Днк как основа наследственности реферат

Обновлено: 07.07.2024

О природе наследственности на протяжении истории человечества высказывались самые разнообразные предположения. Однако в сороковых годах XX века было установлено, что материальным носителем наследственной информации является ДНК, в молекуле которой зашифрованы признаки, присущие данному виду организмов во всем их многообразии.

Каждый из нас состоит примерно из 10 в пятнадцатой степени клеток. Это своего рода империя клеток, каждая из которых представляет собой миниатюрную фабрику для производства белков. Молекулы белков похожи на длинные цепочки бус, в которых роль отдельных звеньев играют 20 различных аминокислот, способных соединяться между собой в любом порядке. Если сравнить аминокислоты с буквами алфавита, то белки будут похожи на составленные из них слова, только очень длинные. Число различных вариантов белков, составленных всего из пяти аминокислот, уже превышает три миллиона. В состав же среднего белка входит 100-200 аминокислот. Понятно, что разнообразие цепочек такой длины будет измеряться уже астрономическими числами.

Отрезок ДНК, на котором записана информация об одном белке, называется геном. Иначе говоря, информация о каждом белке человеческого организма хранится на своем отрезке молекулы ДНК. Всю генетическую информацию клетки или организма называют генотипом. Внешнее проявление этой информации, то есть белки, ткани, органы, а так же показатели типа размер, цвет, форма, составляют фенотип (от греческого phaino – являю). Фенотип – совокупность признаков организма, которые можно зарегистрировать, взвесить, измерить.

Правильное положение каждого из четырех знаков аденина, тимина, гуанина и цитозина в ДНК и их точная связь со знаками на противоположной цепочке чрезвычайно важны для правильной работы клетки. Каждые три знака кодируют одну аминокислоту и изменения даже одного знака в ДНК клетка начнет производить белок, в котором одна аминокислота может быть заменена на другую. Если же аминокислота играет в данном белке ключевую роль, его работа будет существенно нарушена: в лучшем случае клетка окажется неспособной выполнять необходимую работу, а в худшем – начнет при этом бесконтрольно размножаться, что послужит началом образования опухоли.

Перед началом деления каждая нить ДНК успевает построить свою копию. Зачем эти нити компактно сворачиваются, и получается пара совершенно одинаковых хромосом.

Заслуга Менделя состоит еще и в том, что он дал в руки генетиков мощный метод исследования наследственных признаков – гибридологический анализ, т.е. метод изучения генов путем анализа признаков потомков от определенных скрещиваний. В основе законов Менделя и гибридологического анализа лежат события, происходящие в мейозе: альтернативные аллели находятся в гомологичных хромосомах гибридов и потому расходятся поровну. Именно гибридологический анализ определяет требования к объектам общих генетических исследований: это должны быть легко культивируемые организмы, дающие многочисленное потомство и имеющие короткий репродуктивный период. Таким требованиям среди высших организмов отвечает плодовая мушка дрозофила – Drosophila melanogaster. На многие годы она стала излюбленным объектом генетических исследований. Усилиями генетиков разных стран на ней были открыты фундаментальные генетические явления. Было установлено, что гены расположены в хромосомах линейно и их распределение у потомков зависит от процессов мейоза; что гены, расположенные в одной и той же хромосоме, наследуются совместно (сцепление генов) и подвержены рекомбинации (кроссинговер). Открыты гены, локализованные в половых хромосомах, установлен характер их наследования, выявлены генетические основы определения пола. Обнаружено также, что гены не являются неизменными, а подвержены мутациям; что ген – сложная структура и имеется много форм (аллелей) одного и того же гена.

Затем объектом более скрупулезных генетических исследований стали микроорганизмы, на которых стали изучать молекулярные механизмы наследственности. Так, на кишечной палочке Escheriсhia coli было открыто явление бактериальной трансформации – включение ДНК, принадлежащей клетке донора, в клетку реципиента – и впервые доказано, что именно ДНК является носителем генов. Была открыта структура ДНК, расшифрован генетический код, выявлены молекулярные механизмы мутаций, рекомбинации, геномных перестроек, исследованы регуляция активности гена, явление перемещения элементов генома и др. Наряду с указанными модельными организмами генетические исследования велись на множестве других видов, и универсальность основных генетических механизмов и методов их изучения была показана для всех организмов – от вирусов до человека.

Достижения и проблемы современной генетики

На основе генетических исследований возникли новые области знания (молекулярная биология, молекулярная генетика), соответствующие биотехнологии (такие, как генная инженерия) и методы (например, полимеразная цепная реакция), позволяющие выделять и синтезировать нуклеотидные последовательности, встраивать их в геном, получать гибридные ДНК со свойствами, не существовавшими в природе. Получены многие препараты, без которых уже немыслима медицина. Разработаны принципы выведения трансгенных растений и животных, обладающих признаками разных видов. Стало возможным характеризовать особей по многим полиморфным ДНК-маркерам: микросателлитам, нуклеотидным последовательностям и др. Большинство молекулярно-биологических методов не требуют гибридологического анализа. Однако при исследовании признаков, анализе маркеров и картировании генов этот классический метод генетики все еще необходим.

Современная генетика обеспечила новые возможности для исследования деятельности организма: с помощью индуцированных мутаций можно выключать и включать почти любые физиологические процессы, прерывать биосинтез белков в клетке, изменять морфогенез, останавливать развитие на определенной стадии. Мы теперь можем глубже исследовать популяционные и эволюционные процессы, изучать наследственные болезни, проблему раковых заболеваний и многое другое. В последние годы бурное развитие молекулярно-биологических подходов и методов позволило генетикам не только расшифровать геномы многих организмов, но и конструировать живые существа с заданными свойствами. Таким образом, генетика открывает пути моделирования биологических процессов и способствует тому, что биология после длительного периода дробления на отдельные дисциплины вступает в эпоху объединения и синтеза знаний.

Основная цель проекта – выяснить последовательность нуклеотидных оснований во всех молекулах ДНК человека и установить локализацию, т.е. полностью картировать все гены человека. Проект включает в качестве подпроектов изучение геномов собак, кошек, мышей, бабочек, червей и микроорганизмов. Ожидается, что затем исследователи определят все функции генов и разработают возможности использования полученных данных.

Что же представляет собой основной предмет проекта – геном человека?

Известно, что в ядре каждой соматической клетки (кроме ядра ДНК есть еще и в митохондриях) человека содержится 23 пары хромосом, каждая хромосома представлена одной молекулой ДНК. Суммарная длина всех 46 молекул ДНК в одной клетке равна приблизительно 2 м, они содержат около 3,2 млрд. пар нуклеотидов. Общая длина ДНК во всех клетках человеческого тела (их примерно 5х1013) составляет 1011 км, что почти в тысячу раз больше расстояния от Земли до Солнца.


Рис. 1. Уровни упаковки хроматина

Первый уровень предполагает организацию ДНК с гистоновыми белками – образование нуклеосом. Две молекулы специальных нуклеосомных белков образуют октамер в виде катушки, на которую наматывается нить ДНК. На одной нуклеосоме размещается около 200 пар оснований. Между нуклеосомами остается фрагмент ДНК размером до 60 пар оснований, называемый линкером. Этот уровень укладки позволяет уменьшить линейные размеры ДНК в 6–7 раз.

На следующем уровне нуклеосомы укладываются в фибриллу (соленоид). Каждый виток составляет 6-7 нуклеосом, при этом линейные размеры ДНК уменьшаются до 1 мм, т.е. в 25-30 раз.

Если у прокариот линейные размеры гена согласуются с размерами структурного белка, то у эукариот размеры ДНК намного превосходят суммарные размеры значимых генов. Это объясняется, во-первых, мозаичным, или экзон-интронным, строением гена: фрагменты, подлежащие транскрипции – экзоны, перемежаются незначащими участками – интронами. Последовательность генов сначала полностью транскрибируется синтезирующейся молекулой РНК, из которой затем вырезаются интроны, экзоны сшиваются и в таком виде информация с молекулы иРНК считывается на рибосоме. Второй причиной колоссальных размеров ДНК является большое количество повторяющихся генов. Некоторые повторяются десятки или сотни раз, а есть и такие, у которых встречается до 1 млн. повторов на геном. Например, ген, кодирующий рРНК повторяется около 2 тыс. раз.

Еще в 1996 г. считалось, что у человека около 100 тыс. генов, сейчас специалисты по биоинформатике предполагают, что в геноме человека не более 60 тыс. генов, причем на их долю приходится всего 3% общей длины ДНК клетки, а функциональная роль остальных 97% пока не установлена.

Каковы же достижения ученых за десять с небольшим лет работы над проектом?

Первым крупным успехом стало полное картирование в 1995 г. генома бактерии Haemophilus influenzae. Позднее были полностью описаны геномы еще более 20 бактерий, среди которых возбудители туберкулеза, сыпного тифа, сифилиса и др. В 1996 г. картировали ДНК первой эукариотической клетки – дрожжей, а в 1998 г. впервые был картирован геном многоклеточного организма – круглого червя Caenorhabolitis elegans. К 1998 г. установлены последовательности нуклеотидов в 30 261 гене человека, т.е. расшифрована примерно половина генетической информация человека.

Полученные данные позволили впервые реально оценить функции генов в организме человека (рис. 2).


Рис. 2. Примерное распределение генов человека по их функциям.

1 – производство клеточных материалов; 2 – производство энергии и ее использование; 3 – коммуникации внутри и вне клеток; 4 – защита клеток от инфекций и повреждений; 5 – клеточные структуры и движение; 6 – воспроизводство клеток; 7 – функции не выяснены

В таблице 1 приведены известные данные по количеству генов, вовлеченных в развитие и функционирование некоторых органов и тканей человека.

Введение
1. Открытие ДНК и нуклеопротеидная теория наследственности
2. Доказательства роли ДНК как материального носителя наследственной информации
3. Изучение химического состава и структуры ДНК
4. Современное представление о структуре ДНК
Список литературы

Введение

Вопросы наследственности, передачи отдельных признаков от родителей потомству, самовоспроизводства живых организмов на Земле издавна волновали человечество. В разные эпохи различными учеными выдвигалось множество теорий, своеобразно объясняющих подобные процессы. Наиболее древняя из них датирована VI-V вв. до н. э. Это так называемое энцефаломиелоидное учение древнегреческого врача и натурфилософа Алкмеона из Кротона (Гайсинович А. Е., 1988).
Но истинные ответы на эти вопросы человечество смогло найти лишь спустя несколько тысяч лет, с появлением и развитием генетики - науки о наследственности и изменчивости организмов. Официальной датой рождения генетики считают 1900 г., когда трое ученых - голландец Х. де Фриз, немец К. Коренс и австриец Э. Чермак - независимо друг от друга переоткрыли законы Грегора Менделя о наследовании генетических признаков.
С развитием точных наук и техники менялись методы и уровни изучения живой материи. Наряду с классической генетикой, появились такие важные направления, как цитогенетика, генетика человека, генетика микроорганизмов, биохимическая, эволюционная генетика, космическая генетика, молекулярная генетика и многое др.
Именно с молекулярной генетикой связана история изучения структуры и значения ДНК в понимании наследственности.

1. Открытие днк и нуклеопротеидная теория наследственности

2. Доказательства роли днк как материального носителя наследственной информации

Решающим поворотом в генетике было открытие в 1944 г. трансформирующей функции ДНК. Группа американских бактериологов - О. Эвери, Ч. Мак-Леод и М. Мак-Карти - проводила исследования вирулентности возбудителя пневмонии бактерии Diplococcus pneumoniae (Гуляев Г. В., 1971). Их опыты повторил английский бактериолог Ф. Гриффитс. В его опытах использовались два штамма пневмококков с противоположными признаками: с наличием и отсутствием капсул. Клетки капсульного штамма S были вирулентными, а бескапсульного - R - безвредными.
Ф. Гриффитс вводил суспензию данных микроорганизмов белым мышам в различных комбинациях. Животные, зараженные вирулентным штаммом S, погибали. При введении бескапсульных бактерий (R) и клеток S-штамма, убитых нагреванием, мыши выживали. Казалось бы, полученные результаты были закономерны, а их причины - очевидны. Но совершенно обескураживающие результаты были получены у последней группы белых мышей. Этим животным вводили суспензию, содержащую живые клетки бескапсульного штамма и убитые вирулентные бактерии. Через некоторое время у мышей обнаруживались клинические признаки пневмококковой инфекции и животные погибали. Проведенный бактериологический анализ показал, что в тканях погибших мышей содержатся клетки пневмококка, окруженные капсулой. Следовательно, невирулентный бескапсульный штамм пневмококков под воздействием убитых бактерий S-штамма получал новый признак - капсулу - и приобретал вирулентные свойства. Такое явление Гриффитс назвал трансформацией.
Однако природу трансформирующего агента в то время установить не удалось. Было известно, что это вещество небелкового происхождения, т. к. все белки при нагревании подвергались денатурации.
Явление трансформации наблюдалось также и в пробирке (in vitro), где смешивали живые клетки бескапсульного и мертвые бактерии вирулентного штаммов Diplococcus pneumoniаe. Через определенное время часть бескапсульных бактерий приобрели капсулу и вирулентность. Эксперименты in vitro полностью исключали участие в феномене трансформации каких-либо систем макроорганизмов.
Задача О. Эвери с сотрудниками состояла в том, чтобы выяснить, какое именно вещество способствует трансформации. Методика определения была выбрана относительно простая. Лизированные клетки капсульного штамма разделялись на различные химические составляющие. Каждый компонент испытывался на наличие трансформирующих свойств. Путем такого отбора удалось получить вещество, обладающее высокой трансформирующей активностью. Это была дезоксирибонуклеиновая кислота - ДНК.
Однако выводы группы О. Эвери о том, что посредством ДНК клетки-реципиенты получали от клеток-доноров новый генетический признак, долгое время многие ученые-генетики подвергали сомнению.
Например, существенные сомнения вызывал уровень очистки ДНК в экспериментах О. Эвери. Предполагалось, что присутствующие в препаратах нуклеиновых кислот белковые примеси и были причиной передачи нового генетического признака, что абсолютно не противоречило нуклеопротеидной теории. Стремясь проверить правильность выводов О. Эвери, Хочкисс добился такой степени очистки ДНК, что доля балластных веществ, в т. ч. и белков, в препарате составляла всего 0,02 %. Полученная таким образом чистая ДНК, тем не менее, обладала трансформирующими свойствами.
Другое возражение против генетической роли ДНК сводилось к тому, что ДНК как химическое соединение каким-то образом препятствовало биосинтезу основного вещества капсулы - полисахарида. То есть ДНК приписывалось физиологическое, а не генетическое воздействие. Чтобы опровергнуть это возражение, Гарриет Тейлор в 1949 г. получила новые данные о пневмококковой трансформации: она использовала два штамма, полностью лишенных капсул. Первый R-штамм был типичной бескапсульной бактерией, образующей шероховатые колонии. Второй, названный ей eхtremely R (ER), отличался ярко выраженными характеристиками и образовывал сильно шероховатые колонии. Выделенная из штамма R ДНК вносилась на среду с клетками ER. Через определенное время большая часть ER-бактерий превращалась в R-формы. Таким образом было показано, что наличие или отсутствие капсулы не отражается на трансформирующей роли ДНК.
В 1949 г. Хочкисс провел ряд экспериментов, которые подтвердили, что определенной зависимости между ДНК и синтезом бактериальными клетками капсулы на уровне метаболизма не существует. В его опытах трансформации подвергались бактериальные признаки, которые не имеют никакого отношения к капсулообразованию, - устойчивость микробов определенного штамма к пенициллину и стрептомицину передавалась к другому штамму бактерий.
Более наглядно роль ДНК в передаче наследственной информации была установлена в 1952 г. американскими вирусологами А. Д. Херши и М. Чейзом при изучении разложения фага Т2 (вируса бактерий). Опыт состоял в том, что белки, входящие в протеиновую оболочку вириона, были помечены радиоизотопной меткой - S 35 (сера), а ДНК - радиоактивным фосфором - Р32. В дальнейшем вирус культивировался в клетках бактерий. После этого дочерние вирионы - потомство фага - подвергались радиометрическому анализу на распределение радиоактивных меток. Исследования показали, что новое поколение фаговых частиц содержало только фосфор - Р32. Исследователи сделали справедливый вывод о том, что именно ДНК, а не белок передается от родителей к потомству.
О роли ДНК в передаче наследственной информации свидетельствует также открытие в 1952 г. Зайндером и Ледербергом явления трансдукции, заключающееся в переносе генетического материала фагами от одних бактерий к другим. Ученые при этом показали, что в процессе трансдукции активное участие принимает ДНК (Лехов А. П., 1973).
Кроме прямых доказательств об участии ДНК в процессах наследования признаков, наукой был накоплен обширный фактический материал, косвенно подтверждающий высказанные ранее предположения. В частности, об этом говорят данные относительно возникновения вызываемых химическими веществами и радиацией генетических изменений - мутаций.
Значительный вклад в изучение мутагенеза внесли отечественные ученые. Впервые в 1925 г. сотрудники Ленинградского радиевого института Г. А. Надсон и Г. С. Филиппов воспроизвели мутацию у дрожжевых грибков под влиянием лучей радия (Гулиев Г. В., 1971). В 1932 г. В. В. Сахаров получил мутацию у дрозофилы под воздействием раствора йодистого калия, в 1933 г. М. Е. Лобашев открыл мутагенное действие аммиака (Беляев Д. К., Иванов В. И., 1980). Несколько позже было показано, что мишенью для действия мутагенов является ДНК. Следовательно, изменение в структуре ДНК способствовало изменению генетической информации.
Открытия, сделанные в конце 40 - начале 50 гг. ХХ в. в области молекулярной генетики, предопределили современное направление исследований не только в изучении наследственности, но и биологии в целом. Важнейшее значение открытия явлений трансформации и трансдукции, а также расшифровки действия мутационных факторов заключается прежде всего в доказательстве генетической роли ДНК. Теперь генетики могли с уверенностью констатировать: ДНК является материальным носителем наследственности. Именно эта молекула ответственна за передачу важнейших признаков от родительских особей потомству.

3. Изучение химического состава и структуры ДНК

А + Г = ц + Т А + Г = Ц + Т

В 1952 г. на основании работ Э. Чаргаффа и Хочкисса была сформулирована теория, объясняющая, каким образом ДНК содержит в себе генетическую информацию. Основное положение этой теории звучит так: «Генетическая информация определяется специфической последовательностью четырех нуклеотидных оснований в полинуклеотидной цепи.
Следует отметить, что установленные опытным путем количественные соотношения азотистых оснований в молекуле ДНК, выраженные в правиле Чаргаффа, не случайны. Отечественные генетики А. С. Спирин и А. Н. Белозерский пришли к выводу, что зависимость содержания гуанин-цитозиновых пар определяется филогенетическими (т. е. сложившимися в процессе эволюции) связями между организациями различной видовой принадлежности.
В 1912 г. отец и сын Брегги изобрели метод рентгеновской кристаллографии, основанный на том, что пучок параллельных рентгеновских лучей, падающих на регулярное скопление атомов, образует так называемую дифракционную картину. Дифракционная картина зависит главным образом от атомной массы атомов и их пространственного расположения. В 40-х гг. Астбюри использовал данный метод для определения пространственной структуры ДНК. На основании полученных рентгенограмм автор предположил, что биополимер ДНК представляет собой стопку из уложенных один над другим нуклеотидов. При этом нуклеотиды представлялись им в виде плоских дисков.
Астбюри оставил работу по дальнейшему изучению структуры ДНК. Исследования в начале 50-х гг. по структуре ДНК продолжили три группы ученых. Первую группу возглавил известный в то время своими работами по расшифровке вторичной структуры белков Лайнус Полинг. Вторая группа работала под руководством английского биофизика, члена Лондонского королевского общества Мориса Уилкинса, и, наконец, третью группу представляли Джеймс Уотсон и Френсис Крик.
Первыми представила свою модель в 1953 г. группа Л. Полинга. Однако она не получила всеобщего признания.
Сотрудникам Уилкинса удалось получить очень четкие рентгенограммы ДНК, на которых отчетливо было видно, что молекула нуклеиновой кислоты состоит из двух нитей, и, в частности, подтвердилась гипотеза Астбюри о межнуклеотидном расстоянии, равном 0, 34 нм
Одну из таких рентгенограмм ДНК, полученной в лаборатории М. Уилкинса, опубликовал журнал Nаture. На эту публикацию обратили внимание Д. Уотсон и Ф. Крик. Анализируя опубликованную рентгенограмму, они дополнили свои предположения и в апреле 1953 г. опубликовали собственную модель пространственной структуры ДНК, названную впоследствии их именами. Основные положения вторичной структуры ДНК, по Уотсону и Крику, сводятся к следующему:

1) Молекула ДНК представляет собой двойную спираль диаметром 2 нм.
2) Вдоль оси молекулы соседние пары оснований располагаются на расстоянии 0, 34 нм одна от другой. Полный оборот спирали приходится на 3, 4 нм, т. е. на 10 пар оснований.

Придавая молекуле ДНК форму спирали, Уотсон и Крик исходили из того, что последовательность нуклеотидов в цепи отражает генетическую информацию. Из этого следует, что любая произвольная последовательность оснований вдоль полинуклеотидных цепей ДНК должна соответствовать ее молекулярной структуре. Определенные трудности представляло то обстоятельство, что размеры пуринового кольца были больше, чем пиримидинового. Поэтому, чтобы спираль на всем протяжении имела постоянный диаметр, пуриновое кольцо в одной цепи должно быть расположено строго напротив пиримидинового в другой цепи. Так родился постулат о взаимной комплементарности нуклеотидов. Из этого постулата следует, что аденин (А) образует комплементарные связи только с тимином (Т), а гуанин (Г) - только с цитозином (Ц).
Правило комплементарности нуклеотидов взаимосвязано и подтверждается правилами Чаргаффа о эквивалентности. Однако основное значение открытия комплементарного спаривания заключается в признании ДНК самокоплементарной молекулой, т. е. генетическая информация записана в полинуклеотидной цепи в виде определенной последовательности четырех азотистых оснований, тогда каждая молекула ДНК несет два полных набора такой информации. Из этого следует, что обе полинуклеотидные цепочки антипараллельны друг другу.
В пользу спиральной формы ДНК говорит и то обстоятельство, что длина линейной молекулы ДНК, выделенной из бактериальной клетки, равна 1,4 мм, т. е. примерно в 1000 раз превышает длину самой бактерии.
В настоящее время модель ДНК Уотсона и Крика получила всеобщее признание мирового сообщества ученых. В 1962 г. Френсису Крику, Джеймсу Уотсону и Морису Уилкинсу за установление молекулярной структуры нуклеиновых кислот и их роли в передаче генетической информации в живой материи присуждена Нобелевская премия по генетике.
Однако этим исследования ДНК не ограничились. Вскоре выяснилось, что образуемые между двумя полинуклеотидными цепочками водородные связи можно разорвать при помощи нагревания. В результате повышения температуры до 94 град. в структуре ДНК наблюдался переход от спиральной формы к клубку. Такое явление было названо денатурацией ДНК.
В 1960 г. был открыт обратный процесс - восстановления разрушенных водородных связей и реставрации двойной спирали. Данное явление было названо ренатурацией.
Эти открытия полностью подтвердили высказанную еще в 1953 г. Уотсоном и Криком гипотезу о механизме самоудвоения (репликации) ДНК. По их мнению, репликация ДНК происходит путем разрыва водородных связей между двумя полинуклеотидными цепочками.
Разделение и разматывание молекулы начинается с одного конца спирали и продолжается по направлению к другому. Одновременно с разрывом цепочек происходит процесс синтеза новых полинуклеотидов. Результатом этой гипотезы стал сформулированный авторами постулат полуконсервативного характера репликации ДНК. То есть прежняя полинуклеотидная цепочка является как бы шаблоном для синтеза новой.
Значительный вклад в понимание механизмов самоудвоения молекулы ДНК внес Артур Корнберг. Он открыл фермент, который катализирует синтез полинуклеотидной цепочки. Этот фермент Корнберг назвал ДНК-полимеразой. В 1956 г. Корнберг сообщил, что ему удалось синтезировать в пробирке in vitro молекулу ДНК.
Эксперимент Корнберга показал, что ДНК используется непосредственно в качестве матрицы, без синтеза каких-либо других посредников, что полностью согласовывалось с предположениями Уотсона и Крика о репликации ДНК.
В 1969 г. удалось синтезировать ген комплементарной последовательности транспортной РНК.

4. Современное представление о структуре ДНК

Работы М. Уилкинса, Д. Уотсона и Ф. Крика, Э. Чаргаффа и многих других ученых заложили фундамент в понимание процессов наследственности, а именно - структуры и биологической роли ДНК в передаче генетической информации.
Наука не стоит на месте, и в настоящее время внесены значительные дополнения и коррективы в представления о строении ДНК, разработанные в середине ХХ в. Уотсоном и Криком. Без изменения этих данных история изучения ДНК была бы неполной и незаконченной.
Прежде всего установлено, что ДНК обладает полиморфизмом, т. е. способностью молекулы принимать различные конфигурации. На данный момент описано шесть таких форм. В-форма имеет стандартную структуру, соответствующую модели Уотсона-Крика. Это основной тип ДНК. А-форма представляет собой структуру, схожую для РНК-ДНК дуплексов. Она обнаружена в среде с высокой концентрацией ионов К и Nа и низким содержанием влаги. С-форма менее спирализованная, чем В-форма, т. е. имеет меньше нуклеотидов на один оборот спирали, чем остальные разновидности. Д- и Е-формы - крайние варианты С-формы имеют наименьшее число пар оснований на виток - 8 или 7,5. Они обнаружены только в молекулах ДНК, не содержащих гуанина. Z-форма представляет собой спираль с чередованием лево- и правозакрученности. В ДНК человека имеются участки, которые потенциально способны переходить в Z-форму. В 1993 г. установили, что в организме человека существуют условия, которые стабилизируют Z-форму. Установлено, что некоторые из конфигураций ДНК могут переходить друг в друга: А - В; Z - В.

Ученые полагают, что взаимные переходы А- и В-форм регулируют работу генов.
Исследования, направленные на поиск материального носителя наследственности, определили собой рождение новой науки - молекулярной генетики.
История изучения одной молекулы перевернула прежние представления о наследственности и передаче генетических признаков из поколения в поколение.
Методом проб и ошибок была установлена важнейшая роль ДНК в переносе наследственной информации. Отброшены ошибочные теории о том, что генетическую роль в организме выполняют белки, отвергнута бесперспективная и упрощенная тетрануклеотидная схема строения нуклеиновых кислот.
В начале 50-х гг. Д. Уотсоном и Ф. Криком разработана модель строения молекулы ДНК, разъясняющая, как происходит копирование генетического материала. Вскрыты механизмы этого процесса.
Значительные достижения молекулярной генетики обеспечили прочную основу для таких перспективных направлений, как генная инженерная и биотехнология, планирование генов и многоклеточных организмов.

Список литературы

1. Беляев Д. К., Иванов В. И. Выдающиеся советские генетики (сборник биографических очерков). М.: Наука, 1980. С. 147.
2. Гайсинович А. Е. Зарождение и развитие генетики. М.: Наука, 1988. С. 422.
3. Гуляев Г. В. Генетика. М.: Колос, 1971, С. 345.
4. Приходченко Н. Н., Шкурат Т. П. Основы генетики человека. Ростов-на-Дону: Феликс, 1997. С. 360.
5. Пехов А. П. Введение в молекулярную генетику. М.: Медицина, 1973. С. 265.
6. Рейвин А. Эволюция генетики. М.: Мир. 1967.
7. Реннеберг Р., Реннеберг И. От пекарни до биографии. М.: Мир, 1991. С. 110.
8. Стент Г. Молекулярная генетика. М.: Мир, 1974. С. 532.

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!


ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УПРАВЛЕНИЯ Институт заочного обучения Специальность: управление персоналомКУРСОВАЯ РАБОТА

по специальности: КОНЦЕПЦИЯ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ на тему: ДНК – МАТЕРИАЛЬНЫЙ НОСИТЕЛЬ НАСЛЕДСТВЕННОСТИ Выполнена студенткой Максимовой М.И.

Студенческий билет № 1908Группа № УП 3-1-99/2Адрес: Москва, ул. Пронская д.3, кв. 160МОСКВА 2000

2. ХРОМОСОМЫ ЭУКАРИОТ.

2.1. Митоз.2.2. Мейоз.2.3. Кариотип.

стр. 7стр. 8стр. 11

3.СЕКРЕТЫ ГЕНЕТИЧЕСКОГО КОДА. 3.1. История доказательства, что ДНК – носитель генетической информации. 3.2. Расшифровка генетической информации.

стр. 13стр. 14стр. 15

4. КАК ЖЕ РАБОТАЮТ ГЕНЫ?

5. ПЕРЕДАЧА ГЕНЕТИЧЕСКОЙ ИНФОРМАЦИИ ОТ РОДИТЕЛЕЙ К ПОТОМКАМ.

Наследуемые признаки заложены в материальных единицах, генах, которые располагаются в хромосомах клеточного ядра. Химическая природа генов известна с 1944 г.: речь идет о дезоксирибонуклеиновой кислоте (ДНК). Физическая структура была выяснена в 1953 г. Двойная спираль этой макромолекулы объясняет механизм наследственной передачи признаков.

Присматриваясь к окружающему нас миру, мы отмечаем великое разнообразие живых существ – от растений до животных. Под этим кажущимся разнообразием в действительности скрывается удивительное единство живых клеток – элементов, из которых собран любой организм и взаимодействием которых определяется его гармоничное существование. С позиции вида сходство между отдельными особями велико, и все-таки не существует двух абсолютно идентичных организмов (не считая однояйцовых близнецов). В конце XIX века в работах Грегора Менделя были сформулированы основные законы, определившие наследственную передачу признаков из поколения в поколение. В начале ХХ века в опытах Т.Моргана было показано, что элементарные наследуемые признаки обусловлены материальными единицами (генами), локализованными в хромосомах, где они располагаются последовательно друг за другом.

В 1944 г. работы Эвери, Мак-Леода и Мак-Карти определили химическую природу генов: они состоят из дезоксирибонуклеиновой кислоты (ДНК). Через 10 лет Дж. Уотсон и Ф. Крик предложили модель физической структуры молекулы ДНК. Длинная молекула образована двойной спиралью, а комплиментарное взаимодействие между двумя нитями этой спирали позволяет понять, каким образом генетическая информация точно копируется (реплицируется) и передается последующим поколениям.

Похожие работы

2014-2022 © "РефератКо"
электронная библиотека студента.
Банк рефератов, все рефераты скачать бесплатно и без регистрации.

"РефератКо" - электронная библиотека учебных, творческих и аналитических работ, банк рефератов. Огромная база из более 766 000 рефератов. Кроме рефератов есть ещё много дипломов, курсовых работ, лекций, методичек, резюме, сочинений, учебников и много других учебных и научных работ. На сайте не нужна регистрация или плата за доступ. Всё содержимое библиотеки полностью доступно для скачивания анонимному пользователю

Реферат - Днк основа генетического материала

Айала Ф., Кайгер. Дж. Современная генетика. Том 2

  • формат djvu
  • размер 5.26 МБ
  • добавлен 09 августа 2009 г.

Барабин А.И. Генетика

  • формат pdf
  • размер 7.16 МБ
  • добавлен 27 мая 2011 г.

Гаряев П.П. Лингвистико-волновой геном. Теория и практика

  • формат pdf
  • размер 3.36 МБ
  • добавлен 19 декабря 2010 г.

Георгиев Г.П. Гены высших организмов и их экспрессия

  • формат djvu
  • размер 2.57 МБ
  • добавлен 30 мая 2010 г.

В монографии излагаются вопросы структурной организации генетического аппарата эукариот, структуры хроматина, регуляции экспрессии генов, организации ядерных рибонуклеопротеидов, процессинга РНК. Рассчитана на биологов широкого профиля

Лекция - Организация наследственного материала. Часть 2

  • формат pdf
  • размер 354.33 КБ
  • добавлен 25 апреля 2010 г.

Вопросы: Уровни упаковки генетического материала. Уровни организации наследственного материала. Свойства гена. Классификация генов. Регуляция работы генов у прокариот. Регуляция работы генов у эукариот. Цитоплазматическая наследственность. Генная инженерия. подготовлена кафедрой биологии Белорусского государственного медицинского университета.

Орлова Н.Н. Генетический анализ

  • формат pdf
  • размер 105.77 МБ
  • добавлен 14 сентября 2011 г.

М.: Издательство МГУ, 1991. - 318 с. В учебном пособии рассматриваются основные задачи и методы генетического анализа на разных объектах и уровнях организации живого. Описываются особенности и возможности гибридологического метода, на многочисленных примерах выявляются возможные причины отклонений и расщеплений:неравномерное образование гамет разного генотипа, селективность оплодотворения, разная выживаемость зигот разных генотипов, неполная пене.

Реферат - Генетически модифицированные организмы. Методы и технологии их получения. Их значение

  • формат doc
  • размер 61.5 КБ
  • добавлен 16 января 2010 г.

Технологии ГМО. Получение генетического материала. Включение фрагментов ДНК. Введение в геном реципиента. Методы ГМО. Полимеразная цепная реакция. Электрофорез. Идентификация сегментов ДНК. Зонды и гибридизация. Секвенирование. Значение ГМО. ГМО на службе у медицины. ГМО-бактерии уничтожают опухоли. ГМО-деревья спасут экологию.

Реферат - ДНК и современное представление о её роли в передачи наследственной информации

  • формат doc
  • размер 2.68 МБ
  • добавлен 29 мая 2010 г.

Волна интереса к молекулярным основам жизни, захлестнувшая науку в середине XX века до сих пор не затухает. В связи с этим наблюдается экспоненциальное накопление молекулярно-генетического материала. В этом море фактов не обойтись без помощи обобщений, поэтому обзор современных представлений о передаче генетической информации весьма актуален, особенно для тех, кто только приступает к глубокому изучению основ молекулярной биологии. Целью данного р.

Саминский Е.М. Трансляция генетического кода на рибосомах

  • формат djvu
  • размер 2.87 МБ
  • добавлен 26 августа 2010 г.

СПБ, СПбГТУ, 2000, 90 стр. Представлен курс лекций, прочитанных на кафедре биофизики физико-механического факультета СПбТУ в 1997-1999 гг. Он включает в себя краткую историю расшифровки генетического кода; рассмотрены также структуры и функции рибосом, рибосомных и транспортных РНК, процессы инициации, элонгации и терминации трансляции кода на рибосомах, а также некоторые вопросы точности трансляции и случаи отклонения от стандартных правил про.

Тихомирова М.М. Генетический анализ

  • формат djvu
  • размер 8.83 МБ
  • добавлен 22 февраля 2011 г.

Учебное пособие. - Л.: изд-во ЛУ, 1990. - 280 с. В пособии излагаются принципы и методы генетического! анализа, позволяющие установить генотип отдельных особей и генетическую структуру популяций (в том числе сортов и пород). Цель пособия - обучить студентов логике генетического анализа, с помощью которой можно решать проблемы генанализа: от установления факта наследования признака до определения числа генов, детерминирующих его, их локализации и.

Читайте также: