Электрическая дуговая сварка меди реферат

Обновлено: 04.07.2024

Медь относится к тяжелым цветным металлам. Ее плотность составляет 8,9 г/см 3 , что выше, чем у железа. Благодаря высокой электропроводности, теплопроводности и коррозионной стойкости медь заняла прочное место в электропромышленности, приборной технике и химическом машиностроении для изготовления разнообразной аппаратуры. Медь и многие ее сплавы применяют для изготовления изделий криогенной техники.

Промышленность выпускает медь марок МО (99,95 % Cu, примеси не более 0,05 %), М1 (99,90 % Cu, примеси не более 0,1 %) и др. Чистая медь хорошо обрабатывается давлением в холодном и горячем состоянии, малочувствительна к низким температурам. При повышении температуры прочность свойства меди изменяется в широких пределах.

При дуговой сварке меди следует учитывать, что теплопроводность меди примерно в шесть раз больше теплопроводности железа. При температуре 500–600 °C медь приобретает хрупкость, а при 700–800 °C прочность меди снижается настолько, что уже при легких ударах образуются трещины. Температура плавления меди 1080–1083 °C.

Свариваемость меди в значительной степени зависит от наличия в металле примесей – висмута, свинца, сурьмы и мышьяка. Чистая электролитическая медь обладает наилучшей свариваемостью. Расплавленная медь легко окисляется, образуя оксид меди Cu2О, поглощает водород и оксид углерода.

При охлаждении в объеме металла выделяются пузырьки паров воды и углекислого газа, которые не растворяются в меди. Эти газы, расширяясь, создают большое внутреннее давление и приводят к образованию мелких межкристаллитных трещин. Это явление получило название водородной болезни меди.

Сварку меди и ее сплавов производят только в нижнем положении или при очень малых углах наклона. Ручная дуговая сварка меди выполняется угольным или металлическим электродом. При сварке угольным или графитовым электродом в качестве присадочного материала применяют прутки из меди М1, из бронзы БрОФ6,5–0,15 или латуни ЛК62–0,5, а также медные прутки МСр1, содержащие до 1 % серебра. Для предохранения меди от окисления и улучшения процесса сварки применяют флюсы, которые наносят на разделку шва и на присадочные прутки.

Флюсы применяют следующих составов:

1) буры прокаленной – 68 %, кислого фосфорнокислого натрия – 15 %, кремниевой кислоты – 15 %, древесного угля – 2 %;

2) буры прокаленной – 50 %, кислого фосфорнокислого натрия – 15 %, кремниевой кислоты – 15 %, древесного угля – 20 %. Можно также применять одну буру, но лучше с присадкой 4–6 % металлического магния.

Листы толщиной до 4 мм можно сваривать с отбортовкой без присадочного металла, а более 4 мм – со скосом кромок под углом 35–45°.

Сборка под сварку должна обеспечить минимальные зазоры (до 0,5 мм), чтобы предупредить протекание расплавленного металла в швах. Рекомендуется также использовать подкладки из графита, асбеста или керамики. По концам шва следует сделать формовку.

Сварку производят постоянным током прямой полярности. Длина дуги должна составлять 10–13 мм, напряжение тока 45–60 В. Сварку ведут со скоростью не менее 0,2–0,3 м/мин и при возможности за один проход. Режимы сварки угольным электродом зависят от толщины свариваемых кромок. При толщине листов до 4 мм используют угольные электроды диаметром 4–6 мм, а сварочный ток выбирают в пределах 140–320 А. Если толщина листов более 4 мм, применяют электроды диаметром 8–10 мм при сварочном токе 350–550 А.

После сварки металл шва проковывают – тонкие листы в холодном, а толстые – в нагретом до температуры 200–350 °C состоянии. Для повышения вязкости металла шов подвергают отжигу нагревом до температуры 500–550 °C с быстрым охлаждением в воде.

При сварке металлическим электродом подготовка кромок и обработка шва производятся так же, как и при сварке угольным электродом. Металлические электроды изготовляют из меди М1. Покрытие имеет следующий состав: ферромарганца – 50 %, ферросилиция 75 %-го – 8 %, полевого шпата – 12 %, плавикового шпата – 10 %, жидкого стекла – 20 %. Толщина покрытия составляет 0,4 мм. Применяют также электроды марки ЗТ со стержнем из бронзы БрКМц–3–1 и покрытием следующего содержания: марганцевой руды – 17,5 %, ферросилиция 75 %-го – 32 %, плавикового шпата – 32 %, графита серебристого – 16 %, алюминия – 2,5 %. Связующим является жидкое стекло.

Покрытие наносят на стержень диаметром 4–6 мм слоем толщиной 0,2–0,3 мм. Сварку выполняют, насколько это возможно, короткой дугой на постоянном токе обратной полярности. Сварочный ток определяют из расчета 50–60 А на 1 мм электрода.

Сварку меди в защитных газах (аргон, гелий или азот) применяют для изделий толщиной 1,5–20 мм и выполняют постоянным током прямой полярности. При диметре вольфрамового электрода 2,5–5 мм и присадочной проволоке марки М1 или БрКМц–3–1 диаметром 2–6 мм сварочный ток составляет 200–500 А. Автоматическую сварку меди производят под флюсами ОСЦ–45, АН–348–А или АН–20 проволокой диаметром 1,6–4 мм марки М1 или БрКМц–3–1. Напряжение составляет 38–40 В, сварочный ток подбирают из расчета 100 А на 1 мм диаметра проволоки. Ток постоянный, обратной полярности, скорость сварки 15–25 м/ч. Листы толщиной более 8 мм требуют предварительного подогрева.

При газовой сварке меди следует учитывать высокую теплопроводность меди, поэтому для сварки требуется пламя повышенной мощности. Для листов толщиной до 10 мм удельная мощность пламени должна быть равна 150 л/(чмм), для листов толщиной свыше 10 мм – 200 л/(ч?мм). Рекомендуется производить сварку одновременно двумя горелками: одна служит для подогрева свариваемых кромок с удельной мощностью 150–200 л/(чмм) и вторая – для сварки с удельной мощностью 100 л/(чмм). Для уменьшения отвода теплоты изделия закрывают листовым асбестом. Пламя должно быть строго нормальным. Избыток ацетилена вызывает появление пор и трещин, а окислительное пламя приводит к окислению металла шва. Мундштук горелки устанавливают под углом 80–90°. Нагрев и плавку меди производят восстановительной зоной в месте максимальной температуры. Сварку производят без перерывов, в один проход.

В процессе сварки подогретый конец присадочного прутка периодически обмакивают во флюс и таким образом переносят налипший флюс в сварочную ванну. Для получения мелкозернистой структуры и уплотнения металла производят проковку шва. Металл толщиной до 5 мм проковывают в холодном состоянии, а при большей толщине – в горячем состоянии при температуре 200–300 °C. После проковки производят отжиг с нагревом до температуры 500–550 °C и охлаждением в воде.

Латунь (сплав меди с цинком) сваривают всеми способами, указанными для меди. Основное затруднение при сварке латуни связано с кипением и интенсивным испарением цинка, пары которого в воздухе образуют ядовитые оксиды. При сварке латуни угольным электродом применяют присадочные прутки из латуни ЛМц–58–2 и флюс из молотого борного шлака или буры. Применяют также прутки из латуни типа ЛК, содержащей кроме меди и цинка кремний.

При сварке плавящимся электродом применяют проволоку из латуни, содержащей: цинка – 38,5–42,5 %, марганца – 4–5 %, алюминия – 9,5 %, железа – 0,5–1,5 %, остальное – медь. Покрытие наносят в два слоя. Первый слой толщиной 0,2–0,3 мм состоит из марганцевой руды – 30 %, титанового концентрата – 30 %, ферромарганца – 15 %, мела – 20 % и сернокислого калия – 5 %. Связующим является жидкое стекло. Второй слой толщиной 0,8–1,1 мм состоит из борного шлака, замешенного на жидком стекле.

Автоматическая сварка латунных изделий производится электродной проволокой марки М1 под флюсом АН–348–А или ОСЦ–45 с добавкой 10 мас. ч. борной кислоты и 20 мас. ч. кальцинированной соды на 100 мас. ч. флюса. Сварка ведется постоянным током прямой полярности. Напряжение тока 38–42 В, сварочный ток при диаметре проволоки 2 мм составляет 300–480 А.

Латунь при газовой сварке нормальным пламенем выделяет пары, в результате чего шов получается пористым. Поэтому применяют пламя с избытком кислорода (до 30–40 %). Кислород окисляет часть цинка. Образующаяся на поверхности сварочной ванны оксидная пленка защищает расплавленный металл от дальнейшего окисления.

Свариваемые кромки зачищают до металлического блеска. Оксиды удаляют травлением с помощью 10 %-го водного раствора азотной кислоты с последующей промывкой горячей водой и протиркой насухо. Удельная мощность пламени 100–150 л/(ч?мм). Мундштук горелки устанавливают под углом 80–90°, а присадочный пруток – под углом 80° к мундштуку горелки.

Чтобы не допустить интенсивного окисления, сварку производят быстро, без перерывов и в один проход. Расстояние ядра пламени от ванны 7–10 мм. Латунь толщиной более 15 мм рекомендуется предварительно подогревать до 500–550 °C. После сварки шов проковывают. Если латунь содержит более 60 % меди, то проковку шва производят в холодном состоянии. Если меди менее 60 %, то швы проковывают при температуре 700 °C. После проковки швы подвергают отжигу при температуре 600–650 °C, с последующим медленным охлаждением.

Бронза – сплав меди с оловом, алюминием, кремнием, марганцем, цинком и свинцом. При сварке угольным электродом оловянистых бронз в качестве присадочного материала применяют прутки из сплава, содержащего меди – 95–96 %, кремния – 3–4 %, фосфора – 0,25 %. Флюс – прокаленная бура или борный шлак. При сварке специальных бронз применяют прутки, изготовленные из бронз свариваемых марок или близких им по химическому составу. Ток постоянный, прямой полярности. Сварку металлическим электродом фосфористой бронзы выполняют прутками следующего состава: олова 12 %, фосфора – 0,15–0,45 %, остальное – медь.

Для свинцовых бронз применяют прутки из сплава, содержащего свинец – 21 %, олово – 8 %, цинк – 1,5 %, остальное – медь. Прутки покрывают различными защитными покрытиями. Ток постоянный, обратной полярности. При диаметре прутка 6–8 мм сварочный ток составляет 200–300 А. Рекомендуется предварительный подогрев свариваемых деталей до температуры 250–300 °C. Допускается легкая проковка сварного шва для улучшения качества наплавленного металла.

Газовую сварку бронзы производят нормальным пламенем. Удельная мощность горелки 100–150 л/(чмм). Свариваемые кромки подготавливают так же, как и при сварке меди. Сварку ведут как можно быстрее и в один проход. Конец ядра пламени должен быть на расстоянии 7–10 мм от поверхности сварочной ванны.

Как и при сварке меди, допускается применение второй подогревающей горелки удельной мощностью 100 л/(чмм). После сварки изделие нагревают до температуры 400–450 °C, затем охлаждают в воде.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Что мы знаем о меди?

Что мы знаем о меди? Несмотря на то что медь является одним из самых распространенных в природе металлов, а изделия из меди служили человеку с давних времен, знаний об этом металле людям все-таки недостает. Иначе как бы могли родиться такие пренебрежительные поговорки:

Холодная точечная сварка (сварка внахлестку)

Холодная точечная сварка (сварка внахлестку) На рисунке 16 представлена схема холодной точечной сварки.Свариваемые детали (1) с тщательно зачищенной поверхностью в месте соединения помещают между пуансонами (2), имеющими выступы (3). При сжатии пуансонов усилием Р выступы

Характеристика свойств металлов и сплавов

Характеристика свойств металлов и сплавов В настоящее время известно 65 металлов. Но чистые металлы применяют редко, в основном в технике применяются сплавы. Например, сплав железа с углеродом насчитывает более 12 000 железных сплавов, главным образом сталей.Все металлы и

Механические свойства металлов и сплавов

Механические свойства металлов и сплавов Основные механические свойства:• прочность;• пластичность;• твердость;• ударная вязкость.Приложение внешней нагрузки вызывает в твердом теле напряжение и деформацию.Напряжение – это нагрузка (сила), отнесенная к площади

Сварка алюминия и его сплавов

Сварка алюминия и его сплавов Алюминий – очень легкий металл, имеющий плотность 2,7 г/см3. Отличаясь малой массой, сравнительно высокой прочностью, хорошей обрабатываемостью, алюминиевые сплавы широко применяются во всех отраслях народного хозяйства. Высокая

Сварка титана и его сплавов

Сварка титана и его сплавов Титановые сплавы являются сравнительно новыми конструкционными материалами. Они обладают рядом ценных свойств, обусловливающих их широкое применение в авиационной промышленности, ракетостроении, судостроении, химическом машиностроении и

Нажмите, чтобы узнать подробности

Медь используют в химическом и энергетическом машиностроении ввиду высокой электро- и теплопроводности, высокой коррозионной стойкости в некоторых агрессивных средах. Все эти свойства тем выше, чем выше чистота металла, что предъявляет особые требования к сварке изделий из чистой меди. Сварка бронз и латуней имеет свои особенности, но свойства чистой меди в этих сплавах уже значительно утрачены.


УЧАЩЕГОСЯ гр. 212

МЕНАННОГО РУСТЕМА

РЕФЕРАТ НА ТЕМУ:

ПРИМОМОРСКИЙ ПРОМЫШЛЕННЫЙ ТЕХНИКУМ

Сварка меди и её сплавов.

Медь используют в химическом и энергетическом машиностроении ввиду высокой электро- и теплопроводности, высокой коррозионной стойкости в некоторых агрессивных средах. Все эти свойства тем выше, чем выше чистота металла, что предъявляет особые требования к сварке изделий из чистой меди. Сварка бронз и латуней имеет свои особенности, но свойства чистой меди в этих сплавах уже значительно утрачены.

В зависимости от количественного содержания примесей, различают пять основных марок технической меди: М0 – с суммарным содержанием примесей не более 0,05%, М1 – не более 0,10%, М2 – не более 0,30%, М3 – не более 0,50% и М4 – с содержанием примесей не более 1,00%.

Физические и механические свойства меди М0:

плотность при 20 о С, г/см 3

температура плавления, о С

скрытая теплота плавления, Дж/г

температура кипения, о С

скрытая теплота парообразования, Дж/г

удельная теплоёмкость, Дж/(г* о С)

теплопроводность при 20 о С, Дж/(см*с* о С)

удельное электросопротивление, Ом*мм 2 /м

температурный коэффициент электросопротивление

модуль нормальной упругости, ГПа

модуль сдвига, ГПа

временное сопротивление разрыву при растяжении деформированной меди, МПа

временное сопротивление разрыву при растяжении отожжённой меди, МПа

предел текучести деформированной меди, МПа

предел текучести отожжённой меди, МПа

временное сопротивление разрыву при сжатии литой меди, МПа

относительное удлинение деформированной меди, %

относительное удлинение отожжённой меди, %

относительное сужение деформированной меди, %

относительное сужение отожжённой меди, %

твёрдость по Бринеллю деформированной меди, МПа

твёрдость по Бринеллю отожжённой меди, МПа

ударная вязкость литой меди при 20 о С, кН*м

Влияние примесей на свойства меди

Алюминий неограниченно растворим в расплавленной меди; в твёрдом состоянии растворимость его равна 9,8%. Алюминий повышает коррозионную стойкость меди, уменьшает окисляемость и понижает электропроводность и теплопроводность меди.

Бериллий понижает электропроводность меди, повышает механические свойства и резко уменьшает окисляемость меди при повышенных температурах.

Висмут практически не растворим в меди. При повышенном содержании висмута медь делается хрупкой; на электропроводность меди висмут заметного влияния не оказывает.

Железо незначительно растворимо в меди в твёрдом состоянии. При 1050 о С до 3,50% железа входит в твёрдый раствор, а при 635 о С растворимость его падает до 0,15%. Под влиянием железа повышаются механические свойства меди, резко снижаются её электропроводность, теплопроводность и коррозионная стойкость.

Кислород очень мало растворим в меди в твёрдом состоянии. Он является вредной примесью, так как при повышенном его содержании заметно понижаются механические, технологические и коррозионные свойства меди.

Водород оказывает значительное влияние на медь. Растворимость его в меди зависит от температуры: от 0,06 до 13,6см 3 /100гр металла при температуре 500 и 1500 о С соответственно. Особенно разрушительное воздействие водород оказывает на медь, содержащую кислород. Такая медь после отжига в водороде или восстановительной атмосфере, содержащей водород, делается хрупкой и растрескивается, вследствие образования водяных паров реакции водорода с закисью меди. Образовавшиеся водяные пары не диффундируют и не диссоциируют и, имея высокое давление, разрушают медь.

Мышьяк растворим в меди в твёрдом состоянии до 7,5%. Он значительно понижает электропроводность и теплопроводность, но значительно повышает жаростойкость меди.

Свинец практически не растворяется в меди в твёрдом состоянии. Заметного влияния на электропроводность и теплопроводность меди он не оказывает, но значительно улучшает её обрабатываемость резанием.

Серебро не оказывает влияния на технические свойства меди, мало влияет на её электропроводность и теплопроводность.

Сурьма растворима в меди в твёрдом состоянии при температуре эвтектики 645 0 С до 9,5%. Растворимость её резко уменьшается при понижении температуры. Сурьма значительно понижает электропроводность и теплопроводность меди.

Сера растворяется в расплавленной меди, а при затвердевании её растворимость снижается до нуля. Сера незначительно влияет на электропроводность и теплопроводность меди, заметно снижает пластичность. Под влиянием серы значительно улучшается обрабатываемость меди резанием.

Фосфор ограничено растворим в меди в твёрдом состоянии; предел насыщения твёрдого α-раствора при температуре 700 о С достигает 1,3% фосфора, а при 200 о С он снижается до 0,4%. Фосфор значительно понижает электропроводность и теплопроводность меди, но положительно влияет на механические свойства и свариваемость, повышает жидкотекучесть.

Теллур растворим в меди в твёрдом состоянии до 0,01%. На электропроводность меди теллур значительного влияния не оказывает.

Селен мало растворим в меди в твёрдом состоянии – до 0,1% и выделяется при затвердевании в виде соединения Se2О. Влияние на медь аналогично влиянию серы.

Классификация медных сплавов.

Вследствие недостаточной прочности технически чистую медь применяют редко в качестве конструкционного материала. Широкое распространение в промышленности имеют сплавы меди – латуни, бронзы.

Латунями называют медные сплавы, в которых основным легирующим элементом является цинк. Такие медноцинковые сплавы принято называть двойными латунями. Для повышения механических свойств и химической стойкости латуней в них часто вводят легирующие элементы: алюминий, никель, марганец, кремний и т.д.

Многокомпонентные медноцинковые сплавы принято называть специальными латунями. Сплавы меди с оловом, алюминием, кремнием и другими элементами, среди которых цинк не является основным легирующим элементом, называют бронзами. В зависимости от основного легирующего элемента, различают две группы бронз: оловянные бронзы и специальные бронзы.

Оловянные бронзы, в зависимости от содержания в них других легирующих элементов подразделяют на: оловяннофосфористые, оловянноцинковые и оловянноцинкосвинцовые бронзы. Специальные бронзы – это двойные или более сложные сплавы на медной основе, содержащие в качестве добавок: алюминий (алюминиевые бронзы), бериллий (бериллиевые бронзы), никель (с добавлением железа – никелевожелезная бронза), марганец (марганцевая бронза), кремний (кремниевая бронза), кадмий (кадмиевая бронза), хром (хромовая бронза).

В зависимости от содержания в алюминиевых бронзах других основных легирующих элементов, их подразделяют на: алюминиевомаргацевые, алюминиевожелезные, алюминиевожелезомарганцевые, алюминиевоникелевые бронзы. Кремнистые бронзы, введением в них марганца или никеля, подразделяют на: кремниевомарганцевые и кремниевоникелевые.

Общие сведения по свариваемости

Инертная при обычных температурах медь при нагреве реагирует с кислородом, серой, фосфором и галогенами. С водородом она образует неустойчивый гидрид СuН, с углеродом образует ацетиленистую медь Сu2С2 (взрывчатую); с азотом медь не реагирует, что позволяет азот использовать как защитный газ для сварки чистой меди.

Медь в условиях сварки может окисляться за счет газовой атмосферы или за счет обменных реакций с компонентами флюсов или электродных покрытий. Сродство меди к кислороду возрастает при растворении закиси меди в жидкой меди, особенно сильно при малых концентрациях Си2О, и резко снижается до нормального при распаде жидкого раствора в процессе образования эвтектики Сu—Сu2О; Сu2О как отдельная фаза легко восстанавливается до меди. Газы, образующиеся в результате реакций, не растворяются в твердой меди и нарушают металлическую связь между зернами, приводя к образованию трещин - "водородная болезнь" меди.

Твердые растворы меди с кислородом имеют исчезающие малые концентрации при низких температурах. Поэтому медь в процессе сварки необходимо тщательно раскислять или вести сварку в среде инертных защитных газов или в вакууме.

Остаточные концентрации раскислителей влияют на свойства металла шва (электропроводность, теплопроводность, коррозионную стойкость), и поэтому при сварке изделий из чистой меди задача раскисления металла шва решается с трудом.

К сварным соединениям из чистой меди почти всегда предъявляют высокие требования по сохранению в металле сварных швов всего комплекса физических свойств: электропроводности, теплопроводности, плотности и коррозионной стойкости, так как эти изделия работают в тяжелых условиях эксплуатации. Поэтому в процессе сварки медь не должна загрязняться какими-либо примесями, влияющими на эти свойства.

Особенно высокие требования предъявляются к сварке вакуум-плотных швов в изделиях электронной техники, в энергетических установках, в узлах аппаратуры, работающей с внутренним охлаждением. Механические свойства сварных соединений определяются общими свойствами меди. Сварка чистой меди существенно отличается от сварки сталей.

Большие тепло- и температуропроводность создают высокие градиенты температуры и скорости охлаждения, а также малое время пребывания сварочной ванны в жидком состоянии. Это обусловливает необходимость применения повышенной погонной энергии при сварке меди по сравнению со сталями или применения предварительного подогрева изделия, но последнее является нежелательным осложнением технологии сварки.

Значительный коэффициент линейного расширения и его зависимость от температуры вызывают необходимость сварки при жестком закреплении изделия или по прихваткам. При большой толщине металла следует регулировать ширину зазора при сварке. Малое время существования сварочной ванны в жидком состоянии ограничивает возможности ее металлургической обработки. В частности, при раскислении меди требуются более активные раскислители, чем при сварке сталей, для снижения концентрации кислорода до допустимых пределов.

Высокие градиенты температуры способствуют развитию термической диффузии водорода в зоне термического влияния, что приводит к обогащению водородом металла вблизи зоны сплавления и увеличивает вероятность возникновения дефектов (пор, трещин). Высокая чувствительность меди к водороду должна учитываться при разработке технологии сварки.

Выбор технологического процесса сварки изделия в первую очередь определяется его назначением, сложностью (наличие коротких или криволинейных швов в различных пространственных положениях, труднодоступных мест), а также числом изготовляемых изделий (серия) и требованиями, предъявляемыми к их качеству. К высокопроизводительным процессам относятся электродуговая сварка под флюсом плавящимся электродом, электрошлаковая сварка металла больших толщин, и их следует использовать при серийном производстве или на заготовительных операциях.

При соответствующей подготовке сварочных материалов (прокалке флюса до 400—450 0 С) эти виды сварки обеспечивают хорошие результаты (защиту и малое загрязнение металла шва, относительно невысокие температурные градиенты, снижающие влияние водорода). При единичном производстве и ремонтных работах рекомендуется использовать газовую сварку, в процессе которой осуществляется подогрев и начальная термическая обработка изделия. Невысокие температурные градиенты уменьшают воздействие сварочного термического цикла на металл в зоне сварки (шов, зона термического влияния). Возможно, раскисление и легирование металла через присадочную проволоку.

Газовую сварку можно применять как для чистой меди, так и для ее сплавов. Ручная дуговая сварка покрытыми электродами приводит к загрязнению металла шва легирующими компонентами, что нарушает физические свойства металла шва по сравнению с чистой медью.

Сварка медных сплавов (бронз) идет удовлетворительно, но в латунях при этом теряется цинк за счет испарения и окисления. Дуговую сварку в защитных газах, широко применяемую в сварочной технике, используют также для изготовления сварных изделий из меди и ее сплавов. Для сварки изделий из чистой меди чаще используют сварку неплавящимся вольфрамовым электродом в среде аргона, гелия или азота. Защитные газы должны быть особо чистыми.

Стойкость вольфрамового электрода в чистом азоте вполне удовлетворительная, и применение этого недефицитного и недорогого газа обеспечивает значительный экономический эффект. Несмотря на применение защиты инертными газами, при сварке происходит окисление меди, и для ее раскисления следует применять микролегированные присадочные проволоки, содержащие сильные раскислители (титан, цирконий, бор, редкоземельные металлы). В результате этого можно получить металл шва со свойствами на уровне чистой меди.

Для сварки сплавов меди в защитных газах (Аг и Не) можно использовать присадочные проволоки, по составу совпадающие с основным металлом или содержащие небольшое количество раскислителей (81 и Мп). Сварку меди в среде защитных газов плавящимся электродом применяют реже, так как в этом случае капли электродного металла подвергаются существенному перегреву. При сварке меди и ее сплавов электрической дугой в защитных газах в зоне сварки создаются высокие градиенты температур и, следовательно, условия для диффузии водорода в зоне термического влияния.

При достаточном количестве водорода, растворенного в основном металле, вероятно возникновение дефектов (пор, трещин). Поэтому при сварке изделия из меди и ее сплавов следует контролировать содержание водорода в основном металле, так как его содержание в зоне сплавления, учитывая коэффициенты сегрегации, может оказаться выше допустимого. Выравнивание концентраций водорода, создавшихся в процессе сварки, возможно в результате последующей термической обработки.

Медь можно сваривать в воздушной атмосфере без защиты, но в этом случае проволока должна содержать раскислители высоких концентраций, и металл шва, удовлетворяя по механическим свойствам, будет существенно отличаться от основного металла по тепло- и электропроводности. Медь, как металл высокой пластичности, хорошо сваривается всеми видами сварки термомеханического класса, кроме контактной сварки, так как обладает малым переходным электрическим сопротивлением.

Для приварки выводов из тонких медных проволок в изделиях электронной техники используют термо-компрессионную сварку. Для более крупных изделий сложной конфигурации широко применяют диффузионную сварку в вакууме, позволяющую получать соединения меди не только с медью, но и с другими металлами и даже неметаллическими материалами.

Основным преимуществом диффузионной сварки в вакууме является отсутствие остаточных напряжений, если сваривают однородные материалы. В случае сварки разнородных металлов различие в коэффициентах линейного расширения соединяемых металлов может привести к возникновению температурных напряжений. Холодную сварку меди пластической деформацией сдвига или сдавливания используют для сварки медных шин в энергетических установках. Она обеспечивает удовлетворительное электрическое сопротивление сварных соединений.

Газовая сварка.

Для меди используют ацетилено-кислородную сварку, обеспечивающую наибольшую температуру ядра пламени. Газовая горелка — тепловой источник малой сосредоточенности; поэтому поддержание нормальных размеров сварочной ванны затрудняется.

Для изделия толщиной более 10 мм рекомендуется применять две горелки, из которых одна осуществляет подогрев, а вторая служит для сварки. При двусторонней сварке двумя горелками необходимость подогрева отпадает.

Для сварки меди и бронз используют нормальное пламя. Раскисление металла сварочной ванны, несмотря на защиту от окружающей среды продуктами сгорания, производится извлечением закиси меди флюсами или введением раскислителей через присадочную проволоку. Сварочные флюсы для меди содержат соединения бора (борная кислота, борный ангидрид, бура), которые растворяют закись меди, образуя легкоплавкую эвтектику, и выводят ее в шлак.

Электросварка деталей из различных металлов и сплавов имеет ряд особенностей. Рассмотрим эти особенности для случаев сварки стали, чугуна, меди, алюминия и магния.

Малоуглеродистые и углеродистые стали. Электрическая сварка сталей содержащих до 0,3% С, не представляет никаких особенностей и затруднений вследствие неспособности этих сталей давать практически заметную закалку. Подогрев свариваемых деталей и термическая обработка шва требуются только в случае очень значительной толщины свариваемых деталей.

При содержании углерода свыше 0,3% необходимы подогрев деталей и последующий отжиг. Температура отжига зависит от содержания углерода в свариваемых деталях.

Специальные стали перлитного класса, т. е. с малым содержанием углерода и легирующих элементов, свариваются вполне удовлетворительно. Так же хорошо свариваются и стали аустенитного класса; они не испытывают в процессе охлаждения структурных изменений и обладают большой вязкостью. Отсутствие структурных превращений при охлаждении сталей аустенитного класса в большинстве случаев позволяет при их сварке обходиться без термической обработки, а большая вязкость их сильно снижает возможность трещино-образования.

Сварка сталей мартенситного класса сопровождается трудностями, вызываемыми хрупкостью материала. Здесь требуются и предварительный подогрев, и последующая термическая обработка.

При сварке сталей карбидного класса необходимо учитывать хрупкость, вызываемую выпадением карбидов при медленном охлаждении наплавленного металла.

Рассмотрим некоторые примеры особенностей сварки специальных сталей.

Нержавеющие стали. К распространенным нержавеющим сталям относится хромистая сталь с содержанием 12—14% хрома и хромоникелевая, содержащая -18% Сr и 8% Ni.

При медленном остывании первая получает мартенситную структуру. Сварной шов соединения из такой стали отличается твердостью и склонностью к трещинообразованию. Кроме того, механические свойства шва ухудшаются по причине выпадения в наплавленном металле карбидов хрома.

Дуговую сварку этих сталей ведут электродами, содержащими —18% Сr, - 8% Ni и углерода не более 0,07%. Для предохранения наплавленного металла от окисления электроды покрывают обмазкой.

Во избежание образования трещин сварку ведут с подогревом деталей до 600—650°.

Стали, содержащие 18% Сr и 8% Ni, относятся к аустенитному классу. Малая теплопроводность и большой коэфициент линейного расширения этих сталей заставляют во избежание коробления и выпадения карбидов создавать при их сварке искусственный отвод тепла, чего можно достигнуть, например, применением медных подкладок.

Для борьбы с карбидообразованием в основной и присадочный металл вводят присадку титана или ниобия и применяют также термическую обработку, состоящую в нагреве металла до 1050—1100° с последующим быстрым охлаждением.

Во избежание выпадения карбидов точечную и роликовую сварку нержавеющей стали аустенитного класса следует проводить возможно быстрее, а давление электродов должно обеспечить хороший контакт и быстрый отвод тепла.

Марганцовистая сталь. Наиболее широкое применение имеет марганцовистая сталь, содержащая 11—14% Mn, хорошо сопротивляющаяся ударным нагрузкам и истиранию.

Особенности сварки этой стали обусловливаются большим коэфициентом ее линейного расширения (в 1,9 раза больше, чем у малоуглеродистой), малой теплопроводностью (приблизительно в 5 раз меньше, чем у малоуглеродистой стали) и большой усадкой (в 1,6 раза больше, чем у малоуглеродистой стали).

Учитывая эти свойства, при сварке марганцовистых сталей нагрев ведут возможно медленнее и сварку производят небольшими участками (50—60 мм длины). Ввиду большой усадки марганцовистой стали шов проковывают в горячем состоянии.

В качестве электродов можно применять малоуглеродистую проволоку или прутки стали, содержащей 11—13% Мn, 0,6—1,0% С и 4—4,5% N1. Электроды покрывают обмазкой.

Дуговую сварку чугуна можно производить угольным и металлическим электродом с предварительным подогревом свариваемых деталей и без такового. В первом случае сварку принято называть горячей, во втором — холодной.

Горячая сварка. В качестве электродов применяют чугунные прутки диаметром от 8 до 20 мм. Состав прутков и флюсов (если не применяют обмазанных электродов) тот же, что и состав присадочного материала при газовой сварке. Подогрев и подготовку детали производят так же, как и при газовой сварке, с добавлением операции формовки, имеющей целью предохранить наплавленный металл от растекания. На фиг. 392 показана схема такой операции.

Сила тока достигает 300—1000 а при напряжении 40—70 в.


При сварке с подогревом наплавленный металл близок по составу к основному металлу.

Недостатком сварки с подогревом является возможность коробления деталей при подогреве и трудоемкость процесса.

Холодная сварка. При холодной сварке чугуна можно применять электроды как чугунные, так и стальные, а также из монель-металла (приблизительный состав: 30.2% Сu, 65,22% Ni, 1,47% Мn, 2,85% Fe, 0,22% Si, следы Pb).

Для стальных электродов используют малоуглеродистую сталь. Сварной металл, обогащаясь углеродом от чугуна, приобретает состав высокоуглеродистой стали. В переходной зоне чугун отбеливается, хрупкость его повышается, а соединение с наплавленным металлом оказывается недостаточно надежным. Для повышения прочности соединения при подготовке шва в основной металл ввертывают шпильки. Схема подготовки шва с установкой шпилек в один

ряд показана на фиг. 393, а, а на фиг. 393, б и в показана схема установки шпилек в два ряда.

Хороший результат дает холодная сварка чугунными электродами с применением обмазок. Состав электродов: 2,8—3,0% С, 4—4,5% Si, 0,6—0,7% Мn, до 0,2% S, 0,1% Р; диаметр 6—8 мм. При пользовании чугунными электродами состав наплавленного металла близок к составу основного.


Применение монель-металла позволяет получать хорошо обрабатываемый прочный шов, а также вследствие присутствия никеля — графитизированный мягкий чугун в переходной зоне.

Для дуговой сварки меди применяют преимущественно угольные электроды. Вследствие большой теплопроводности сварку ведут при повышенной силе тока напряжением 40—55 в. Для получения хорошего результата скорость сварки не должна быть ниже 0,25 м/мин. Это объясняется тем, что в процессе сварки медь под действием кислорода воздуха образует окислы (Сu2O и СuО), располагающиеся по границам зерен меди и делающие ее хрупкой. При медленном ходе процесса сварки хрупкость наплавленного металла увеличивается.

Дуговая сварка меди имеет преимущество перед газовой, заключающееся в большей локализации тепла, что важно вследствие большой теплопроводности меди.

При дуговой сварке угольным электродом применяют флюсы, в состав которых входит бура и борная кислота. Силу тока и диаметр электрода определяют толщиной свариваемых листов.

При сварке металлическим электродом можно применять чистую электролитическую медь или медь с примесью фосфора и серебра.

В табл. 47 приведены данные, показывающие зависимость силы тока и диаметра электродов от толщины свариваемых листов.


Сварка латуни и бронзы в основном одинакова со сваркой меди; некоторые особенности дуговой сварки этих сплавов подобны отмеченным при газовой сварке их.

Контактная сварка меди представляет значительные трудности, вызываемые большой теплопроводностью и электропроводностью меди. Для контактной сварки меди необходимо применять в 5—10 раз большую силу тока, чем в случае контактной сварки стали.

Алюминий и магний

Алюминий. Дуговую сварку алюминия можно производить как угольным, так и металлическим электродом; более распространенной является сварка металлическим электродом.

Угольным электродом алюминиевые листы сваривают встык без скоса и со скосом кромок. Присадочным материалом служит проволока того же состава, что и при газовой сварке алюминия, покрытая обмазкой, состав которой одинаков с составом флюса при газовой сварке.

При сварке металлическим электродом пользуются только обмазанными электродами. Диаметр электрода и силу тока определяют толщиной свариваемых листов. Зависимость диаметра электрода и силы тока от толщины свариваемых листов можно видеть из табл. 48.

Электросварка стали, чугуна, меди, алюминия и магния

При сварке металлическим электродом кромки листов толщиной более 6 мм скашивают под углом 45°. Длина дуги должна быть не больше 5 мм, так как слишком длинная дуга может обрываться, вызывая разбрызгивание материала электрода.

Точечная и роликовая сварка дает хороший результат в применении к алюминию и его сплавам. Наличие на поверхности алюминия быстро образующейся пленки окисла, обладающей большим сопротивлением прохождению тока, благоприятствует применению этих видов сварки. Большая электропроводность и теплопроводность алюминия обусловливают необходимость применения при его сварке контактным методом тока большой силы. По сравнению с малоуглеродистой сталью сила тока при контактной сварке алюминия должна быть приблизительно вдвое больше. Вследствие большей электропроводности и меньшей механической прочности алюминия по сравнению со сталью давление на электроды при точечной и роликовой сварке алюминия должно быть меньше, чем в аналогичных условиях при сварке стали.

Магний. Вследствие большого сродства магния к кислороду дуговую сварку магния можно производить лишь в атмосфере нейтральных газов — гелия, аргона. Преимуществом такой сварки является возможность обходиться без флюсов.

При точечной и роликовой сварке сплавов магния можно применять меньшие мощности, чем в случае сварки алюминия, так как теплопроводность и электропроводность этих сплавов меньше, чем у алюминия.

Вследствие того, что присутствие следов меди на поверхности листа из магниевого сплава вызывает впоследствии сильное корродирование этой поверхности, медные электроды, применяемые при точечной и роликовой сварке магниевых сплавов, должны быть хромированы или посеребрены.

В описании сварочных работ отдельной категорией приходится рассматривать сварку меди, благодаря ее уникальным химическим и физическим свойствам. Изделия из меди достаточно часто встречаются в быту и на производстве. Этот металл обладает неплохой теплопроводностью, хорошо проводит электрический ток, устойчив к коррозии и пластичен. Ко всему перечисленному следует добавить эстетические качества.

В связи с востребованностью, медь может применяться сегодня в самых различных сферах. Логично предположить, что и работы, связанные со сваркой данного металла, вызывают огромный интерес, как у профессиональных сварщиков, так и у начинающих мастеров. В частности, актуальным считается вопрос о возможности сварки меди в домашних условиях.

Популярный металл

Отличительные особенности

Первое, что следовало бы подчеркнуть при рассмотрении процедуры сварки меди, — это зависимость хода работ от сплава. В действительности используется медь далеко не в чистом виде. На практике приходится дело иметь с различными примесями и сплавами. Чем чище медь, тем легче проводить подобные работы. Однако количество металла в примеси является не самым главным определяющим нюансом. Основные особенности и сложности, возникающие при ведении сварочных работ, должен знать каждый мастер.

  • Медь, являясь представителем цветных металлов, быстро окисляется. В результате химической реакции с кислородом на поверхности металла образуется пленка – окисел. Она достаточно жаропрочная, поэтому существенно препятствует свариванию. На подготовительном этапе следует в обязательном порядке избавиться от этой пленки.
  • Следует учитывать коэффициент теплового расширения. Медь в процессе нагревания расширяется достаточно сильно. При охлаждении происходит обратный процесс. Если формированию шва это никак не препятствует, то после его застывания будут наблюдаться разрывы и трещины.
  • Жидкий металл поглощает кислород и водород. Закись меди имеет другую температуру плавления, нежели чистый металл, что существенно осложняет работу. Водород, вступая в реакцию с кислородом, образует внутри жидкого металла пузырьки с водяным паром. После сварки в зоне шва наблюдаются трещины, а сам металл становится пористым.
  • Изменение температуры в широких диапазонах за малые промежутки времени приводит к реструктуризации кристаллов. Мелкозернистая структура превращается в крупнозернистую. Такие изменения приводят к повышению хрупкости меди в зоне шва.
  • Внутренние дефекты свариваемых деталей возникают при плавлении и кристаллизации. Благодаря высокому коэффициенту теплопроводности, медь быстро плавится и после этого сразу же кристаллизуется.
  • Показатель текучести данного металла в несколько раз превышает показатель для стали. При работе с толстыми заготовками приходится нагревать материал до высоких температур. В таком случае проплавка кромки практически невозможна. Именно с проблемой текучести при сварке меди применяют двустороннюю технологию. Следует помнить, что сложны вертикальные и потолочные работы.
  • Такие свойства меди, как прочность и пластичность, зависят от температуры. Если температура металла находится в пределах 200°C градусов, то эти параметры достаточно высокие. Но при дальнейшем нагревании металла происходит их резкое снижение. Для меди температура в 550°C градусов является критической, так как пластичность практически исчезает. Это еще один фактор, который способствует появлению трещин в зоне ведения сварки.

Итоговый результат

Еще раз отметим, что чистую медь легче сваривать, чем медь с различными примесями. Также неприхотлива и раскисленная медь. Это металл с низким содержанием кислорода.

Но, к сожалению, на практике подобные материалы встречаются редко, поэтому для качественной сварки приходится применять флюсы, присадки, а работу вести в среде защитного газа. В качестве присадок используются такие раскислители, как марганец, кремний, алюминий. Имея в наличии электроды, стержни которых содержат перечисленные элементы, можно медь варить в режиме ручной дуговой сварки (MMA).

Подготовка металла

Качественный результат сварки меди зависит не только от выверенных действий сварщика, но и от проведенного подготовительного этапа. Сначала следует обратить внимание на форму заготовки. Обычно это труба или лист. Первая процедура связана с кроением. По размерам вырезают нужную заготовку. В некоторых случаях приходится деталь порезать на несколько частей.

Медь неплохо поддается обработке, поэтому резать ее можно при помощи трубореза, шлифовальной машины или станка. Возможно применение плазменно-дуговой резки.

Рабочий процесс

Разделка кромок – обязательная процедура. Предполагается исключительно механическая обработка торцов заготовок. Очистив поверхность металла от загрязнений, приступают к снятию оксидной пленки. Она видна невооруженным глазом. Деталь без пленки блестит, а окисел представляет собой мутноватый налет. Подготовленные торцы обрабатываются наждачной бумагой или металлической щеткой. После завершения этих работ металл следует обезжирить.

Не следует применять наждачку с крупным зерном, так как на поверхности заготовки могут остаться глубокие задиры. Среди популярных способов обработки детали и присадочной проволоки выступает травление. Это выдерживание заготовок в специальном растворе, приготовленном на основе азотной, соляной или серной кислоты. До нужной концентрации раствор доводится путем смешивания кислоты с водой. После травления поверхности необходимо промыть в воде, а затем просушить.

Медь требует предварительного прогрева в тех случаях, когда толщина деталей превышает 1 см. Прогрев газовой горелкой или в печи также входит в перечень подготовительных работ. Перед непосредственным свариванием детали совмещают так, чтобы между кромками образовывался небольшой зазор. Фиксировать заготовки можно струбцинами или прихватками, очищенными от инородных частиц. К дополнительным приспособлениям относят экраны для защиты места сварки от ветра и графитовые подкладки. Графит хорошо отводит тепло. Помимо этого, подкладка препятствует растеканию расплавленного металла.

Качественный шов

Ручная дуговая сварка

Ручная дуговая сварка, если она для данного металла целесообразна, имеет преимущество в технико-экономическом плане. Режим ручной сварки характерен достаточно высокой производительностью при наличии навыков у сварщика. Если быть более точным, то к дуговой сварке можно отнести не только работы в режиме MMA. Это и автоматическая сварка под флюсом, а также сварка в среде защитного газа. Но традиционно принято ручную дуговую сварку рассматривать, как отдельный вид работы.

Перед подготовкой следует уделить внимание выбору метода разделки кромок. Если толщина металла варьируется в пределах от 6 до 12 мм, то кромки разделываются под углом 60-70° градусов друг к другу. При наличии подварочного шва с противоположной стороны угол между кромками уменьшается до 50° градусов. Зазор между кромками должен составлять 2% от длины шва. Возможна сварка и без раздвигания листов. В этом случае заготовки предварительно прихватываются в участках, расположенных на расстоянии 30 см друг от друга. Не необходимо помнить, что при отсутствии зазора обычно происходит перегрев металла с последующим образованием трещин.

Ручная дуговая сварка

Если толщина заготовки превышает 12 мм, то рекомендуется произвести Х-образную разделку кромок. Она пригодна для двусторонней сварки. Но такой способ разделки достаточно сложен, поэтому можно оставить М-образную разделку, но следует помнить, что возрастет расход электродов и придется применять подкладки. Предварительный прогрев подразумевает доведение температуры кромок до значения 300-400°C градусов.

Сварка меди и ее сплавов ведется при постоянном токе с обратной полярностью. Использование переменного тока теоретически возможно, однако не дает желаемой стабильности дуги. Также при переменном токе наблюдается разбрызгивание метала. Чтобы правильно выбрать режим сварки, необходимо пользоваться специальными таблицами. Ориентироваться можно на следующие показатели:

  • толщина детали – 2 мм, диаметр электрода – 3 мм, сила тока – 120 А;
  • толщина – 3 мм, диаметр – 4 мм, сила тока – 160 А;
  • толщина – 5 мм, диаметр – 6 мм, сила тока – 300 А;
  • толщина – 10 мм, диаметр – 8 мм, сила тока – 400 А.

Специальная техника

Чем больше толщина заготовки, тем в большей степени возникает необходимость ведения сварки в несколько слоев. Тонкие листы свариваются за один проход. Технология наложения шва имеет свои особенности. Она выполняется участками по 200-300 мм. Будущий шов делят в соотношении 1 к 2. Сначала в одном направлении заваривается наибольший участок, а затем во встречном направлении – меньший. Практика показывает, что подобная технология повышает качество соединения и избавляет от трещин.

Применение угольных и графитовых электродов

Подобный тип сварки не нашел широкого применения, так как не дает высоких показателей прочности шва. Угольные электроды выбираются в случае работы с малоответственными изделиями, толщина которых не превышает 1,5 см. При увеличении толщины приходится выбирать графитовые электроды. Стержни затачиваются на конус. Сварка ведется при прямой полярности постоянным током.

Графитовые электроды

В процессе формирования шва присадку в виде прутка не погружают в зону, а держат на расстоянии 5-6 мм. Угол между прутком и плоскостью должен составлять 30° градусов. Защитным средством от окисла служит флюс. В его состав входит плавленая бура и магний. Пруток предварительно погружается в жидкое стекло, затем на него наносится флюс.

При толщине кромок выше 5 см их приходится разделывать с образованием угла 70-90° градусов. Чтобы металл не растекался, используют графитовую подкладку. Важным является процедура предварительного подогрева до 800°C градусов и последующего охлаждения.

Аргонодуговая

Аргон выступает в качестве защитного газа, способного вытеснять атмосферный кислород и препятствовать образованию окисла. Сварка выполняется неплавящимся электродом из вольфрама. При работе с массивными деталями предусмотрено их предварительное нагревание. Присадкой служит медный пруток, в состав которого входят примеси никеля. Присадка маркируется. Так, МНЖКТ-5-1-0,2-0,02 – это медно-никелевый сплав, а БрКМц 3-1 – бронза.

Аргонодуговая сварка

Под флюсом

Высокое качество шва может обеспечить автоматическая сварка. Именно ее применяют в промышленности, так как механизированный процесс позволяет повысить производительность. Сварка ведется неплавящимся электродом с применением флюса. Детали требуют предварительной подготовки. При наличии зазоров необходимо пользоваться подкладкой.

Сварка под флюсом

Присадочная проволока изготовлена из меди М1, М2 или М3. Проволоку предварительно нагартовывают. За неимением такой возможности используют бронзу БрОФ 40-,3 или БрКМц 3-1. следует помнить, что именно медь гарантирует отсутствие трещин в зоне шва. Для ведения подобных работ необходимо оборудование, обладающее механизмом подачи проволоки. Большинство современных инверторов для полуавтоматической сварки оснащены подобной функцией, поэтому работать с медью можно и в домашних условиях.

Газовая

При соблюдении всех рекомендаций по ведению газовой сварки можно получить качественный шов. Используется баллон с ацетиленом и горелка. Минусом такого процесса является высокий расход газа. Экономить на пламени не получится, поэтому средний расход составляет около 200 литров в час. Пламя горелки направляется по нормали к поверхности. Избежать окисления и возникновения трещин можно путем увеличения скорости сварки, а также отсутствием пауз при наложении шва.

Газовый метод

В качестве расходного материала используется проволока, содержащая раскислители. Максимальный диаметр проволоки не должен превышать 8 мм. После разделки кромок поверхность обрабатывают в растворе воды и азотной кислоты. Полученные стыки после сварки отжигают и проковывают при температуре 3000°C градусов, после чего деталь охлаждают в воде.

Если толщина изделий превышает 30 мм, то целесообразно воспользоваться электрошлаковой сваркой. Для меди применяются пластинчатые электроды. Флюс содержит фторид натрия, литий и кальций. Данный процесс характерен высокими токами. Значение тока достигает 1000 А. Метод позволяет вести работы с высокой скоростью и получать отличное качество шва.

Читайте также: