Диоды и транзисторы реферат

Обновлено: 30.06.2024

Полупроводниковые диоды применяются в устройствах радиоэлектроники, автоматики и вычислительной техники, силовой преобразовательной техники. Диоды большой мощности используются в силовых установках для питания тяговых электродвигателей, привода станков и механизмов

Полупроводниковые диоды имеют ряд преимуществ по сравнению с электронными лампами: небольшие габариты, малую массу, высокий КПД, отсутствие накаливаемого источника электронов, большой срок службы, высокую надежность.

Важное свойство полупроводниковых диодов – односторонняя проводимость – широко применяется в устройствах выпрямления, ограничения и преобразования электрических сигналов.

Диоды классифицируются по назначению, физическим свойствам, основным электрическим параметрам, конструктивно-технологическим признакам (точечные и плоскостные), исходному полупроводниковому материалу.

По функциональному назначению различают полупроводниковые диоды: выпрямительные, импульсные, стабилитроны (опорные), фотодиоды, светоизлучающие диоды

1. выпрямительные предназначенные для преобразования переменного тока в постоянный и используют свойство р-н перехода, а также других электрических переходов хорошо проводить ток в одном направлении и плохо – в противоположном. Эти токи и соответствующие напряжения называют прямыми и обратными токами и напряжениями. различают низко и высокочастотные выпрямительные диоды. Первые применяют в преобразовательных устройствах энергетической электроники, вторые – для преобразования радиосигналов

2. импульсные предназначены для преимущественной работы в импульсных устройствах. Их свойства определяют параметры, учитывающие инерционность переключения диода: емкость перехода, интервал времени восстановления обратного сопротивления

3. стабилитроны предназначены для стабилизации постоянного напряжения и ограничения выбросов напряжения. В этих диодах используется явление неразрушающего электрического пробоя р-н перехода при некоторых значениях обратного напряжения. Важным параметром является температурный коэффициент стабилизации напряжения.

В основу маркировки положен буквенно-цифровой код

- первая буква или цифра обозначает материал полупроводникового кристалла: 1или Г – германий; 2 – К – кремний;3-А – арсенид галлия

- вторая буква обозначат класс диода: Д- выпрямительный, Аи – СВЧ диоды, В – варикап, С- стабилитрон, И -туннельный диод;

-3 последующие цифры характеризуют тип или область применения 101-399 - выпрямление переменного тока, 401-499 – работа в высокочастотных или сверх частотных цепях, 501-599 - импульсные системы

- последняя цифра -обозначает конструктивные или другие особенности диода

Транзисторами называются активные полупроводниковые приборы с двумя взаимодействующими р-н переходами и тремя выводами, применяемые для усиления и генерирования электрических колебаний. (в связи, телевидении, радиолокации, радионавигации, автоматике, телемеханике, вычислительной и измерительной технике.)

Транзистор иметь трехслойную структуру, состоящую из чередующихся областей с различными типами электропроводимости р-н-р или н-р-н Принцип действия транзистора основан на использовании физических процессов, происходящих при переносе основных электрических зарядов из эмитерной области в коллекторную (крайние зоны) через базу (средняя зона). Назначением эмитерного перехода является инжекция (впрыскивание) основных носителей эмитерра в базовую область

Различают 4 режима работы транзистора:

- активный (переход эмиттер- база включен в прямом направлении а переход коллектор-база – в обратном)

--инверсный(переход эмиттер- база включен в обратном направлении а переход коллектор-база – в прямом)

-режим отсечки – оба перехода включены в обратном направлении

- режим насыщения - оба перехода включены в прямом направлении

Недостатком транзистора является относительно высокая нестабильность их параметров и характеристик. Причины нестабильности: влияние температуры окружающей среды, изменение параметров при старении с течением времени, разброс параметров в процессе изготовления однотипных транзисторов.

Транзисторы классифицируются по материалу, способу движения неосновных носителей в базовой области, мощности и частоте, назначению и способу изготовления


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.


Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Реферат на тему:

План1. Полупроводники: теория и свойства

2. Основные полупроводниковые приборы (Строение и применение)

3. Типы полупроводниковых приборов

5. Область применения

1.Полупроводники : теория и свойства

Сначала надо познакомиться с механизмом проводимости в полупроводниках. А для этого нужно понять природу связей удерживающих атомы полупроводникового кристалла друг возле друга. Для примера рассмотрим кристалл кремния.

Кремний—четырехвалентный элемент. Это означает, что во внешней

оболочке атома имеются четыре электрона, сравнительно слабо связанные

с ядром. Число ближайших соседей каждого атома кремния также равно

четырем. Взаимодействие пары соседних атомов осуществляется с помощью

паоноэлектронной связи, называемой ковалентной связью. В образовании

этой связи от каждого атома участвуют по одному валентному электрону, ко-

торые отщепляются от атомов (коллективизируются кристаллом) и при

своем движении большую часть времени проводят в пространстве между

соседними атомами. Их отрицательный заряд удерживает положительные ионы кремния друг возле друга. Каждый атом образует четыре связи с соседними,

и любой валентный электрон может двигаться по одной из них. Дойдя до соседнего атома, он может перейти к следующему, а затем дальше вдоль всего кристалла.

Валентные электроны принадлежат всему кристаллу. Парноэлектронные связи кремния достаточно прочны и при низких температурах не разрываются. Поэтому кремний при низкои температуре не проводит электрический ток. Участвующие в связи атомов валентные электроны прочно привязаны к кристаллической решетке, и внешнее электрическое поле не оказывает заметного влияния на их движение.

При нагревании кремния кинетическая энергия частиц повышается, и

наступает разрыв отдельных связей. Некоторые электроны покидают своиорбиты и становятся свободными, подобно электронам в металле. В электрическом поле они перемещаются между узлами решетки, образуя электрический ток.

Проводимость полупроводников обусловленную наличием у металлов свободных

электронов электронов, называют электронной проводимостью. При повышении температуры число разорванных связей, а значит, и свободных электронов увеливается. При нагревании от 300 до 700 К число свободных носителей заряда увеличивается от 10в17 до 10в24 1/м в3. Это приводит к уменьшению сопротивления.Дырочная проводимость.

При разрыве связи образуется вакантное место с недостающим электроном.

Его называют дыркой. В дырке имеется избыточный положительный заряд по сравнению с остальными, нормальными связями. Положение дырки в кристалле не является неизменным. Непрерывно происходит следующий процесс. Один

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

ТЕМА 3. ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ

Полупроводниковый диод – это электропреобразовательный полупроводниковый прибор с одним электрическим переходом и двумя выводами, в котором используются свойства р-n- перехода.

Полупроводниковые диоды классифицируются:

по назначению: выпрямительные, высокочастотные и сверхвысокочастотные (ВЧ- и СВЧ- диоды), импульсные, полупроводниковые стабилитроны (опорные диоды), туннельные, обращенные, варикапы и др.;

по конструктивно – технологическим особенностям: плоскостные и точечные;

по типу исходного материала: германиевые, кремниевые, арсенидо - галлиевые и др.

Рисунок 3.1 – Устройство точечных диодов

В точечном диоде используется пластинка германия или кремния с электропроводностью n- типа (рис.3.1), толщиной 0,1…0,6мм и площадью 0,5…1,5 мм2; с пластинкой соприкасается заостренная проволочка (игла) с нанесенной на нее примесью. При этом из иглы в основной полупроводник диффундируют примеси, которые создают область с другим типом электропроводности. Таким образом, около иглы образуется миниатюрный р-n- переход полусферической формы.

Для изготовления германиевых точечных диодов к пластинке германия приваривают проволочку из вольфрама, покрытого индием. Индий является для германия акцептором. Полученная область германия р- типа является эмиттерной.

Для изготовления кремниевых точечных диодов используется кремний n- типа и проволочка, покрытая алюминием, который служит акцептором для кремния.

В плоскостных диодах р-n- переход образуется двумя полупроводниками с различными типами электропроводности, причем площадь перехода у различных типов диодов лежит в пределах от сотых долей квадратного миллиметра до нескольких десятков квадратных сантиметров (силовые диоды).

Плоскостные диоды изготовляются методами сплавления (вплавления) или диффузии (рис. 3.2).

Рисунок 3.2 – Устройство плоскостных диодов, изготовленных сплавным (а) и диффузионным методом (б)

В пластинку германия n- типа вплавляют при температуре около 500С каплю индия (рис. 3.2, а) которая, сплавляясь с германием, образует слой германия р- типа. Область с электропроводностью р- типа имеет более высокую концентрацию примеси, нежели основная пластинка, и поэтому является эмиттером. К основной пластинке германия и к индию припаивают выводные проволочки, обычно из никеля. Если за исходный материал взят германий р- типа, то в него вплавляют сурьму и тогда получается эмиттерная область n- типа.

Диффузионный метод изготовления р-n- перехода основан на том, что атомы примеси диффундируют в основной полупроводник (рис. 3.2, б). Для создания р- слоя используют диффузию акцепторного элемента (бора или алюминия для кремния, индия для германия) через поверхность исходного материала.

3.1 Выпрямительные диоды

Выпрямительный полупроводниковый диод – это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный.

Выпрямительные диоды выполняются на основе р-n- перехода и имеют две области, одна из них является более низкоомной (содержит большую концентрацию примеси), и называется эмиттером. Другая область, база – более высокоомная (содержит меньшую концентрация примеси).

В основе работы выпрямительных диодов лежит свойство односторонней проводимости р-n- перехода, которое заключается в том, что последний хорошо проводит ток (имеет малое сопротивление) при прямом включении и практически не проводит ток (имеет очень высокое сопротивление) при обратном включении.

Как известно, прямой ток диода создается основными, а обратный – не основными носителями заряда. Концентрация основных носителей заряда на несколько порядков превышает концентрацию не основных носителей, чем и обусловливаются вентильные свойства диода.

Основными параметрами выпрямительных полупроводниковых диодов являются:

прямой ток диода Iпр, который нормируется при определенном прямом напряжении (обычно Uпр = 1…2В);

максимально допустимый прямой ток Iпр мах диода;

максимально допустимое обратное напряжение диода Uобр мах, при котором диод еще может нормально работать длительное время;

постоянный обратной ток Iобр, протекающий через диод при обратном напряжении, равном Uобр мах;

средний выпрямленный ток Iвп.ср, который может длительно проходить через диод при допустимой температуре его нагрева;

максимально допустимая мощность Pмах, рассеиваемая диодом, при которой обеспечивается заданная надежность диода.

По максимально допустимому значению среднего выпрямленного тока диоды делятся на маломощные (Iвп.ср  0,3А), средней мощности (0,3А  Iвп.ср  10А) и большой мощности (Iвп.ср  10А).

Для сохранения работоспособности германиевого диода его температура не должна превышать +85С. Кремниевые диоды могут работать при температуре до +150С.

Рисунок 3.4 – Параллельное соединение выпрямительных диодов

Для выравнивания токов используют диоды с малым различием прямых ветвей ВАХ (производят их подбор) или последовательно с диодами включают уравнительные резисторы с сопротивлением в единицы Ом. Иногда включают дополнительные резисторы (рис. 3.4, в) с сопротивлением, в несколько раз большим, чем прямое сопротивление диодов, для того чтобы ток в каждом диоде определялся главным образом сопротивлением Rд, т.е. Rд  rпр вд. Величина Rд составляет сотни Ом.

Последовательное соединение диодов применяют для увеличения суммарного допустимого обратного напряжения. При воздействии обратного напряжения через диоды, включенные последовательно, протекает одинаковый обратный ток Iобр. однако ввиду различия обратных ветвей ВАХ общее напряжение будет распределяться по диодам неравномерно. К диоду, у которого обратная ветвь ВАХ идет выше, будет приложено большее напряжение. Оно может оказаться выше предельного, что повлечет пробой диодов.

Рисунок 3.5 – Последовательное соединение выпрямительных диодов

Для того, чтобы обратное напряжение распределялось равномерно между диодами независимо от их обратных сопротивлений, применяют шунтирование диодов резисторами. Сопротивления Rш резисторов должны быть одинаковы и значительно меньше наименьшего из обратных сопротивлений диодов Rш  rобр вд, чтобы ток, протекающий через резистор Rш, был на порядок больше обратного тока диодов.

Полупроводниковый стабилитрон – это полупроводниковый диод, напряжение на котором в области электрического пробоя слабо зависит от тока и который используется для стабилизации напряжения.

В полупроводниковых стабилитронах используется свойство незначительного изменения обратного напряжения на р-n- переходе при электрическом (лавинном или туннельном) пробое. Это связано с тем, что небольшое увеличение напряжения на р-n- переходе в режиме электрического пробоя вызывает более интенсивную генерацию носителей заряда и значительное увеличение обратного тока.

Низковольтные стабилитроны изготовляют на основе сильнолегированного (низкоомного) материала. В этом случае образуется узкий плоскостный переход, в котором при сравнительно низких обратных напряжениях (менее 6В) возникает туннельный электрический пробой. Высоковольтные стабилитроны изготавливают на основе слаболегированного (высокоомного) материала. Поэтому их принцип действия связан с лавинным электрическим пробоем.

Основные параметры стабилитронов:

напряжение стабилизации Uст (Uст = 1…1000В);

минимальный Iст міn и максимальный Iст мах токи стабилизации (Iст міn  1,0…10мА, Iст мах  0,05…2,0А);

максимально допустимая рассеиваемая мощность Рмах;

дифференциальное сопротивление на участке стабилизации rд = Uст/Iст , (rд  0,5…200Ом);

температурный коэффициент напряжения на участке стабилизации:

Рисунок 3.8 – Вольт-амперная характеристика обращенного диода

Обращенные диоды применяют в импульсных устройствах, а также в качестве преобразователей сигналов (смесителей и детекторов) в радиотехнических устройствах.

Варикап – это полупроводниковый диод, в котором используется зависимость емкости от величины обратного напряжения и который предназначен для применения в качестве элемента с электрически управляемой емкостью.

Полупроводниковым материалом для изготовления варикапов является кремний.

Основные параметры варикапов:

номинальная емкость Св – емкость при заданном обратном напряжении (Св = 10…500 пФ);

коэффициент перекрытия по емкости

Характеристику диода следует рассматривать как график некоторого уравнения, связывающего величины I и U. А для сопротивления Rн подобным уравнением является закон Ома:

Для обычных полупроводниковых диодов прямое напряжение не более 1…2В. Например, пусть источник имеет действующее напряжение Е=200В и . Если Uпр max = 2В, то UR max = 278В.

При отрицательной полуволне подводимого напряжения тока практически нет и падение напряжения на резисторе Rн равно нулю. Все напряжение источника приложено к диоду и является для него обратным напряжением. Таким образом, максимальное значение обратного напряжения равно амплитуде ЭДС источника.

Простейшая схема применения стабилитрона приведена на рис. 3.12, а. Нагрузка (потребитель) включена параллельно стабилитрону. Поэтому, в режиме стабилизации, когда напряжение на стабилитроне почти постоянно, такое же напряжение будет и на нагрузке. Обычно Rогр рассчитывают для средней точки Т характеристики стабилитрона.

Рассмотрим случай, когда Е = const, а Rн изменяется в пределах от Rн min до Rн max..

Сначала надо познакомиться с механизмом проводимости в полупроводниках. А для этого нужно понять природу связей удерживающих атомы полупроводникового кристалла друг возле друга. Для примера рассмотрим кристалл кремния.

Кремний—четырехвалентный элемент. Это означает, что во внешней

оболочке атома имеются четыре электрона, сравнительно слабо связанные

с ядром. Число ближайших соседей каждого атома кремния также равно

четырем. Взаимодействие пары соседних атомов осуществляется с помощью

паоноэлектронной связи, называемой ковалентной связью. В образовании

этой связи от каждого атома участвуют по одному валентному электрону, ко-

торые отщепляются от атомов (коллективизируются кристаллом) и при

своем движении большую часть времени проводят в пространстве между

соседними атомами. Их отрицательный заряд удерживает положительные ионы кремния друг возле друга. Каждый атом образует четыре связи с соседними,

и любой валентный электрон может двигаться по одной из них. Дойдя до соседнего атома, он может перейти к следующему, а затем дальше вдоль всего кристалла.

Валентные электроны принадлежат всему кристаллу. Парноэлектронные связи кремния достаточно прочны и при низких температурах не разрываются. Поэтому кремний при низкои температуре не проводит электрический ток. Участвующие в связи атомов валентные электроны прочно привязаны к кристаллической решетке, и внешнее электрическое поле не оказывает заметного влияния на их движение.

При нагревании кремния кинетическая энергия частиц повышается, и

наступает разрыв отдельных связей. Некоторые электроны покидают свои орбиты и становятся свободными, подобно электронам в металле. В электрическом поле они перемещаются между узлами решетки, образуя электрический ток.

Проводимость полупроводников обусловленную наличием у металлов свободных

электронов электронов, называют электронной проводимостью. При повышении температуры число разорванных связей, а значит, и свободных электронов увеливается. При нагревании от 300 до 700 К число свободных носителей заряда увеличивается от 10в17 до 10в24 1/м в3. Это приводит к уменьшению сопротивления.

При разрыве связи образуется вакантное место с недостающим электроном.

Его называют дыркой. В дырке имеется избыточный положительный заряд по сравнению с остальными, нормальными связями. Положение дырки в кристалле не является неизменным. Непрерывно происходит следующий процесс. Один

Читайте также: