Дросселирование газа и пара реферат

Обновлено: 05.07.2024

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

1)Холодильные циклы без отдачи внешней работы (с дросселированием газа)

Цикл с простым дросселированием; Цикл с двукратным дросселированием; Цикл с предварительным охлаждением;

2) Холодильные циклы с расширением сжатого газа в детандере

Цикл высокого давления (цикл Гейландта) Цикл среднего давления Цикл низкого давления

3) Список используемой литературы Холодильные циклы без отдачи внешней работы

(с дросселированием газа)

Рассмотрим холодильный цикл с дросселированием газа (рис. 1). Газ с давлением P1 и абсолютной температурой Т1 изотермически сжимается в компрессоре I до давления P2 (линия 1 - 2), после чего, пройдя дроссельный вентиль II , газ расширяется до первоначального давления P1 , а его температура снижается до Т3 (линия 2 – 3 при i2=const). Охлажденный газ нагревается в подогревателе III до первоначальной температуры Т1 (линия 3 – 1 при р1 =const), отнимая от охлаждаемой среды количество тепла, равное холодопроизводительности 1 кг газа:

q0=qдрос. =i1-i2 (Рис. 1)

Таким образом, холодопроизводительность при дросселировании равна разности энтальпии газа (i1-i2) до и после изотермического сжатия в компрессоре.Количество тепла, отводимого при изотермическом сжатии газа, равно: -q=T1∆S

где ∆S – изменение энтропии (длина отрезка 1 - 2).Работа, затраченная в компрессоре на сжатие газа (при температуре Т1), согласно уравнению l+q=i2 – i1 составляет

lкомпр. =-q+( i1-i2)= T1∆S-qдрос.

или с учетом к. п. д. компрессора ŋк

lкомп.= T1∆S-qдрос

Температура после дросселирования может быть снижена путем рекуперации холода. Для этого сжатый газ до поступления в дроссельный вентиль пропускают через теплообменник, где охлаждают расширенным газом перед его подачей в компрессор из подогревателя. Холодопроизводительность и затрата работы на сжатие газа при рекуперации холода не изменяются.

Используя дросселирование воздуха в сочетании с рекуперацией холода, К. Линде разработал рассматриваемые ниже циклы получения жидкого воздуха. Цикл с простым дросселированием.

Сжатый в компрессоре I и охлажденный до комнатной температуры воздух поступает в теплообменник II в точке 2. Пройдя теплообменник, воздух дросселируется до атмосферного давления и вновь направляется в теплообменник, двигаясь противотоком по отношению к поступающему сжатому воздуху. Дросселированный воздух охлаждает сжатый воздух, вследствие чего температура последнего перед дросселированием все более снижается, пока не наступает частичное снижение воздуха в точке 4. После этого жидкий воздух выводится из системы и в теплообменник возвращается лишь несжиженная часть воздуха.На диаграмме T – S линия 1- 2 выражает изотермическое сжатие воздуха в компрессоре, линия 2 – 3 – охлаждение сжатого воздуха в теплообменнике (при постоянном давлении P2), линия 3 – 4 – дросселирование при (i=const). Точка 4 изображает состояние воздуха

Дросселирование – это эффект падения давления при преодолении потоком рабочего тела сопротивления, например: частично открытого вентиля, задвижки, шибера, пористой стенки (рис. 6.9).

Данный процесс является необратимым адиабатным (dq = 0, dsH > 0), в котором полезная работа не совершается, а изменение кинетической энергии пренебрежимо мало.

Согласно уравнения первого закона термодинамики (6.2) при : h1 = h2, т.е. энтальпия рабочего тела в процессе дросселирования не изменяется.

Таким образом, при дросселировании рабочего тела:

· давление уменьшается (dp 0);

· удельный объем увеличивается (dv > 0).

При дросселировании идеального газа температура не изменяется
(dT = 0), т.к. h = f(T).

При дросселировании реальных газов и паров температура может увеличиваться, уменьшаться или не изменяться для одного и того же рабочего тела. Это зависит от параметров, при которых газ либо пар дросселируются.

Изменение температуры реальных газов и паров характеризуется дифференциальным эффектом дросселирования: .

При ah > 0 – температура уменьшается (dT 0).

При ah = 0 – температура не изменяется (dT = 0).

Состояние рабочего тела, в котором ah = 0, называется точкой инверсии, а соответствующая ей температура – температурой инверсии (Tинв). При атмосферном давлении для: водорода - tинв = -57 0 С, гелия - tинв = -239 0 С, водяного пара - tинв = 4097 0 С. При температурах t

На рис. 6.11 показан обратимый адиабатный процесс расширения рабочего пара от p1 до p2 в паровой турбине.

Работа данного процесса равна l = h1h2.

После дросселирования пара в задвижке до давления p работа обратимого адиабатного процесса расширения уменьшилась , следовательно, уменьшилась мощность турбины.

6.10. Методические указания и вопросы

1. Уясните физический смысл отдельных членов уравнения первого закона термодинамики для потока, поймите разницу между внешней и технической работой, и в каком случае они тождественны.

2. Каково назначение сопел и диффузоров? Как влияет профиль канала на скорость адиабатного потока? Как изменяются параметры в зависимости от изменения скорости (dc>0, dc 2 /с 2 .

4. Уясните особенности истечения с учетом трения: определение параметров действительного процесса, скорости и характерных сечений сопла, расчет потерь кинетической энергии и эксергии.

5. Как изменяются параметры газов и паров при дросселировании? Можно ли этот процесс считать предельным случаем необратимого адиабатного истечения рабочего тела из сопла? Каково практическое применение процессов дросселирования?

Задачи

1. Рассчитайте параметры торможения p0, t0, v0 потока воздуха, имевшего скорость 500 м/с при p =1 бар, t = 30 0 С.

2. Определите параметры торможения (h0, p0) потока сухого насыщенного пара, движущегося со скоростью c = 300 м/с при p =10 бар.

3. Параметры воздуха на входе в сопло равны: p1 = 20 бар, t1 = 300 0 С, скорость c1= 0, давление среды pc = 1 бар.

Рассчитайте скорость (c2) и скорость звука (a2) на выходе из: а) сопла Лаваля; б) суживающегося сопла.

Рассчитывается и сравнивается с bkp. Для воздуха (табл. 6.1) bkp = 0,528, следовательно, в нашем случае b a2) рассчитывается по формуле (6.19)

В варианте установки суживающегося сопла при b 0 С, истекая из сопла Лаваля, расширяется адиабатно до давления p2 = 1 бар.

Определить площадь выходного и минимального сечений сопла, если массовый расход пара равен G = 4 кг/с.

Выходное и минимальное сечения рассчитываются по уравнениям неразрывности потока (6.31), (6.33):

скорости - по формулам:

Для перегретого пара из табл. 6.1 выбираем bkp = 0,546. Давление пара в минимальном сечении сопла:

Из h-s- диаграммы для адиабатного процесса расширения находятся необходимые параметры: h1 = 3140 кДж/кг, hkp = 2950 кДж/кг, h2 = 2620 кДж/кг, vkp = 0,44 м 3 /кг, v2 = 1,7 м 3 /кг.

f2 = 4 . 1,7/1019,8 = 6,67 . 10 -3 м 2 ,

fmin =4 . 0,44/616,6 =2,85 . 10 -3 м2

Ответ: f2 = 6,67 . 10 -3 м2 , fmin = 2,85 . 10 -3 м2 .

5. При выпуске из баллона азот дросселируется от исходного состояния, характеризуемого параметрами: p1 = 20 МПа, t1 = 20 0 С, до давления
p2 = 8 МПа.

Определить плотность азота после дросселирования а также изменение энтропии в процессе дросселирования, считая азот идеальным газом, имеющим постоянную теплоемкость.

6. Как изменится температура при дросселировании сухого насыщенного водяного пара с давлением p1= 20 бар до p2 = 1 бар ?

Ответы

1.t0 = 155 0 С, p0 = 1,104 бар, v0 =1,111 м 3 /кг. 2.h0= 2822 кДж/кг,

p0 = 12,5 бар.5. r = 91,95 кг/м 3 , Ds = 0,272 кДж/(кг . К).

6.Dt=t1 - t2 = 52 0 С.

ВЛАЖНЫЙ ВОЗДУХ

Влажный воздух – это смесь сухого воздуха и водяного пара.

Давление влажного воздуха равно сумме парциальных давлений сухого воздуха (pс.в.) и водяного пара (pп)

Дросселированием называют необратимый процесс, в котором давление при прохождении газа через ссуженное отверстие уменьшается без совершения внешней работы.

Всякое сопротивление в трубопроводе (вентили, задвижка, шайба кран, клапан и др.) вызывает дросселирование газа и, сле­довательно, падение давления.

Величина падения давления зависит от природы рабочего тела, его состояния, величины сужения газопровода и скорости движе­ния газа.

В большинстве случаев дросселирование, сопровождающееся уменьшением работоспособности тела, приносит безусловный вред, Но иногда оно является необходимым и создается искусственно, например, при регулировании паровых двигателей, в холодильных установках, в приборах, замеряющих расход газа и т.д.

Газ при прохождении через отверстие, представляющее извест­ное сопротивление, кинетическая энергия газа и его скорость в узком сечении возрастают, что сопровождается падением темпера­туры и давления (рис. 1).

Примером процесса дросселирования является выпуск сжатого газа из баллона. Температура газа на выходе из баллона резко понижается и вентиль обмерзает.

Процесс дросселированияподчиняется обшей теория газового потока,

Р1, V1, Т1 Сжатый газ
Р2, V2, Т2 Расширенный газ
Рис. 1. Принципиальная схема дросселирования.

основные положения которого были изложены Д.Бернулли, Н.Е.Жуковским и Чаплыгиным. Особое значение имеют работы Жуков­ского "Истечение газа под большим напором" и "О трении газов".

Большинство реальных газов (воздух, кислород, азот, углекис­лота и др.) при дросселировании в обычных условиях понижают свою температуру.

Эти ученые произвели опыт с пропусканием сжатого газа через пористую пробку, вставленную в трубку, и установили, что при расширении газа во время прохождения через пробку происходит охлаждение его.

Дросселирование протекавшего газа или жидкости возникает в том случае, когда поток внезапно сужается вследствие уменьшения сечения, а затем опять получает возможность двигаться в большем сечении.

В ссуженном сечении скорость потока возрастает, что одновре­менно вызывает понижение температуры потока и, следовательно, уменьшение его внутренней энергии.

Кинетическая энергия, полученная потоком в процессе дроссе­лирования, расходуется на трение, превращается в тепло, кото­рое воспринимается самим потоком. Этот процесс приводит к из­менению внутренней энергии и температуры дросселируемого ве­щества, а в случае дросселирования влажного пара - и к увели­чению его сухости. В зависимости от свойств и состояния дрос­селируемого вещества внутренняя энергия за дроссельным участ­ком может быть больше или меньше, либо равной внутренней энер­гии до дроссельного участка. От этого соотношения зависит из­менение состояния дросселируемого вещества, следовательно, ко­нечная температура вещества может быть выше, равна или ниже начальной.

Процесс дросселирования можно рассмотреть с помощью схемы, изображенной на рисунке 2.

При прохождении газа через отверстие, представляющее извес­тное сопротивление, кинетическая энергия газа и его скорость в узком сечении возрастают, что сопровождается падением температуры и давления.

Рис. 2. Схема процесса дросселирования

Газ, протекая через отверстие, приходит в вихревое движение. Часть кинетической энергии затрачивается на образование этих вихрей и превращается в теплоту, кроме этого, как было указано выше, в теплоту превращается и работа, затраченная на преодо­ление сопротивлений (трения).

Вся эта теплота воспринимается газом, в результате чего температура его изменяется и может как уменьшаться, так и увеличиваться.

В отверстии скорость газа увеличивается. За отверстием, ког­да газ течет по полному сечению, скорость его вновь понижает­ся, а давление увеличивается, но до начального значения оно не поднимается; некоторое изменение скорости произойдет в связи с увеличением удельного объема газа от уменьшения давлении.

Дросселирование, как указывалось выше, является необратимым процессом, при котором всегда происходит увеличение энтропии и уменьшение работоспособности рабочего тела.

При перемещении I кг газа через отверстие поршень I пере­местятся в положение I', а поршень II в положение 11' , при этом поршень I совершит путь S1 , а поршень II – путь S2.

Для перемещения I кг газа необходимо затратить работу P1S1F1 или P1Q1.

Часть этой работы P2S2F2 или P2V2 будет израсходована на преодоление давления P2, а разность работ P1V1–P2V2 вызовет изменение энергии рабочего тела.

w2 2 – w1 2
Если начальная скорость газа W1 и внутренняя энергия W2 то будем иметь

Р1V1 – P2V2 = U2 – U1 +

w1 2
w2 2
При условии, что скорости W1 и W2 мало отличаются друг от друга, изменением внешней кинетической энергии можно пренеб­речь и считать

(U1 – P1V1) – (U2 – P2V2) = 0

i1 – i2 = 0 i1 = i2

Полученное равенство показывает, что энтальпия в результате процесса дросселирования не изменяется. Этот вывод к проме­жуточным состояниям газа неприменим.

Энтальпия идеального газа является однозначной функцией тем­пературы. Отсюда следует, что в результате дросселирования иде­ального газа температура его не изменяется Т1 = Т2.

В результате процесса дросселирования реального газа энталь­пия для начальных и конечных давлений остается одинаковой, эн­тропия и объем увеличиваются, давление падает, а температуре может увеличиваться, уменьшаться или же, в частном случае, ос­таться без изменений.

Изученное ранее уравнение состояния Клапейрона PV = RT справедливо только для идеальных газов, которые в природе не существуют. Объем реальных газов, особенно в условиях высокого давления и низкой температуры, уменьшается при сжатии больше или меньше, чем это следует из уравнения состояния.

Уравнение Клапейрона для 1 кг реального газа имеет следующий вид: РV=ZRT,

где Z - коэффициент сжимаемости.

Сущность явления сжимаемости заключается в следующем.

Между молекулами реального газа существуют силы сцепления и отталкивания. При сжатии газа до давлений 10-20 МПа силы сцепления возрастают в большей степени, нежели силы отталкива­ния. За счет этих повышенных сил сцепления объем газа при сжа­тии уменьшается в большей степени, чем это следует по закону Бойля-Мариотта, на величину "самосжимаемости".

Зная коэффициент сжимаемости данного реального газа, можно по уравнению Клайперона для идеального газа определить измене­ние давления или объема реального газа. Кривые, по которым мож­но определить коэффициенты сжимаемости для некоторых газов при разных абсолютных давлениях и температурах (0 и 50°С) приведе­ны на рисунке.

Если коэффициент сжимаемости при данной температуре и дав­лении меньше единицы, такой газ сжимается в большей степени, чем идеальный газ; наоборот, если z >1, газ сжимается в мень­шей степени, чем это следует из уравнения Клапейрона. Для иде­ального газа коэффициент сжимаемости z =1.

В момент дросселирования газа давление понижается и газ рас­ширяется. Температура идеального газа остается постоянной, но для всех реальных газов при дросселировании температура изменяется. Данное явление обусловлено присущей реальным газам большей или меньшей степени сжимаемости по сравнению с идеаль­ным газом.

0 40 80 120 160 200 0 40 80 120 160 200

Абсолютное давление, кгс/см2 Абсолютное давление, кгс/см2

Рис. 3. Коэффициент сжимаемости реальных газов при разных абсолютных давлениях и температурах

Оно было установлено английскими учеными Джоулем и Томсоном (Кельвином).

При дросселировании реальный газ совершает два вида рабо­ты – внешнюю и внутреннюю.

Внешняя работа заключается в перемещении некоторого объе­ма газа при том давлении, которое действует после дросселя, а внутренняя – в преодолении сил взаимного притяжения между молекулами газа в процессе его расширения. Внешняя работа может быть как положительной, так и отрица­тельной. Если реальный газ сжимается сильнее, чем это следу­ет по уравнению Клапейрона, то внешняя работа будет положитель­ной. Она производится за счет части внутренней энергии газа, вследствие чего его температура понижается, т.е. газ охлажда­ется.

Когда реальный газ сжимается в меньшей степени, чем следу­ет по уравнению Клапейрона, то внешняя работа отрицательна. В этом случае используется часть работы компрессора, и газ после дросселя нагревается, так как эта избыточная работа идет на увеличение внутренней энергии газа. Внутренняя работа, производимая газом при дросселирования, всегда положительна, т.е. вызывает охлаждение газа.

Общий эффект дросселирования для каждого реального газа определяется соотношением внешней и внутренней работы и зави­сит от начальных условий дросселирования (начального давления и температуры газа), а также физической природы газа.

Внешняя работа для воздуха, кислорода, азота в областях давлений и температур, обычных при их дросселировании в уста­новках глубокого холода, положительна и по своей абсолютной величине незначительна по сравнению с внутренней работой. Поэ­тому эти газы при дросселировании всегда охлаждаются.

Однако существуют условия, когда эти газы при дросселировании могут не охлаждаться, а наоборот нагреваться. Например, Фогель установил, что при начальной температуре 28З°Кпроцессыдросселирования воздуха с давлением выше 36,8 МПа и кислоро­да с давлением свыше 31,1 МПа сопровождаются нагреванием этих газов.

Учебный вопрос № 2. Эффекты дросселирования

В термодинамике низких температур различают дифференциальный, интегральный и охлаждающий эффекты Джоуля-Томсона.

Дифференциальный эффект (αi) - отношение бесконечно ма­лого изменения температуры дросселируемого газа к бесконечно малому уменьшению давления, вызывающему это изменение темпера­туры.

Теплосодержание газа в процессе дросселирования остается постоянным (i = сonst). Уменьшение теплосодержания газа происходит всегда до начала дросселирования, т.е. в процессе сжатия газа в компрессоре до начального давления перед дрос­селем. При этом затрачиваемая на сжатие механическая работа переходит в тепло сжатия, которое отводится от газа водой в холодильнике. Расширившийся затем в дросселе газ будет иметь вследствие этого меньшее теплосодержание и его температура после расширения будет ниже начальной на величину интеграль­ного эффекта. Дифференциальный эффект αi = δТ/δР.

Принимая αР = 0,1 МПа, получим αi равной изменению температуры при дросселировании, приходящейся на 0,1 МПа падения давления.

Если αi > 0, то эффект положительный;

Рис. 4. Значения дифференциального эффекта Джоуля-Томсона для воздуха при различных температурах и абсолютных давлениях
Температура Т, ˚К

температуры увеличивается до линии насыщения. При давлениях выше критического этот эф­фект с понижением температуры сначала возрастает до максиму­ма, а затем уменьшается, и тем более резко, чем ближе давле­ние к критическому.

Дифференциальный эффект Джоуля-Томсона при высоких давлени­ях и низких температурах отрицательный. Точки пересечения изо­бар с горизонталью 0-0 являются инверсионными, так как в них αi = 0. Как видно из диаграммы изобары в правой части также где-то пересекаются с горизонталью 0-0; это соответст­вует вторым инверсионным точкам для воздуха в области очень высоких температур. Между двумя инверсионными точками значение дифференциального эффекта Джоуля-Томсона для воздуха всегда положительно.

Практически для приближенных подсчетов дифференциальный эффект считают равным ¼ °С при понижении давления на 1 ат.

Эффект, наблюдающийся при больших изменениях давления, на­зывается интегральным.

Интегральный эффект Δ Тi показывает суммарное изменение температуры при данном конечном перепаде давлений.

Величину интегрального эффекта Джоуля-Томсона вычисляют для различных начальных давлений и температур дросселирования. Кроме того величина Δ Тi может быть определена:

- непосредственным измерением температур газа в начале и конце процесса как разность Δ Тi = Т2 – Т1;

Δ Тi = di (Р1 – Р2)(273/Т1)2,

где: (Р1–Р2) – перепад давлений;

273/Т1 – температурная поправка с учетом начальной тем­пературы ;

по диаграммам i – Т; i – S и др.

Рис. 5. Графики i – Т иi – S для определения интегрального эффекта

Изотермический (охлаждающий) эффект

Изотермический эффект ΔIт показывает количество холода в кдж, расширившегося в дросселе с начального до конечного давления.

Для расчета процессов глубокого охлаждения исключительно важное значение имеет выражение джоуль-томсоновского эффекта в кдж или так называемый изотермический эффект дросселирования, представляющий собой разность теплосодержания сжатого состояние до дросселирования и расширенного газа при одной и той же температуре начала дросселирования.

ΔIт – это величина, численно равная разности энтальпий, полученных в процессах, предшествовавших дросселированию, т.е. в результате изотермического сжатия в компрессорной установке. Между изотермическим эффектом и интегральным существует следующая зависимость

где Ср - средняя теплоемкость газа при постоянном давлении в пределах определенного интервала температур при дросселировании кдж/кг · град.

Изотермический эффект характеризует холодопроизводительность процесса дросселирования. Он равен работе межмолекулярных сил газа при его сжатии и, следовательно, количеству холода, полу­ченному при дросселировании:

Дросселирование – процесс понижения давления в потоке без совершения внешней работы и без подвода и отвода теплоты при прохождении через местное гидравлическое сопротивление. Любой кран, вентиль, задвижка, клапан, шайба и др. , уменьшающие проходное сечение вызывают дросселирование газов и паров и , следовательно падение давления. Дросселирование применяются в паровых турбинах, например путем дросселирования пара перед входом в паровые турбины регулируют их мощность. Аналогичный процесс осуществляется и в карбюраторных двигателях внутреннего сгорания, где регулирование мощности достигается изменением положения дроссельной заслонки карбюратора.

Дросселирование газов и паров широко используется в редукционных клапанах, применяемых в системах тепло и парогазоснабжения, а также в холодильной технике для получения низких температур и снижения давления газов путем их многократного дросселирования.

Дросселирование является необратимым процессом.

При дросселировании идеального газа выполняется условие h2-h1р21), что свидетельствует о постоянстве температуры рабочего тела как до диаграммы, так и после нее. Обычно, дросселирование потока осуществляется диафрагмой.

При дросселировании реальных газов температура не остается постоянной , а уменьшается или увеличивается в зависимости от природы газа и начальных параметров газа, т.е. Т1> 0, то температура рабочего тела при дросселировании уменьшается (dT 0), в результате происходит нагревание газа и будет отрицательный эффект Джоуля – Томсона и Т1инв. При Т(ðv/ ðТ)р-V=0 температура не меняется (ðТ =0).

Цикл поршневого ДВС с изобарным подводом теплоты (цикл дизеля) и его термический КПД

Термодинамический цикл (цикл Дизеля) с подводом теплоты при постоянном давлении (p= const) – реализуемой в компрессорных дизелях состоит из следующих обратимых процессов: 1-2 – адиабатное сжатие воздуха, 2-3- изобарный подвод теплоты, 3-4 – адиабатное расширение, 4-1 – отвод теплоты по изохоре.

Термодинамический к.п.д. цикла

Для этого цикла принимают ε = 12…14, l=1, r=1,1…1,5.

Цикл Ренкена парасиловой установки и его изображение в П1В-у-ТС-диаграммах и термический КПД

Теплота в цикле подводится в процессах 45, 56 и 61 и может быть определена как разность энтальпии в начале и конце процесса подвода теплоты:

Теплота отводится в процессе 23 и также может определена как разность энтальпий:

Если пренебречь работой, расходуемой для привода насоса, величина которой незначительна, то работа цикла равна работе турбины :

Термический КПД данного цикла может быть определен по формуле:

Из формулы (7.5) видно, что термический КПД цикла Ренкина зависит от значений энтальпий пара до и после турбины, а также от значения энтальпии воды, находящейся при температуре кипения .

Способы повышения КПД цикла парасиловой установки?

Теплопроводность через плоскую стенку. уравнение теплового потока и понятие термического сопротивления стенок

Теплоотдача при свободном движении жидкости (см 44)

Передача теплоты через ребристую стенку.

Основные схемы движения и теплообмена потоков теплоносителей.

Сущность процесса дросселирования газов и паров и изменение параметров рабочего тела при дросселировании.

Дросселирование – процесс понижения давления в потоке без совершения внешней работы и без подвода и отвода теплоты при прохождении через местное гидравлическое сопротивление. Любой кран, вентиль, задвижка, клапан, шайба и др. , уменьшающие проходное сечение вызывают дросселирование газов и паров и , следовательно падение давления. Дросселирование применяются в паровых турбинах, например путем дросселирования пара перед входом в паровые турбины регулируют их мощность. Аналогичный процесс осуществляется и в карбюраторных двигателях внутреннего сгорания, где регулирование мощности достигается изменением положения дроссельной заслонки карбюратора.

Дросселирование газов и паров широко используется в редукционных клапанах, применяемых в системах тепло и парогазоснабжения, а также в холодильной технике для получения низких температур и снижения давления газов путем их многократного дросселирования.

Дросселирование является необратимым процессом.

При дросселировании идеального газа выполняется условие h2-h1р21), что свидетельствует о постоянстве температуры рабочего тела как до диаграммы, так и после нее. Обычно, дросселирование потока осуществляется диафрагмой.

При дросселировании реальных газов температура не остается постоянной , а уменьшается или увеличивается в зависимости от природы газа и начальных параметров газа, т.е. Т1>

Читайте также: