго соблюдали все развитые страны. Обработка полученных данных проводилась в течение нескольких лет, как правило, вручную или с помощью механических вычислительных машин. Причем статистиков уже не удовлетворяли данные только о количестве населения. Необходимы были сведения о национальности, родном языке, возрасте, поле, вероисповедании. Для этого необходимо было классифицировать собранный материал и выполнить счет по различным признакам. При этом объем работы настолько увеличивался, что выполнить его оперативно и качественно на механических арифмометрах или суммирующих машинах оказалось невозможным, - потребовалось создание нового специального класса вычислительных машин, получивших название счетно-аналитических, а с начала 1960-х гг. - перфорационных.

Г. Холлерит был уверен, что наиболее эффективно использовать для записей статистических данных перфоленты и придумал конструкцию специального барабана, на который наматывалась перфолента, и счетчиками отсчитывались отверстия. И все-таки изобретатель был вынужден признать свою идею несостоятельной, т. к. перфолента не способствовала оперативной работе с той или иной записью на длинной бумажной ленте. Он вернулся к предложению Дж. Биллингса и разработал специальную перфокарту, куда в виде пробивок наносились все данные об одном человеке.

Идея перфокарт уже была известна в мире и нашла практическое применение в ткацких станках Ж. Жаккара (1804) и вычислительной машине Ч. Бэббиджа (1833). Не исключено, что Г. Холлерит знал об этом, но как он сам вспоминал, к этой идее его подтолкнула работа кондуктора. Оказывается, в США, чтобы предотвратить мошенничество на железных дорогах и кражу билетов, кондукторы "записывали" физические особенности пассажиров (цвет волос, глаз и т. п. ) компостером в специально отведенных местах на билете.

Замысел Г. Холлерита состоял в том, чтобы на каждого человека завести личную карточку и все подлежащие обработке данные представить отверстиями в фиксированных местах (позициях). Эта перфокарта по виду была не похожа на железнодорожный билет или уже известные карты, а являлась оригинальной авторской запатентованной разработкой. Она была сделана из плотного картона размером приблизительно с долларовую бумажку, но размер карточки мог колебаться в зависимости от количества позиций, каждая из которых отвечала за определенный признак (пол, семейное положение, вероисповедание и т. д.), например в австрийской переписи 1890 г. применялись перфокарты, имеющие 20х12 позиций, в российской переписи 1897 г. - 22х12 позиций.

перфоратор Холлерита

Сведения заносились на перфокарту вручную с помощью пробивного устройства - пантографа или перфоратора. На лицевой панели перфоратора имеется таблица признаков в виде карты-шаблона с отверстиями по всей координатной сетке, над которой по радиусу перемещается рычаг со штифтом на конце. Если в специальную раму для карточки положить чистую перфокарту и опустить штифт в отверстие, соответствующее какому-либо признаку, то специальное устройство в раме в той же позиции перфокарты пробьет идентичный признак. За час на перфораторе можно заполнить не более 80 карточек.

Теперь можно было либо подсчитать отверстия на всех перфокартах на основной машине - табуляторе, либо распределить их по тому же принципу на сортировке.

табулятор Холлерита

Табулятор (электромеханическая машина), внешне напоминающий бюро, работал от больших электрических батарей. На передней панели - электромеханические счетчики, по 10 штук в каждом горизонтальном ряду емкостью 10 000 единиц. Число горизонтальных рядов могло быть от 4 до 12. На столе справа - воспринимающий пресс, который считывает данные с перфокарт и передает их на табулятор или сортировальную машину. В верхней (подвижной) части пресса находятся металлические иголочки на пружинках, их расположение и число соответствует центрам чашечек с ртутью в нижней (неподвижной) части пресса. При считывании данных с перфокарты ее укладывают в пресс и вручную опускают верхнюю часть пресса. В местах пробивок иглы свободно проходят, достигая ртути, цепь замыкается, сигнал от чашечки по проводам поступает к счетчику. Каждой чашке соответствует свой счетчик, на лицевой стороне которого циферблат на 100 делений и две стрелки (большая показывает единицы и десятки, маленькая - сотни). Часовой механизм приводится в движение маленьким электромагнитом. Счетчики съемные, результаты сбрасываются поворотом стрелок вручную. По окончании обработки карточек на табуляторе каждый счетчик показывает, сколько раз в его позиции замыкалась электрическая цепь через отверстие в перфокарте, и подводятся простые итоги по одному признаку. Для статистических исследований большое значение имеют комбинации разных признаков, например пола с возрастом, с образованием и т. д. В таком случае прямое электрическое соединение ртутных чашечек со счетчиками не решит задачу - необходимо дополнительное использование сортировальной машины, которая работала совместно с табулятором, и наличие электромагнитных реле. Электромагнитные реле, известные с 1831 г., до Г. Холлерита не применялись в счетной технике. В необходимом количестве (не более 120 штук) реле устанавливали на задней панели табулятора. В сортировальной машине они располагались в каждой из 26 ячеек для отсортированных перфокарт и соединялись электропроводами со счетчиками табулятора. Скорость обработки карточек на табуляторе составляла 1000 штук в час.

Итак, управление механическими счетчиками и сортировкой осуществлялось электрическими импульсами, возникающими при замыкании электрической цепи при наличии отверстия в перфокарте. Импульсы использовались и для ввода чисел, и для управления работой машины. Поэтому машина Г. Холлерита была признана первой электромеханической счетной машиной с программным управлением. Она представляла собой комплект устройств (перфоратора, сортировальной машины и табулятора) различного функционального назначения, но связанных между собой технологически процессом обработки информации. Счетная машина задумывалась Г. Холлеритом как Census Machine (машина для переписи). Она по праву считается "первой статистической".

Алан Мэтисон Тьюринг - выдающийся английский математик, совершивший грандиозное открытие, которое положило начало компьютерной эре. В свои неполные 24 года он мысленно сконструировал абстрактный механизм, призванный решить одну из фундаментальных проблем математики, поставленную знаменитым немецким профессором Давидом Гильбертом в 1900 г. на парижском Международном конгрессе математиков. Тем самым Тьюринг не только дал четкий ответ на эту конкретную задачу, но и - что гораздо важнее - сформировал научную основу алгоритма и предвосхитил архитектуру современных компьютеров. Более того, сама идея решения задач путем конструирования абстрактных механизмов, исполняемых на электронных устройствах, стала важнейшей для зарождения новой профессиональной сферы интеллектуальной деятельности - программирования. Тьюринг показал, что не существует "чудесной машины", способной решать все математические задачи. Но продемонстрировав ограниченность возможностей, он на бумаге построил то, что позволяет решать очень многое и что мы теперь называем словом "компьютер".

Машина Тьюринга имеет бесконечную в обе стороны ленту, разделенную на квадратики (ячейки). В каждой ячейке может быть записан некоторый символ из фиксированного (для данной машины) конечного множества, называемого алфавитом данной машины. Один из символов алфавита выделен и называется "пробелом", предполагается, что изначально вся лента пуста, то есть заполнена пробелами.

Машина Тьюринга может менять содержимое ленты с помощью специальной читающей и пишущей головки, которая движется вдоль ленты. В каждый момент головка находится в одной из ячеек. Машина Тьюринга получает от головки информацию о том, какой символ та видит, и в зависимости от этого (и от своего внутреннего состояния) решает, что делать, то есть какой символ записать в текущей ячейке и куда сдвинуться после этого (налево, направо или остаться на месте). При этом также меняется внутреннее состояние машины (мы предполагаем, что машина не считая ленты имеет конечную память, то есть конечное число внутренних состояний). Еще надо договориться, с чего начинается и когда кончается работа.

Таким образом, чтобы задать машину Тьюринга, надо указать следующие объекты:

  • произвольное конечное множество A (алфавит); его элементы называются символами;
  • некоторый выделенный символ a0 из A (пробел, или пустой символ);
  • конечное множество S, называемое множеством состояний;
  • некоторое выделенное состояние s0 из S, называемое начальным;
  • таблицу переходов, которая определяет поведение машины в зависимости от состояния и текущего символа (см. ниже);
  • некоторое подмножество F, входящее в S, элементы которого называются заключительными состояниями (попав в такое состояние, машина останавливается).

Тьюринг отмечает в своей лекции важнейший момент: "Я уверен, что опасность того, что математик сделает ошибку, является неизбежным следствием его способности порой находить принципиально новый метод. Похоже, это подтверждается хорошо известным фактом, что наиболее надежные люди обычно не обнаруживают действительно новых методов". Вот он, ключ к разгадке тайн мышления. Как ни парадоксально, именно возможность ошибок в мыслительном процессе машины открывает перспективы ее интеллектуальной мощи. Тьюринг завершает свою лекцию пророчеством: "Нужно было бы приложить массу усилий, пытаясь, скажем, мыслить на равных с машиной, поскольку представляется вероятным, что как только начнется машинный способ мышления, ему не потребуется много времени, чтобы превзойти наши слабые мыслительные способности. Не возникал бы вопрос о смерти машин, и они могли бы быть способны общаться друг с другом, оттачивая свой разум. Таким образом, на некотором этапе мы могли бы ожидать, что машины получат власть, как описано в "Эрехоне" Сэмюэла Батлера".

Эмиль Пост предложил абстрактную вычислительную машину - машину Поста. Она отличается от машины Тьюринга большей простотой. Обе машины "эквивалентны" и были созданы для уточнения понятия "алгоритм".

Принцип работы

Машина Поста состоит из каретки (или считывающей и записывающей головки) и разбитой на секции ленты, считающейся условно бесконечной в обе стороны. В каждой клетке может быть записан символ из фиксированного алфавита. В любой конкретный момент головка обозревает одну клетку и способна работать только с ней.

Работа машины Поста определяется программой с конечным числом строк. Программы состоит из команд, имеющих по 3 поля, в которых записываются: № команды, операция и отсылка.

Для машины Поста определены операции 6 видов:

  1. Движение головки на 1 клетку вправо.
  2. Движение головки на 1 клетку влево.
  3. Запись метки.
  4. Удаление метки.
  5. Условный переход по метке.
  6. STOP - остановка (завершение работы машины Поста);

Для работы машины нужно задать программу и ее начальное состояние (т. е. состояние ленты и позицию каретки). После запуска возможны варианты:

  • работа может закончиться невыполнимой командой (стирание несуществующей метки или запись в помеченное поле);
  • работа может закончиться командой Stop;
  • работа никогда не закончится.

Итоги

Выделим основные успехи электромеханического этапа развития вычислительной техники.

Читайте также: