Движение вязкой жидкости реферат

Обновлено: 02.07.2024

Введение ГИДРОДИНАМИКА (от гидро. и динамика), раздел гидромеханики, изучает движение жидкостей и воздействие их на обтекаемые ими твердые тела. Теоретические методы гидродинамики основаны на решении точных или приближенных уравнений, описывающих физические явления в движущихся жидкости или газе. В экспериментальной гидродинамике возникающие задачи исследуются на моделях, обтекаемых жидкостью или газом, при этом должны

соблюдаться условия подобия теории. Результаты гидродинамики используют при проектировании кораблей, самолетов, ракет и др. Гидродина­мика представляет собой раздел механики сплошных сред, в кото­ром изучается движение несжимаемых жидкостей и взаимодействие несжимаемых жидкостей с твердыми телами, — использует единый подход к изучению жидкостей и газов. В механике с большой степенью точности жидкости и газы

рассматриваются как сплошные, непрерывно распределенные в занятой ими части пространства. Плотность же газов от давления зависит существенно. Из опыта известно, что сжимаемостью жидкости и газа во многих задачах можно пренебречь и пользоваться единым поняти­ем несжимаемой жидкости — жидкости, плотность которой всюду одинакова и не изменяется со временем. Если в покоящуюся жидкость поместить тонкую пластинку, то части

жидкости, находящиеся по разные стороны от нее, будут действовать на каждый ее элемент ∆S с силами ∆F, которые независимо от того, как пластинка ориентирована, будут равны по модулю и направлены перпендикулярно площадке ∆S, так как наличие касательных сил привело бы частицы жидкости в движение. Физическая величина, определяемая нормальной силой, действующей со стороны жидкости на единицу площади, называется давлением р

жидкости: P = ∆F/∆S. Единица давления — паскаль (Па): 1 Па равен давлению, создаваемому силой 1 Н, равномерно распределенной по нормальной к ней поверхности площадью 1 м2 (1 Па=1 Н/м2). Давление при равновесии жидкостей (газов) подчиняется закону Паскаля*: давле­ние в любом месте покоящейся жидкости одинаково по всем направлениям, при­чем давление одинаково передается по всему объему, занятому покоящейся жидкос­тью. 1. Коэффициент

Гидродинамика (от гидро. и динамика), раздел гидромеханики, изучает движение жидкостей и воздействие их на обтекаемые ими твердые тела. Теоретические методы гидродинамики основаны на решении точных или приближенных уравнений, описывающих физические явления в движущихся жидкости или газе. В экспериментальной гидродинамике возникающие задачи исследуются на моделях, обтекаемых жидкостью или газом, при этом должны соблюдаться условия подобия теории. Результаты гидродинамики используют при проектировании кораблей, самолетов, ракет и др.

Гидродинамика представляет собой раздел механики сплошных сред, в котором изучается движение несжимаемых жидкостей и взаимодействие несжимаемых жидкостей с твердыми телами, — использует единый подход к изучению жидкостей и газов.

В механике с большой степенью точности жидкости и газы рассматриваются как сплошные, непрерывно распределенные в занятой ими части пространства. Плотность же газов от давления зависит существенно. Из опыта известно, что сжимаемостью жидкости и газа во многих задачах можно пренебречь и пользоваться единым понятием несжимаемой жидкости — жидкости, плотность которой всюду одинакова и не изменяется со временем.

Если в покоящуюся жидкость поместить тонкую пластинку, то части жидкости, находящиеся по разные стороны от нее, будут действовать на каждый ее элемент ∆S с силами ∆F, которые независимо от того, как пластинка ориентирована, будут равны по модулю и направлены перпендикулярно площадке ∆S, так как наличие касательных сил привело бы частицы жидкости в движение.

Физическая величина, определяемая нормальной силой, действующей со стороны жидкости на единицу площади, называется давлением р жидкости:

Единица давления — паскаль (Па): 1 Па равен давлению, создаваемому силой 1 Н, равномерно распределенной по нормальной к ней поверхности площадью 1 м2 (1 Па=1 Н/м2).

Давление при равновесии жидкостей (газов) подчиняется закону Паскаля*: давление в любом месте покоящейся жидкости одинаково по всем направлениям, причем давление одинаково передается по всему объему, занятому покоящейся жидкостью.

1. Коэффициент вязкости. Течение по трубе

Вязкость (внутреннее трение) — это свойство реальных жидкостей оказывать сопротивление перемещению одной части жидкости относительно другой. При перемещении одних слоев реальной жидкости относительно других возникают силы внутреннего трения, направленные по касательной к поверхности слоев. Действие этих сил проявляется в том, что со стороны слоя, движущегося быстрее, на слой, движущийся медленнее, действует ускоряющая сила. Со стороны же слоя, движущегося медленнее, на слой, движущийся быстрее, действует тормозящая сила.

Идеальная жидкость, т. е. жидкость без трения, является абстракцией. Всем реальным жидкостям и газам в большей или меньшей степени присуща вязкость или внутреннее трение. Вязкость проявляется в том, что возникшее в жидкости или газе движение после прекращения действия причин, его вызвавших, постепенно прекращается.

Для выяснения закономерностей, которым подчиняются силы внутреннего трения, рассмотрим следующий опыт. В жидкость погружены две параллельные друг другу пластины, линейные размеры которых значительно превосходят расстояние между ними d. Нижняя пластина удерживается на месте, верхняя приводится в движение относительно нижней с некоторой скоростью v0. Опыт дает, что для перемещения верхней пластины с постоянной скоростью v0 необходимо действовать на нее с вполне определенной постоянной по величине силой F. Раз пластина не получает ускорения, значит, действие этой силы уравновешивается равной ей по величине противоположно направленной силой, которая, очевидно, есть сила трения, действующая на пластину при ее движении в жидкости. Обозначим ее Fтр.

Варьируя скорость пластины v0, площадь пластин S и расстояние между ними d, можно получить, что


(1)


где — коэффициент пропорциональности, зависящий от природы и состояния (например, температуры) жидкости и называемый коэффициентом внутреннего трения или коэффициентом вязкости, или просто вязкостью жидкости (газа).

При движении жидкости в круглой трубе скорость равна нулю у стенок трубы и максимальна на оси трубы. Полагая течение ламинарным, найдем закон изменения скорости с расстоянием r от оси трубы.

Выделим воображаемый цилиндрический объем жидкости радиуса r и длины l. При стационарном течении в трубе постоянного сечения скорости всех частиц жидкости остаются неизменными. Следовательно, сумма внешних сил, приложенных к любому объему жидкости, равна нулю. На основания рассматриваемого цилиндрического объема действуют силы давления, сумма которых равна .Эта cила действует в направлении движения жидкости. Кроме того, на боковую поверхность цилиндра действует сила трения, равная (имеется в виду значение duldr на расстоянии r от оси трубы). Условие стационарности имеет вид


(1)

Скорость убывает с расстоянием от оси трубы. Следовательно, duldr отрицательна и ldu/drl=—duldr. Учтя это, преобразуем соотношение следующим образом:


Разделив переменные, получим уравнение:


Интегрирование дает, что


(2)

Постоянную интегрирования нужно выбрать так, чтобы скорость обращалась в нуль на стенках трубы, т. е. при r=R (R — радиус трубы). Из этого условия


Подстановка значения С в (2) приводит к формуле


(3)

Значение скорости на оси трубы равно


(4)

Гост

ГОСТ

Так, основными из направлений являются следующие:

  • гидродинамика идеальной жидкости;
  • гидродинамика жидкости в критическом состоянии;
  • гидродинамика вязкой жидкости.

Гидродинамика идеальной жидкости

Основы гидродинамики. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Основы гидродинамики. Автор24 — интернет-биржа студенческих работ

Идеальная жидкость в гидродинамике представляет собой воображаемую несжимаемую жидкость, в которой вязкость будет отсутствовать. Также в ней не будет наблюдаться присутствие теплопроводности и внутреннего трения. В связи с отсутствием в идеальной жидкости внутреннего трения, в нем также не будут фиксироваться касательные напряжения между двумя соседствующими слоями жидкости.

Моделью идеальной жидкости можно воспользоваться в физике в случае теоретического рассмотрения задач, в которых вязкость не будет являться определяющим фактором, что позволяет ею пренебречь. Подобная идеализация, в частности, может быть допустимой во многих случаях течения, которые рассматривает гидроаэромеханика, где при этом дается качественное описание реальных течений жидкостей, достаточно удаленных от поверхностей раздела с неподвижной средой.

Уравнения Эйлера-Лагранжа (полученные Л.Эйлером и Ж.Лагранжем в 1750 г.) представлены в физике в формате основных формул вариационного исчисления, посредством привлечения которых ведется поиск стационарных точек и экстремумов функционалов. В частности, подобные уравнения известны своим широким использованием в рассмотрении задач оптимизации, и также (в совокупности с принципом наименьшего действия) применяются с целью вычисления траекторий в механике.

В теоретической физике уравнения Лагранжа представлены в виде классических уравнений движения в контексте их получения из написанного явно выражения для действия (что называется лагранжиана).

Готовые работы на аналогичную тему

Уравнение Эйлера-Лагранжа. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Уравнение Эйлера-Лагранжа. Автор24 — интернет-биржа студенческих работ

Применение таких уравнений с целью определения экстремума функционала в некотором смысле подобно задействованию теоремы дифференциального исчисления, согласно утверждениям которой, лишь в точке обращения первой производной в ноль гладкая функция обретает способность иметь экстремум (при векторном аргументе к нулевому значению приравнивается нулю градиент функции, иными словами - производная по векторному аргументу). Соответственно, это представляет прямое обобщение рассматриваемой формулы на случай функционалов (функций бесконечно мерного аргумента).

Гидродинамика жидкости в критическом состоянии

Следствия из уравнения Бернулли. Автор24 — интернет-биржа студенческих работ

Рисунок 3. Следствия из уравнения Бернулли. Автор24 — интернет-биржа студенческих работ

В случае исследования околокритического состояния среды, ее течению будет уделяться значительно меньше внимания в сравнении с акцентом на физические свойства, несмотря на невозможность обладать свойством неподвижности для реальной жидкой субстанции.

Провокаторами перемещения отдельных частей относительно друг друга выступают:

  • температурные неоднородности;
  • перепады давления.

В случае описания динамики вблизи критической точки, оказывается несовершенными традиционные гидродинамические модели, сориентированные на обычные среды. Это обусловлено порождением новых законов движения новыми физическими свойствами.

Выделяются также динамические критические явления, обнаруживаемые в условиях перемещения массы и переноса тепла. В частности, процесс рассасывания (или релаксации) температурных неоднородностей, обусловленный механизмом теплопроводности, будет происходить крайне медленно. Так, если, например, в околокритической жидкости будет изменена температура хотя бы на сотые доли градуса, на установление прежних условий уйдут многие часы, а, возможно, даже и несколько суток.

В качестве еще одной значимой особенности околокритических жидкостей можно назвать их удивительную подвижность, которую можно объяснить за счет высокой гравитационной чувствительности. Так, в экспериментах, осуществляемых в условиях космического полета, удалось выявить способность к инициированию весьма заметных конвективных движений даже у остаточных неоднородностей теплового поля.

В ходе движения околокритических жидкостей начинают возникать эффекты разновременных масштабов, зачастую описываемые различными моделями, что позволило сформировать (с развитием представлений о моделировании в данной области) целую последовательность усложняющихся моделей, обладающих так называемой иерархической структурой. Так, в данной структуре могут рассматриваться:

  • модели конвекции несжимаемой жидкости, учитывая разность плотностей только в архимедовой силе (модель Обербека-Буссинеска, наиболее всего она распространена для простых жидких и газовых сред);
  • полные гидродинамические модели (с включением нестационарных уравнений динамики и теплопереноса и учетом свойства сжимаемости и переменных теплофизических свойств среды) в совокупности с уравнением состояния, предполагающим присутствие критической точки).

В настоящее время, таким образом, можно говорить о возможности активного развития нового направления в механике сплошных сред, таком, как гидродинамика околокритических жидкостей.

Гидродинамика вязкой жидкости

Вязкость (или внутреннее трение) является свойством реальных жидкостей, выраженным в оказании их сопротивления перемещениям одной части жидкости относительно другой. В момент перемещения одних слоев реальной жидкости относительно других будут возникать силы внутреннего трения, направленные к поверхности таких слоев по касательной.

Действие подобных сил выражается в том, что со стороны движущегося быстрее слоя на то слой, который движется медленнее, оказывает непосредственное воздействие ускоряющая сила. Наряду с тем, со стороны более медленно движущегося слоя в отношении быстродвижущегося окажет свое воздействие тормозящая сила.

Идеальная жидкость (жидкость, исключающая свойство трения) представляет собой абстракцию. Вязкость (в большей или меньшей степени) присуща всем реальным жидкостям. Проявление вязкости выражено в том, что возникшее в жидкости или газе движение (после устранения вызвавших его причин и их последствий) постепенно прекращает свою работу.

Все реальные жидкости обладают определенной вязкостью, которая проявляется в виде внутреннего трения при деформации. Некоторые жидкости, например, мед, глицерин, тяжелые масла и др., обладают особенно большой вязкостью. Для того чтобы понять, в чем заключается сущность вязкости, рассмотрим следующий простой пример. Пусть между двумя параллельными пластинками находится жидкость и пусть одна из этих пластинок (верхняя) движется в своей плоскости со скоростью V, а другая (нижняя) — покоится (рис. 90).

Рис. 90. Движение вязкой жидкости между двумя пластинками

где а есть расстояние между обеими пластинками. Трение жидкости проявляется при этом в виде силы, оказывающей сопротивление движению верхней пластинки. Эта сила пропорциональна градиенту скорости жидкости, т.е. изменению скорости, происходящему на единице длины в направлении, перпендикулярном к плоскости пластинок. Величина силы сопротивления, приходящаяся на единицу площади пластинки, называется касательным напряжением. На основании сказанного касательное напряжение равно

или, в более общей формулировке,

Величина называется коэффициентом внутреннего трения жидкости, или коэффициентом вязкости, или, наконец, просто вязкостью. На существование соотношения (1) первое указание имеется у Ньютона, и поэтому оно часто называется законом трения Ньютона.

Рис. 91. Движение вязкой жидкости в трубе

При некоторых движениях вязкой жидкости ее слои скользят один по другому, не перемешиваясь между собой. Такие движения называются ламинарными. Для исследования нескольких простых случаев ламинарного движения вполне достаточно соотношения (1). Одним из таких случаев является движение в прямолинейной трубе с круглым поперечным сечением. Выделим между сечениями трубы 1 и 2 жидкий цилиндр радиуса у (рис. 91). Пусть давление в сечении 1 равно а в сечении 2 оно равно Тогда на жидкий цилиндр действует сила

Этой силе противодействует сила трения на боковой поверхности цилиндра, величину которой на единицу площади, т.е. касательное напряжение, обозначим по-прежнему через Следовательно, на всю боковую поверхность жидкого цилиндра действует сила

Приравнивая обе силы, действующие на цилиндр, мы получим:

Из соотношения (1) мы имеем:

Подставляя сюда вместо его выражение из равенства (2) и имея в виду, что теперь, в отличие от случая движения на рис. 90, производная отрицательна, мы получим:

Интегрируя это уравнение и определяя постоянную интегрирования из условия, что самый внешний слой жидкости прилипает к стенке, мы найдем:

где есть радиус трубы. Количество протекающей через трубу в единицу времени жидкости (так называемый расход жидкости) равно

Эта формула может быть проверена путем опыта с очень большой точностью; поэтому она сыграла весьма большую роль при установлении законов движения вязкой жидкости. Между прочим, она позволяет по измеренным значениям расхода и разности давлений очень точно определить коэффициент вязкости Согласно формуле (4) расход жидкости пропорционален падению давления на единице длины трубы и четвертой степени радиуса трубы. Это соотношение экспериментально было установлено Г. Гагеном в 1839 г., а затем вторично, независимо от Гагена, Пуазейлем. Обычно оно называется законом Пуазейля, так как статья Гагена, который был инженером, по-видимому, осталась незамеченной среди физиков. Правильнее называть соотношение (4) законом Гагена-Пуазейля. Забегая вперед, отметим, что закон Гагена-Пуазейля соблюдается при малых скоростях только в узких

трубках. В широких трубах при больших скоростях имеет место другой закон. Однако несоблюдение закона Пуазейля при движении в широких трубах ни в коей мере не является следствием какой-либо неточности закона трения Ньютона. Напротив, многочисленные опыты над течением в узких трубах со всей точностью подтвердили, что этот закон, а также прилипание жидкости к стенкам имеют место почти для всех жидкостей.

Согласно представлениям кинетической теории газов вязкость газа следует рассматривать как процесс обмена количествами движения между соседними слоями жидкости, движущимися с различными скоростями, и притом как процесс, вызванный собственным движением молекул. Следовательно, на выравнивание скоростей соседних слоев жидкостей надо смотреть как на своего рода диффузию (диффузию количества движения) и применять к ней соотношения такого же вида, как выведенные в § 14 гл. II. Так, например, касательное напряжение и здесь будет равно однако, в противоположность тому, что было раньше, теперь скорости представляют собой не турбулентные пульсации, а скорости молекул (см. в связи с этим замечание в конце §4,

В сильно разреженных газах, где длиной свободного пути молекул нельзя пренебрегать по сравнению с размерами сосуда, наблюдается кажущееся скольжение газа вдоль стенки. Это происходит потому, что для молекул газа, подлетающих из потока к стенке, составляющая скорости, параллельная стенке, в среднем не равна нулю, между тем как молекулы, отскакивающие от стенки, разлетаются в разные стороны совершенно беспорядочно, и касательная составляющая их скорости в среднем равна нулю. Поэтому среднее значение касательной скорости всех молекул газа не равно нулю, и наблюдается кажущееся скольжение газа вдоль стенки. В газах, находящихся под обычным давлением, длина свободного пути молекул столь мала, что указанное скольжение остается незаметным.

В капельных жидкостях происхождение вязкости совсем иное. Молекулы здесь расположены настолько тесно друг к другу, что в общем случае они могут совершать только небольшие колебания в очень узких пределах и лишь иногда могут меняться местами друг с другом. Такая перемена мест происходит вообще совершенно беспорядочно, но под действием касательного напряжения (которое можно понимать здесь как упругое напряжение, возникающее в результате сложения молекулярных сил) эта перемена мест чаще совершается в том направлении, в котором действует касательное напряжение, что и приводит к скольжению одного слоя жидкости по другому. Таким образом, вязкость жидкости связана с переменой молекулами своих мест; она тем меньше, чем чаще совершается такая перемена.

Заметим, что наряду с обычными жидкостями, для которых скольжение строго пропорционально касательному напряжению существуют

так называемые аномальные жидкости, для которых эта пропорциональность не соблюдается. К таким жидкостям принадлежат главным образом коллоидные растворы, имеющие очень большие, часто нитеобразные молекулы. В этих жидкостях скольжение обычно увеличивается быстрее касательного напряжения, что, по-видимому, связано с тем, что по мере увеличения скорости все большее и большее количество длинных молекул располагается параллельно направлению движения. В дальнейшем мы не будем заниматься рассмотрением аномальных жидкостей.

В общей теории трения жидкостей показывается, что при деформации отдельных элементов жидкости возникают напряжения такого же рода, как и в упругих телах, с той только разницей, что они пропорциональны не деформациям, а скоростям деформаций. Поэтому известные из теории упругости формулы для девяти компонентов напряженного состояния в случае жидкости принимают вид:

Если эти компоненты во всех точках области, занятой жидкостью, сохраняют постоянные значения, как это имеет место при аффинной деформации области, то все они взаимно уравновешиваются. Если же в разных точках области, занятой жидкостью, они имеют разные значения, как это имеет место в общем случае деформации, то это приводит к тому, что в каждой точке жидкости возникает некоторая сила. Пусть составляющие этой силы, отнесенной к единице объема, равны В таком случае, аналогично тому, как и в теории упругости, мы будем иметь:

Таким образом, в вязких жидкостях к силам, обусловленным разностями давлений, а также к массовым силам (если они вообще

учитываются), присоединяются еще силы, вызванные трением и имеющие своими составляющими

Подставляя в равенства (6) вместо их значения из равенств (5), мы получим:

и аналогичные уравнения для Если при движении жидкости не происходит изменений объема, то второй член в правой части уравнения (7) обращается в нуль.

Присоединяя правые части уравнений (7) к правым частям уравнений Эйлера (13), выведенным в §4 гл. II, мы получим так называемые дифференциальные уравнения Навъе - Стокса для вязкой жидкости. Для несжимаемых потоков эти уравнения принимают вид:

где имеют значения, определяемые равенствами (12), гл. II, а символ введен для сокращенного обозначения операции

Если, как это было в примерах, разобранных в § 1, составляющая скорости потока в направлении оси х, т.е. величина и, значительно больше двух других составляющих и если эта составляющая сильнее всего изменяется в направлении оси у, то основную роль играет напряжение [в § 1, в уравнении (1), мы его обозначили чере ]. Поэтому в первом из выражений (6), определяющем силу X, наибольшую величину будет иметь член причем на основании четвертого из равенств (5) мы будем иметь:

(так как составляющая мала по сравнению с u). Следовательно, в рассматриваемом случае силами, управляющими потоком, будут: только что указанная сила вызванная трением, перепад давления и сила инерции - (ср. § 4 гл. II). Дальнейшими вычислениями мы не будем заниматься, так как их доведение до конечного результата в общем случае наталкивается на очень большие математические трудности. Вместо этого мы остановимся в следующем параграфе на вопросе механического подобия, имеющем важное значение для получения правильного общего представления о гидродинамических явлениях.

Читайте также: