Джон фон нейман реферат

Обновлено: 05.07.2024

Прошлым летом в Эдмондтоне (провинция Альберта) состоялся Канадский математический конгресс. Профессор Диксмье из Парижа прочитал доклад об алгебрах фон Неймана, доктор Цассенхауз начал свои лекции по теории групп с неймановского определения инфинитезимальных операторов и их коммутаторов, доктор Таккер из Принстона сообщил о новых результатах в теории игр — еще одной области математики, которую фон Нейман отчасти заложил своими трудами и существенно обогатил своими идеями. Фон Нейман внес важный вклад во все области математики, за исключением теории чисел и топологии, и оставил заметный след в теоретической физике и экономике. Его работа во время войны имела жизненно важное значение для успеха нескольких проектов, а его вклад в национальное благосостояние и национальную безопасность с окончанием войны не только не прекратился, но даже усилился. Он умер, будучи членом Комиссии по атомной энерии США.

Джон фон Нейман родился 28 декабря 1903 году в семье состоятельного банкира в Будапеште. Образование он получил в Высшей лютеранской школе в своем родном городе. В то время эта школа была, по-видимому, лучшим высшим учебным заведением Венгрии, а может быть, и всего мира. По крайней мере двое ее преподавателей вели, хотя и в скромных масштабах, самостоятельную исследовательскую работу, большинство же преподавателей занимались в основном чтением лекций и воспитанием молодых людей. Руководство школы вскоре заметило математические таланты фон Неймана, и преподаватель математики Ратц, которому автор этой заметки также многим обязан, взял Янчи (уменьшительное от Янош) под свое крыло, начал давать ему частные уроки и ввел его в университет. Между университетом и по крайней мере некоторыми высшими учебными заведениями тогда существовали очень тесные связи, и фон Нейман приобрел известность в процветающем кружке будапештских математиков еще до окончания высшей школы. Духовному отцу многих венгерских математиков Фейеру принадлежит фраза: "Величайший Янчи нашей страны", — этот титул сохранился за Нейманом на всю жизнь.

В школе и среди коллег Янчи старался держаться незаметно. Он принимал участие во всех проделках своего класса, но если можно так выразиться, не от всей души, а лишь для того, чтобы не выделяться. У него было несколько близких друзей, и он пользовался всеобщим уважением. Все студенты признавали его умственные способности и не без зависти восхищались ими. Янчи любил беседовать о математике даже в том юном возрасте, и его друзьям после прогулок с фон Нейманом нередко случалось поздно возвращаться домой.

После окончания высшей школы Нейман в течение двух лет изучал химию в Берлинском университете, а затем также в течение двух лет — в Цюрихе. Занятия химией были своеобразной страховкой от превратностей карьеры математика. Математик в то время мог заниматься только преподаванием, а преподавательских мест в университете было очень мало. Жалованье, получаемое преподавателем, не соответствовало стандартам богатых родителей Неймана. Поэтому занятия химией были избраны как компромисс между научными наклонностями Янчи и суровой реальностью жизни, на которую не закрывали глаз не только его семья, но и он сам. Однако большую часть времени студент-химик проводил в обществе математиков Берлина и Цюриха, и привязанность юного студента к предмету его занятий никогда не была особенно сильной. Он успешно закончил свои занятия химией, но в том же году, в котором он получил в Цюрихе свой диплом химика, он получил степень доктора философии по математике в Будапеште. Очевидно, диссертация на эту степень и экзамены не потребовали от него сколько-нибудь значительных усилий.

После получения степени доктора философии фон Нейман продолжил свои занятия в Геттингене и Гамбурге и в 1927 г. стал приват-доцентом Берлинского университета. Химия постепенно отошла на задний план и была полностью оставлена, и его интересы сосредоточились на математике и теоретической физике. Именно в этот период фон Нейман опубликовал некоторые из своих наиболее значительных работ.

В 1929 году фон Нейман получил приглашение провести один семестр в Принстоне. Америка понравилась ему с первого взгляда, и он почувствовал себя в общественной и научной атмосфере Принстона как рыба в воде. Приглашение на один семестр вскоре было расширено: фон Нейману предложили занять профессорскую должность сначала на полставки, а в 1931 г. — на полную ставку. Незадолго до своего первого визита в Принстон фон Нейман женился. Он и его жена, урожденная Мариэтта Кевеши, нашли в Принстоне многих друзей, любовь которых ни к мужу, ни к жене не уменьшилась и в последующие годы. Вечера, которые устраивала Мариэтта, и веселая атмосфера их дома вошли в Принстоне в поговорку и были излюбленной темой разговоров еще долго после их отъезда в 1937 г. У фон Нейманов была одна дочь Марина. Ныне она вышла замуж и живет в Принстоне.

В 1933 году, вскоре после основания Института высших исследований, фон Нейману предложили место в математическом отделе института. В то время институт был грандиозным экспериментом в области высшего образования и исследовательской работы в США, вдохновителями и организаторами которого выступили Флекснер и Веблен и их друзья-единомышленники, взявшие на себя финансирование всего предприятия. Приглашение в институт фон Неймана, тридцатилетнего математика, вместе с некоторыми самыми выдающимися и знаменитыми математиками США означало не только признание его таланта, но и свидетельствовало о полноте его слияния с жизнью Америки. Всю остальную часть своей научной карьеры фон Нейман провел в Институте высших исследований. Еще до войны он вступил во второй брак с Клари Дан (с которой познакомился еще в Венгрии и которая пережила его).

Деятельность фон Неймана во время войны была чрезвычайно многообразной. Особенно широкую известность получил взрывной метод инициирования атомного взрыва. Фон Нейман придумал этот метод независимо от других, но, несомненно, в результате прекрасного знания физики зарядов с искривленной поверхностью. Фон Нейман никогда не порывал своих связей с военными и с работами по использованию ядерной энергии и после окончания войны и отдавал много времени, энергии и сил укреплению военной мощи своей второй родины. Последние годы его жизни были полностью посвящены работе в правительственных учреждениях, и после нескольких лет службы он умер 8 февраля 1957 г., будучи членом Комиссии по атомной энергии США.

Описать сколько-нибудь подробно вклад фон Неймана в науку — математику, физику, экономику, решение технических проблем — менее чем на 10 страницах просто невозможно. Его работа в области математики, которая всегда была особенно близкой его сердцу и в которой его блестящий ум находил наиболее полное выражение, проходила под сильным влиянием гильбертовской аксиоматической школы. Это влияние прослеживается не только в работах фон Неймана по математической логике, но и в его подходе к другим проблемам, в решение которых он также внес фундаментальный вклад: теории гильбертова пространства, теории неограниченных операторов, квантовой механике, теории игр. Объекты, изучением которых занималась рассматриваемая им теория, фон Нейман описывал, перечисляя те их свойства, которые затем использовались при доказательствах того или иного утверждения. Таким образом, результаты теории были применимы ко всем объектам, обладавшим перечисленными свойствами, независимо от их природы. Помимо уже названных областей математики фон Нейман внес решающий вклад в теорию групп и алгебру операторов. Вершиной его работы в области теоретической физики явилась книга "Математические основы квантовой механики", вышедшая задолго перед войной, но лишь недавно переведенная на английский язык [* имеется перевод: Иоганн фон Нейман. "Математические основы квантовой механики" - М., изд-во "Наука", 1964; разница имен здесь не существенна - зависит от интерпретации переводчика]. Его исследования в области экономики нашли свое окончательное выражение в классическом труде "Теория игр и экономическое поведение" [* Имеется перевод: Нейман Дж., Моргенштерн О. "Теория игр и экономическое поведение" - М., изд-во "Наука", 1970], написанном совместно с Моргенштерном, одним из ближайших друзей фон Неймана в последние годы. Главным итогом его работы по теории вычислительных машин, несомненно, следует считать создание Принстонской вычислительной машины и ее многочисленных "сестер". Фон Нейман опубликовал также много статей, посвященных анализу основных принципов работы вычислительных машин, и его результаты позволили достичь важных успехов на пути к аксиоматической теории автоматов.

Только выдающийся ум мог внести в науку столь значительный вклад, какой был сделан фон Нейманом. Безупречная логика была наиболее характерной чертой его мышления. Он производил впечатление идеальной логической машины с тщательно подогнанными шестеренками. "Слушая фон Неймана, начинаешь понимать, как должен работать человеческий мозг", — таков был вывод одного впечатлительного коллеги фон Неймана. Еще более поразительным был свойственный ему блеск мышления. Эта черта отчетливо проявилась, когда фон Нейману было еще только 15 лет. Третьей отличительной чертой его ума была замечательная память, позволявшая ему помимо научной работы иметь десятки увлечений. Он был историком-любителем, осведомленность которого в событиях огромных периодов истории не уступала осведомленности профессионала, свободно говорил на пяти языках и умел читать по-латыни и по-гречески. Он прочитал и помнил содержание многих книг, как художественных, так и научно-популярных по другим областям науки. Из всех тем, на которые автору этих строк доводилось когда-либо беседовать с фон Нейманом, лишь описательные естественные науки не вызывали у него интереса. Фон Нейман всегда был готов помочь любому, кто обращался к нему за советом, и искренне интересовался любой трудной проблемой. Фон Нейман научил меня математике больше, чем кто-нибудь другой. Что же касается сущности творческого мышления математика, то об этом я узнал от него больше, чем мог бы узнать без него за всю свою жизнь. "Если он анализировал проблему, необходимость в ее дальнейшем рассмотрении отпадала. Всем становилось ясно, что нужно делать", — заявил нынешний председатель Комиссии по атомной энергии США.

Глубокое чувство юмора и незаурядный дар рассказчика различных историй и анекдотов вызывали симпатию к фон Нейману даже у случайных знакомых. Если нужно, он мог быть резким, но никогда не был напыщенным и чванным. Фон Нейман с его безупречной логикой понимал и соглашался со многим из того, что большинство из нас не хотело принимать и даже понимать. Это ощущалось во многих высказываниях фон Неймана на темы морали. "Сетовать на эгоизм и вероломство людей так же глупо, как сетовать на то, что магнитное поле не может возрастать, если ротор электрического поля равен нулю: то и другое — законы природы". Лишь научная, интеллектуальная нечестность и присвоение чужих научных результатов вызывали его гнев и негодование независимо от того, кто был пострадавшим — он сам или кто-либо другой.

Когда фон Нейман понял, что он неизлечимо болен, логика заставила его прийти к выводу, что он перестанет существовать и, следовательно, мыслить. Такое заключение, весь смысл которoro непостижим для человеческого рассудка, ужаснуло его. Тяжело было видеть, как ум его, по мере того как исчезали все надежды, терпел одно поражение за другим в борьбе с судьбой, казавшейся ему хотя и неизбежной, но тем не менее совершенно неприемлемой.

Доктор фон Нейман за свои научные достижения был удостоен многих наград и отличий. Он был избран членом Американского философского общества (1938 г.) и членом Национальной Академии наук в необычайно молодом возрасте. Он состоял членом-корреспондентом Королевской голландской академии, Ломбардского института, Академии деи Линчи, Перуанской Академии, членом Американской академии искусств и наук, получил Медаль за заслуги, награду за выдающиеся гражданские заслуги и премию Ферми Комиссии по атомной энергии США. Фон Нейман сделал очень многое. Он был великим умом, по-видимому, величайшим умом первой половины нашего века.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Принцип фон Неймана

В 1946 году Д . фон Нейман , Г . Голдстайн и А . Беркс в своей совместной статье изложили новые принципы построения и функционированияЭВМ . Впоследствиенаосновеэтихпринципов производились первые два поколения компьютеров . В более поздних поколениях происходили некоторые изменения , хотя принципы Неймана актуальны и сегодня .

Посути , Неймануудалосьобобщитьнаучныеразработкииоткрытиямногихдругихученых и сформулировать на их основе принципиально новое .

Принципы фон Неймана

1. Использование двоичной системы счисления в вычислительных машинах . Преимущество перед десятичной системой счисления заключается в том , что устройства можно делать достаточно простыми , арифметические и логические операции в двоичной системе счисления также выполняются достаточно просто .

2. Программное управление ЭВМ . Работа ЭВМ контролируется программой , состоящей из набора команд . Командывыполняютсяпоследовательнодругзадругом . Созданиеммашинысхранимойвпамятипрограммойбылоположеноначалотому , что мы сегодня называем программированием .

3. Память компьютера используется не только для хранения данных , но и программ . При этом и команды программы и данные кодируются вдвоичнойсистемесчисления , т . е . их способ записи одинаков . Поэтому в определенных ситуациях над командами можно выполнять те же действия , что и над данными .

4. Ячейки памяти ЭВМ имеют адреса , которые последовательно пронумерованы . В любоймоментможнообратитьсяклюбойячейкепамятипоееадресу . Этотпринцип открыл возможность использовать переменные в программировании .

5. Возможность условного перехода в процессе выполнения программы . Не смотря на то , что команды выполняются последовательно , в программах можно реализовать возможность перехода к любому участку кода .

Самым главным следствием этих принципов можно назвать то , чтотеперьпрограммауже не была постоянной частью машины ( как например , у калькулятора ). Программу стало возможно легко изменить . А вот аппаратура , конечно же , остается неизменной , и очень простой .

Для сравнения , программа компьютера ENIAC ( где не было хранимой в памяти программы ) определялась специальными перемычками на панели .

Чтобы перепрограммировать машину ( установить перемычки по - другому ) мог потребоваться далеко не один день . И хотя программы для современных компьютеров могут писаться годы , однако они работают на миллионах компьютерах после несколько минутной установки на жесткий диск .

Как работает машина фон Неймана

Машина фон Неймана состоит из запоминающего устройства ( памяти ) - ЗУ , арифметико - логического устройства - АЛУ , устройства управления – УУ , а также устройств ввода и вывода .

Программы и данные вводятся в память из устройства ввода через арифметико - логическое устройство . Все команды программы записываются в соседние ячейки памяти , а данные для обработки могут содержаться в произвольных ячейках . У любой программы последняя команда должна быть командой завершения работы .

Арифметико - логическое устройство выполняет указанные командами операции над указанными данными . Из арифметико - логического устройства результаты выводятся в память или устройствовывода . ПринципиальноеразличиемеждуЗУи устройством вывода заключается в том , что в ЗУ данные хранятсяввиде , удобном для обработки компьютером , а на устройства вывода ( принтер , монитор и др .) поступают так , как удобно человеку .

В результате выполнения любой команды счетчик команд изменяется на единицу и , следовательно , указывает на следующую команду программы .

Ф ОРМУЛА Х АРТЛИ

Д ОПУСТИМ , НАМ ТРЕБУЕТСЯ ЧТО - ЛИБО НАЙТИ ИЛИ ОПРЕДЕЛИТЬ В ТОЙ ИЛИ ИНОЙ СИСТЕМЕ . Е СТЬ ТАКОЙ

П ОСЧИТАЕМСКОЛЬКОВОПРОСОВНАДОЗАДАТЬ , ЧТОБЫНАЙТИЗАДУМАННОЕЧИСЛО .

Д ОПУСТИМЗАГАДАННОЕЧИСЛО 27. Н АЧАЛИ :

1. Больше 50? Нет 2. Больше 25? Да

3. Больше 38? Нет

6. Больше 27? Нет

7. Это число 26? Нет

Т АКОЙ ФОРМУЛОЙ МОЖНО ПРЕДСТАВИТЬ , СКОЛЬКО ВОПРОСОВ ( БИТ ИНФОРМАЦИИ ) ПОТРЕБУЕТСЯ , ЧТОБЫ ОПРЕДЕЛИТЬ ОДНО ИЗ ВОЗМОЖНЫХ ЗНАЧЕНИЙ . N – ЭТО КОЛИЧЕСТВО ЗНАЧЕНИЙ , А K КОЛИЧЕСТВО БИТ .

Н АПРИМЕР , В НАШЕМ ПРИМЕРЕ 100 МЕНЬШЕ ЧЕМ 27, ОДНАКО БОЛЬШЕ , ЧЕМ 26. Д А , НАМ МОГЛО ПОТРЕБОВАТЬСЯИВСЕГО 6 ВОПРОСОВ , ЕСЛИБЫЗАГАДАННОЕЧИСЛОБЫЛОБЫ 28.

К ОЛИЧЕСТВО ИНФОРМАЦИИ ( K ), НЕОБХОДИМОЙ ДЛЯОПРЕДЕЛЕНИЯКОНКРЕТНОГОЭЛЕМЕНТА , ЕСТЬЛОГАРИФМПО ОСНОВАНИЮ 2 ОБЩЕГОКОЛИЧЕСТВАЭЛЕМЕНТОВ (N).

В СЛУЧАЕ , КОГДА ВЕРОЯТНОСТЬ ЭЛЕМЕНТОВ НЕ ОДИНАКОВА , ДЛЯ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА ИНФОРМАЦИИ , ДОСТАТОЧНОЙ ДЛЯ ВЫЯВЛЕНИЯ ЭЛЕМЕНТА , ИСПОЛЬЗУЮТ ФОРМУЛУ Ш ЕННОНА . Е Е МОЖНО ПОЛУЧИТЬ ИЗ ФОРМУЛЫ Х АРТЛИ .

K = LOG N ( ФОРМУЛА Х АРТЛИ )

1/N – ВЕРОЯТНОСТЬКАЖДОГОИСХОДА , ЕСЛИВСЕОНИРАВНОВЕРОЯТНЫ .

-1/N * LOG 21/N – ВКЛАДВ K ( ОБЩУЮНЕОПРЕДЕЛЕННОСТЬ , КОЛИЧЕСТВОИНФОРМАЦИИ ) ОДНОГОИСХОДА .

П РИ НЕРАВНОВЕРОЯТНЫХ ИСХОДАХ ПУСТЬ ВКЛАД КАЖДОГО ОБОЗНАЧАЕТСЯ БУКВОЙ P С ИНДЕКСНЫМ

НОМЕРОМ : 1, 2, 3, 4 … . N.

П ОЛУЧАЕМФОРМУЛУ :

K = -P1 LOG 2P1 – P2 LOG 2P2 – P3 LOG 2P3 – … – PN LOG 2PN

Чем больше k, тем больше информации содержится в системе . Максимальноезначение k имеет лишь тогда , когда все исходы равновероятны .

Единицы международной системы единиц ( СИ )

В следующей таблице приведены примеры производных единиц СИ , наименования и обозначениякоторыхобразованысиспользованиемнаименованийиобозначенийосновных единиц СИ .

Труды Неймана оказали влияние на экономическую науку. Ученый стал одним из создателей теории игр – области математики, которая занимается изучением ситуаций, связанных с принятием оптимальных решений. Приложение теории игр к решению экономических задач оказалось не менее значимым, чем сама теория. Результаты этих исследований были опубликованы в работе Теория игр и экономическое поведение (The Theory of Games and Economic Behavior, совместно с экономистом О.Моргенштерном, 1944). Третья область науки, на которую оказало влияние творчество Неймана, стала теория вычислительных машин и аксиоматическая теория автоматов. Настоящим памятником его достижениям являются сами компьютеры, принципы действия которых были разработаны именно Нейманом (отчасти в совместно с Г.Голдстайном).

Файлы: 1 файл

!Работы Дж. фон Неймана по теории вычислительных машин!.doc

ГОУ ВПО ХАКАСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. Н.Ф. КАТАНОВА

ИНСТИТУТ ИНФОРМАТИКИ И ТЕЛЕМАТИКИ

КАФЕДРА ИНФОРМАТИКИ И ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Работы Джона фон Неймана по теории вычислительных машин

Выполнил: Полулях А.С.

студент I курса 18 гр.

Проверил: Шеломенцева И.Г.

Джон фон Нейман внес значительный вклад в развитие многих областей математики. Первые его работы, написанные под влиянием Д.Гильберта, посвящены основаниям математики. Когда К.Гёдель показал неосуществимость предложенной Гильбертом программы, Нейман оставил исследования в этой области и занялся функциональным анализом и его применением к квантовой механике. Нейману принадлежит строгая математическая формулировка принципов квантовой механики, в частности ее вероятностная интерпретация; его труд Математические основы квантовой механики (Mathematical Foundations of Quantum Mechanics, 1932) считается классическим. В 1932 Нейман доказал эквивалентность волновой и матричной механики. Исследование оснований квантовой механики побудило его к более глубокому изучению теории операторов и созданию теории неограниченных операторов.

Труды Неймана оказали влияние на экономическую науку. Ученый стал одним из создателей теории игр – области математики, которая занимается изучением ситуаций, связанных с принятием оптимальных решений. Приложение теории игр к решению экономических задач оказалось не менее значимым, чем сама теория. Результаты этих исследований были опубликованы в работе Теория игр и экономическое поведение (The Theory of Games and Economic Behavior, совместно с экономистом О.Моргенштерном, 1944). Третья область науки, на которую оказало влияние творчество Неймана, стала теория вычислительных машин и аксиоматическая теория автоматов. Настоящим памятником его достижениям являются сами компьютеры, принципы действия которых были разработаны именно Нейманом (отчасти в совместно с Г.Голдстайном).

Фон Нейман получил степень доктора философии по математике (с элементами экспериментальной физики и химии) в университете Будапешта в 23 года. Одновременно он изучал химическую инженерию в швейцарском Цюрихе (Макс фон Нейман полагал профессию математика недостаточной для того, чтобы обеспечить надёжное будущее сына). С 1926 по 1930 годы Джон фон Нейман был приват-доцентом в Берлине.

В 1930 году фон Нейман был приглашён на преподавательскую должность в американский Принстонский университет. Он был одним из первых приглашённых на работу в основанный в 1930 году научно-исследовательский Институт Перспективных Исследований (англ. Institute for Advanced Study), также располагавшийся в Принстоне, где с 1933 года и до самой смерти занимал профессорскую должность.

В 1937 году фон Нейман стал полноправным гражданином США. В 1938 он был награждён премией имени М. Бохера за свои работы в области анализа.

В 1957 году фон Нейман заболел раком кости, возможно, вызванным радиоактивным облучением при исследовании атомной бомбы в Тихом океане или, может быть, при последующей работе в Лос-Аламосе, штат Нью-Мексико (его коллега, пионер ядерных исследований Энрико Ферми, умер от рака кости в 1954 году). Через несколько месяцев после постановки диагноза фон Нейман умер в тяжёлых мучениях. Рак также поразил его мозг, практически лишив его возможности мыслить. Когда он лежал при смерти в госпитале Вальтера Рида, он шокировал своих друзей и знакомых просьбой поговорить с католическим священником.

Принципы Дж. фон Неймана.

Вот эти основные принципы:

1. Вычислительная машина должна состоять из следующих частей (Рис. 1):

  • Устройство управления (УУ) - устройство, руководящее порядком выполнения операций, координирующее работу вычислительной машины в целом и взаимосвязь ее с дополнительными устройствами. УУ формирует команды управления устройствами (управляющие импульсы) и отправляет их в определенные моменты времени. Формирует адреса ячеек памяти и передает эти адреса другим устройствам ЭВМ.
  • Арифметико-логическое устройство (АЛУ) - предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией.
  • Оперативное запоминающее устройство, или оперативная память (ОЗУ) - устройство, непосредственно связанное с процессором и предназначенное для хранения данных, участвующих в его операциях.
  • Внешнее запоминающее устройство (ВЗУ) - устройство, предназначенное для длительного хранения больших массивов информации.
  • Устройства ввода/вывода информации - предназначены для ввода в ЭВМ данных и вывода результатов.

2. Программное управление работой ЭВМ. Программы состоят из отдельных шагов - команд; команда осуществляет единичный акт преобразования информации; последовательность команд, необходимая для реализации алгоритма, является программой; все разновидности команд, использующиеся в конкретной ЭВМ, в совокупности являются языком машины или системой команд машины. Благодаря данному принципу компьютер становится универсальным устройством, предназначенным для обработки информации.

3. Принцип условного перехода. Это возможность перехода в процессе вычислений на тот или иной участок программы в зависимости от промежуточных, получаемых в ходе вычислений, результатов. Благодаря принципу условного перехода, число команд в программе получается вомного раз меньше, чем число выполненных машиной команд при исполнении данной программы за счет многократного вхождения в работу участков программы. Использование данного принципа в компьютере позволяет использовать в программе структуры разветвления и циклы.

5. Принцип использования двоичной системы счисления для представления информации в ЭВМ. Этот принцип существенно расширил номенклатуру физических приборов и явлений, которые можно использовать в АУ и ЗУ ЭВМ. Действительно, в двоичной системе имеются только две цифры 0 и 1, поэтому они могут изображаться положением любой системы с двумя устойчивыми состояниями, например, триодом в открытом и закрытом состоянии, состоянием триггера, участком ферромагнитной поверхности - намагниченным или ненамагниченным, динамически - отсутствием или наличием электрического импульса и т. п. Количество информации определяется единицей (бит) в двоичной системе счисления; к логическим схемам, построенным по двоичной системе счисления, может быть применен хорошо разработанный математический аппарат алгебры логики.

6. Принцип иерархичности ЗУ. С самого начала развития ЭВМ существовало несоответствие между быстродействием АУ и ОЗУ; выполняя ОЗУ на тех же элементах, что и логические устройства, удавалось частично разрешить это несоответствие, но такое ОЗУ получалось слишком дорогим и значительно увеличивало количество радиоламп в ЦВМ, снижая в целом ее надежность; иерархическое построение ЗУ позволяет иметь быстродействующее оперативное ЗУ (ОЗУ) сравнительно небольшой емкости только для операндов и команд, участвующих в счете в данный момент и в ближайшее время. Следующий более низкий уровень - это внешнее ЗУ (ВЗУ); ОЗУ достаточно быстро, за сотые доли секунды, может обменяться с ВЗУ целым массивом данных; емкость ВЗУ на порядок больше, чем емкость ОЗУ. Иерархичность ЗУ в ЭВМ является важным компромиссом между емкостью и быстрым доступом к данным, обеспечивающим требования быстродействия, большой емкости памяти, относительной дешевизны и надежности.

Архитектура фон Неймана.

Наличие жёстко заданного набора исполняемых команд и программ было характерной чертой первых компьютерных систем. Сегодня подобный дизайн применяют с целью упрощения конструкции вычислительного устройства. Так, настольные калькуляторы, в принципе, являются устройствами с фиксированным набором выполняемых программ. Их можно использовать для математических расчётов, но невозможно применить для обработки текста и компьютерных игр, для просмотра графических изображений или видео. Изменение встроенной программы для такого рода устройств требует практически полной их переделки, и в большинстве случаев невозможно. Впрочем, перепрограммирование ранних компьютерных систем всё-таки выполнялось, однако требовало огромного объёма ручной работы по подготовке новой документации, перекоммутации и перестройки блоков и устройств и т. п.

Всё изменила идея хранения компьютерных программ в общей памяти. Ко времени её появления использование архитектур, основанных на наборах исполняемых инструкций, и представление вычислительного процесса как процесса выполнения инструкций, записанных в программе, чрезвычайно увеличило гибкость вычислительных систем в плане обработки данных. Один и тот же подход к расмотрению данных и инструкций сделал лёгкой задачу изменения самих программ.

В 1945 году был опубликован доклад фон Неймана, в котором он наметил основные принципы построения и компоненты современного компьютера. Идеи, отраженные в докладе, развивались, и примерно через год появилась статья "Предварительное рассмотрение логической конструкции электронного вычислительного устройства". Здесь важно, что авторы, отвлекшись от электронных ламп и электрических схем, сумели обрисовать формальную организацию компьютера.

"По фон Нейману" главное место среди функций, выполняемых компьютером, занимают арифметические и логические операции. Для них предусмотрено арифметико-логическое устройство. Управление его работой — и вообще всей машины — осуществляется с помощью устройства управления. Роль хранилища информации выполняет оперативная память. Здесь хранится информация как для арифметико-логического устройства (данные), так и для устройства управления (команды).

Янош фон Нейман был старшим из трех сыновей преуспевающего будапештского банкира Макса фон Неймана. Позже, в Цюрихе, Гамбурге и Берлине, Яноша называли Иоганном, а после переезда в США - Джоном (дружески - Джонни).

Фон Нейман был продуктом той интеллектуальной среды, из которой вышли такие выдающиеся физики, как Эдвард Теллер, Лео Сциллард, Денис Габор и Юджин Вигнер. Джон выделялся среди них своими феноменальными способностями. В 6 лет он перебрасывался с отцом остротами на древнегреческом, а в 8 освоил основы высшей математики.

В юные годы Янош занимался дома со специально приглашенными педагогам, а в возрасте 10 лет поступил в одно из лучших учебных заведений того времени - лютеранскую гимназию. Еще в школе фон Нейман заинтересовался математикой. Гения в фон Неймане распознал преподаватель математики Ласло Ратц. Он и помог ему развить его дарование. Ратц ввел фон Неймана в небольшой, но блестящий кружок будапештских математиков того времени, который возглавлял духовный отец венгерских математиков Липот Фейер. Помогать фон Нейману было поручено ассистенту Будапештского университета М. Фекете: а общее руководство взял на себя выдающийся педагог: профессор Йожеф Кюршак.

Атмосфера университета и беседы с математиками и внимание со стороны Фейера помогло сформироваться фон Нейману как математику.

К моменту получения аттестат зрелости Янош фон Нейман пользовался у математиков репутацией молодого дарования. Его первая печатная работа была написана совместно с М. Фекете "О расположении нулей некоторых минимальных полиномов"(1921) вышла в свет, когда фон Нейману было 18 лет.

Вскоре фон Нейман окончил гимназию. Макс фон Нейман не считал профессию математика достаточно надежной, способной обеспечить будущее сына. Он настоял на том, чтобы Янош приобрел еще и профессию инженера-химика. Поэтому Янош поступил в Федеральную высшую техническую школу в Цюрихе, где изучал химию, и одновременно на математический факультет Будапештского университета.

Благодаря такому совмещению, у него было свободное посещение лекций, поэтому он появлялся в Будапеште только в конце семестра, для сдачи экзаменов. Потом он уезжал в Цюрих или Берлин, но не для того чтобы изучать химию, а для подготовки к печати своих работ, бесед с коллегами-математиками, посещения семинаров.

Фон Нейман считал, что в этот период он очень много узнал у двух математиков: Эрхарда Шмидта и Германа Вейля. Когда Вейлю понадобилось отлучиться во время семестра, то чтение курса за него продолжил фон Нейман.

В 1925 фон Нейман получает диплом инженера-химика в Цюрихе и успешно защищает докторскую диссертацию "Аксиоматическое построение теории множеств" в Будапештском университете.

Молодой доктор отправляется совершенствовать свои знания в Геттингенский университет, где в то время читали лекции люди, чьи имена стали гордостью науки: К. Рунге, Ф. Клейн, Э. Ландау, Д. Гильберт, Э. Цермело, Г. Вейль, Г. Минковский, Ф. Франк, М. Борн и другие. Приглашенными лекторами были Г. Лоренц, Н. Бор, М. Планк, П. Эренфест, А. Пуанкаре, А. Зоммерфельд.

В 1927 году фон Нейман становится приват-доцентом Берлинского, а с 1929 года - Гамбургского университета.

В 1929 году фон Нейман получает приглашение прочитать в течение одного семестра цикл лекций в Принстонском университете. В США фон Нейман впервые оказался в 1930 году. Вскоре после приезда Иоганн фон Нейман для многих коллег становится просто Джонни.

1931 году фон Нейман окончательно расстается с Гамбургским университетом, чтобы принять профессуру в Принстоне.

Незадолго до первого визита в Принстон фон Нейман женился на Мариэтте Кевуши, а в 1935 году у них родилась дочь Марина.

В 1937 году брак фон Неймана распался, а из очередной поездки на летние каникулы в Будапешт в 1938 фон Нейман вернулся со второй женой - Кларой Дан. Позднее, во время второй мировой войны, Клара фон Нейман стала программисткой. Ей принадлежат первые программы для электронных вычислительных машин, в разработку и создание которых её муж внёс большой вклад.

Первыми профессорами Института высших исследований в Принстоне стали Освальд Веблен (в 1932 году) и Альберт Эйнштейн (1933). В том же 1933 этой высокой чести был удостоен и Джон фон Нейман.

Работы Джона Фон Неймана

Первая работа фон Неймана по аксиоматической теории множеств вышла в свет в 1923 году. Она называлась "К введению трансфинитных ординальных чисел". Она была опубликована в трудах Сегедского университета.

Фон Нейман разработал свою систему аксиом и изложил ее в докторской диссертации и двух статьях. Диссертация сильно заинтересовала А. Френкеля, которому поручили отрецензировать ее. Несмотря на то, что он не смог разобраться в ней полностью, он пригласил к себе фон Неймана. Он Френкель попросил его написать популярную статью, в которой излагались бы новый подход к проблеме и следствия, извлекаемые из его. Фон Нейман написал такую работу, назвав ее "К вопросу об аксиоматическом построении теории множеств". Она была опубликована в 1925 году а "Journal fuer Mathematic". Фон Нейман построил замечательную систему аксиом теории множеств, такую же простую, как гильбертовая для евклидовой геометрии. Система аксиом фон Неймана занимает немногим более одной страницы печатного текста.

На фон Неймана очень большое влияние оказало общение с Давидом Гильбертом. В Геттингене фон Нейман познакомился с идеями зарождавшейся тогда квантовой механики, ее математическое обоснование сразу захватило. Совместно с Д. Гильбертом и Л. Нордгеймом фон Нейман написал статью "Об основаниях квантовой механики". Потом выпускает серию работ "Математическое обоснование квантовой механики", "Теоретико-вероятностное построение квантовой механики" и "Термодинамика квантово-механических систем". В работах фон Неймана квантовая механика обрела свой естественный язык - язык операторов, действующих в гильбертовом пространстве состояний. В его работах была подведена прочная математическая основа под статистическую интерпретацию квантовой механики, введено новое понятие матрицы плотности, доказан квантовый аналог H-теоремы Больцмана и эргодической теоремы. На основе этих работ фон Нейман начал другой цикл - по теории операторов, благодаря которым он считается основоположником современного функционального анализа. Фон Нейман показал, что "слишком вольное" обоснование теории можно обосновать в терминах аксиоматической теории гильбертова пространства и спектральной теории операторов.

В период 1927 по 1929 годы фон Нейман выполнил основополагающие работы трёх больших циклов: по теории множеств, теории игр и математическому обоснованию квантовой механики.

В 1927 фон Нейман написал статью "К гильбертовой теории доказательства". В ней он исследовал проблему непротиворечивости математики.

В 1928 фон Нейман написал работу "К теории стратегических игр", в которой доказал теорему о минимаксе, ставшей краеугольным камнем возникшей позже теории игр. В своей теореме фон Нейман рассматривает ситуацию, когда двое играют в игру, по правилам которой выигрыш одного игрока равен проигрышу другого. При этом каждый игрок может выбирать из конечного числа стратегий. При этом игрок считает, что противник действует наилучшим для себя образом. Теорема фон Неймана утверждает, что в такой ситуации существует "устойчивая" пара стратегий, для которых минимальный проигрыш одного игрока совпадает с максимальным выигрышем другого. Устойчивость стратегий означает, что каждый из игроков, отклоняясь от оптимальной стратегии, ухудшает свои шансы и, ему приходится вернуться к оптимальной стратегии.

Фон Нейман доказал эту теорему, обратив внимание на её связь с теорией неподвижных точек. Позже были найдены доказательства, использующие теорию выпуклых множеств.
В работе "Об определении через трансфинитную индукцию и родственных вопросах общей теории множеств"(1928), фон Нейман вновь возвращается к проблеме введения ординальных чисел, и дает строгое аксиоматическое изложение теории.

В работе "Об одной проблеме непротиворечивости аксиоматической теории множеств" фон Нейман показал, что одна из "нетрадиционных" аксиом в предложенной им системе выводима из аксиом других систем. Поскольку обратная выводимость была доказана раньше, то результат означал, что его "необычная" аксиома эквивалентна обычным в других системах.

В 1929 году фон Нейман пишет работу "Общая спектральная теория эрмитовых операторов".

В 1934 году выходит в свет статья "Об алгебраическом обобщении квантово-механического формализма", написанная в соавторстве с П. Иорданом и Е. Вигнером

В 1936 фон Нейман совместно с Дж. Биркгофом пишет статью "Логика квантовой механики".

В 1938 вышла работа фон Неймана "О бесконечных прямых произведениях".

Одной из утопических идей Неймана, для разработки, которой он предлагал использовать компьютерные расчеты, было искусственное потепление климата на Земле, для чего предполагалось покрыть темной краской полярные льды, чтобы уменьшить отражение ими солнечной энергии. Одно время это предложение всерьез обсуждалось во многих странах.
В 1956 Комиссия по атомной энергии наградила Неймана премией Энрико Ферми за выдающийся вклад в компьютерную теорию и практику.

Многие идеи фон Неймана ещё не получили должного развития, например, идея о взаимосвязи уровня сложности и способности системы к самовоспроизведению, о существовании критического уровня сложности, ниже которого система вырождается, а выше обретает способность к самовоспроизведению. В 1949 выходит работа "О кольцах операторов. Теория разложения".

Архитектура Джона Фон Неймана

Первая ЭВМ была построена в 1943-1946 годах в школе инженеров-электриков Мура Пенсильванского университета и получила название ЭНИАК (по первым буквам английского названия - электронный цифровой интегратор и вычислитель). Фон Нейман подсказал её разработчикам, как можно модифицировать ЭНИАК, чтобы упростить его программирование.

А вот в создании следующей машины - ЭДВАК (электронный автоматический вычислитель с дискретными переменными) фон Нейман принял более активное участие. Он разработал подробную логическую схему машины, в который структурными единицами были не физические элементы цепей, а идеализированные вычислительные элементы. Использование идеализированных вычислительных элементов стало важным шагом вперед, так как позволило отделить создание принципиальной логической схемы от ее технического воплощения. Также фон Нейман предложил ряд инженерных решений: использовать в качестве элементов памяти не линии задержки, а электронно-лучевые трубки (электростатическая запоминающая система), что должно было сильно повысить быстродействие. При этом можно было обрабатывать все разряды машинного слова параллельно. Эта машина была названа ДЖОНИАК - в честь фон Неймана. С помощью ДЖОНИАКА были осуществлены важные расчеты при создании водородной бомбы.

В 1944 увидела свет работа фон Неймана и О. Моргенштерна "Теория игр и экономического поведения". В конце сороковых годов, накопив практический опыт создания компьютеров, фон Нейман приступил к созданию общей математической (логической) теории автоматов. Различия между теорией автоматов фон Неймана и кибернетикой Винера несущественны и обусловлены личным вкусом их создателей, а не принципиальными соображениями. Теория фон Неймана посвящена, в основном, дискретной математике, в то время как у Винера - непрерывной.

Фон Нейман предложил систему корректировки данных, для повышения надежности систем - использование дублирующихся устройств с выбором двоичного результата по наибольшему числу.

Фон Нейман много работал над самовоспроизведением автоматов и смог доказать возможность самовоспроизведения конечного автомата, обладавшего 29 внутренними состояниями.

Во второй половине 1930-х годов совместно с Ф. Дж. Мюрреем Нейман опубликовал ряд работ по кольцам операторов, положив начало так называемой алгебре Неймана, которая впоследствии стала одним из главных инструментов для квантовых исследований.

В 1937 Нейман принял гражданство США. Во время Второй мировой войны служил консультантом в атомном центре в Лос-Аламосе, где рассчитал взрывной метод детонации ядерной бомбы и участвовал в разработке водородной бомбы. В марте 1955 стал членом американской комиссии по атомной энергии.

Из 150 трудов Неймана лишь 20 касаются проблем физики, остальные же равным образом распределены между чистой математикой и ее практическими приложениями, в том числе теорией игр и компьютерной теорией.

В отчете фон Неймана и его коллег Г.Голдстайна и А.Беркса (июнь 1946 года) были четко сформулированы требования к структуре компьютеров. Отметим важнейшие из них:

машины на электронных элементах должны работать не в десятичной, а в двоичной системе счисления;

программа, как и исходные данные, должна размещаться в памяти машины;

программа, как и числа, должна записываться в двоичном коде;

трудности физической реализации запоминающего устройства, быстродействие которого соответствует скорости работы логических схем, требуют иерархической организации памяти (то есть выделения оперативной, промежуточной и долговременной памяти);

арифметическое устройство (процессор) конструируется на основе схем, выполняющих операцию сложения; создание специальных устройств для выполнения других арифметических и иных операций нецелесообразно;

в машине используется параллельный принцип организации вычислительного процесса (операции над числами производятся одновременно по всем разрядам).

На рисунке показано, каковы должны быть связи между устройствами компьютера согласно принципам фон Неймана (одинарные линии показывают управляющие связи, пунктир - информационные).

Читайте также: