Диагностирование синхронных генераторов реферат

Обновлено: 05.07.2024

Оглавление
ВВЕДЕНИЕ 3
1. Общие сведения об объекте диагностирования (назначение, состав, принцип действия) 4
2. Типовые неисправности объекта диагностирования 9
3. Основные диагностические параметры оценки технического состояния объекта диагностирования 10
4. Технические средства (приборы), применяемые для измерения параметров диагностирования 10
5. Диагностирование технического состояния 10
Заключение 16
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 17

Фрагмент для ознакомления 2

ВВЕДЕНИЕ
В настоящее время синхронные генераторы являются основным источником электроэнергии. Их мощность - в пределах от нескольких киловатт до сотен тысяч киловатт. Синхронные генераторы устанавливаются в тепло- и гидроэлектростанциях, самолетах, судах, ими комплектуются различные передвижные источники электроэнергии.
Об основных свойствах синхронного генератора дают представление характеристики, которые определяют зависимость между напряжением на зажимах якоря, током возбуждения, током нагрузки при номинальной частоте вращения и постоянном коэффициенте мощности в установившемся режиме.
К синхронным генераторам предъявляются высокие требования по надежности и безотказности в работе. Важно раннее выявление дефектов. Вывод синхронных генераторов во внеплановый ремонт сопровождается экономическим ущербом, ведет к штрафам и снижению прибыли от реализации электроэнергии. В 2016 г. ущерб от штрафных санкций при аварийном выходе из строя синхронных генераторов только по пяти станциям составил 360 млн рублей, а в 2017 г. – 450 млн рублей. Каждый день простоя генерирующего оборудования по штрафам обходится станциям от 1,7 до 2,3 млн рублей, не считая затрат на ремонт. Каждое аварийное отключение стоит от 32 до 60 млн рублей.
Заблаговременное определение возникающих и развивающихся дефектов синхронных генераторов позволяет экономить от 1 до 2,5 млн рублей в день, даже при неплановом ремонте [1, 2]. Существует настоятельная потребность в достоверном и своевременном выявлении повреждаемости синхронных машин [3, 4].


1. Общие сведения об объекте диагностирования (назначение, состав, принцип действия)
Принципы работы электрогенератора. Генераторы могут быть двух типов: синхронные и асинхронные.
Синхронные генераторы составляют основу электрического оборудования электростанций, т.е. практический вся электроэнергия вырабатывается синхронными генераторами.
Устройство и принцип действия синхронного генератора заключается в следующем (рис.1).

Рисунок 1. Упрощенная модель синхронного генератора
Неподвижная часть машины, называемая статором, представляет собой полый шихтованный цилиндр 1 (сердечник статора) с двумя продольными пазами на внутренней поверхности. В этих палах расположены стороны витка 2, являющегося обмоткой статора. Во внутренней полости сердечника статора расположена вращающаяся часть машины - ротор, представляющий собой постоянный магнит 4 с полюсами N и S, закрепленный на валу 3. Вал ротора посредством ременной передачи механически связан с приводным двигателем (на рисунке не показан). В реальном синхронном генераторе в качестве приводного двигателя может быть использован двигатель внутреннего сгорания либо турбина. Под действием вращающего момента приводного двигателя ротор генератора вращается с частотой n1 против часовой стрелки. При этом в обмотке статора в соответствии с явлением электромагнитной индукции наводится ЭДС, направление которой показано на рисунке стрелками. Так как обмотка статора замкнута на нагрузку Z, то в цепи этой обмотки появится ток i.
В процессе вращения ротора магнитное поле постоянного магнита также вращается с частотой n1, а поэтому каждый из проводников обмотки статора попеременно оказывается то в зоне северного (N) магнитного полюса, то и зоне южного (S) магнитного полюса. При этом каждая смена полюсов сопровождается изменением направления ЭДС в обмотке статора. Таким образом, в обмотке статора синхронного генератора наводится переменная ЭДС, а поэтому ток i в этой обмотке и в нагрузке Z также переменный.
Мгновенное значение ЭДС обмотки статора в рассматриваемом синхронном генераторе
е = B 2 l = B 2 l π D1 n1 / 60
где B — магнитная индукция в воздушном зазоре между сердечником статора и полюсами ротора, Тл; l - активная длина одной пазовой стороны обмотки статора, м; = π D1 n1 /60 — скорость движения полюсов ротора относительно статора, м/с; D1 — внутренний диаметр сердечника статора, м.
Эта формула показывает, что при неизменной частоте вращения ротора форма кривой переменной ЭДС обмотки якоря определяется исключительно законом распределения магнитной индукции в зазоре. Если бы график магнитной индукции в зазоре представлял собой синусоиду (B = Вmax sin α), то ЭДС генератора была бы синусоидальной. Однако получить синусоидальное распределение индукции в зазоре практически невозможно. Так, если воздушный зазор постоянен то магнитная индукция в воздушном зазоре распределяется по трапецеидальному закону, а следовательно, и график ЭДС генератора представляет собой трапецеидальную кривую. Если края полюсов скосить так, чтобы зазор на краях полюсных наконечников был равен max, то график распределения магнитной индукции в зазоре приблизится к синусоиде, а следовательно, и график ЭДС генератора приблизится к синусоиде.
Частота ЭДС синхронного генератора (Гц) прямо пропорциональна частоте вращения ротора n1 (об/мин), которую принято называть синхронной частотой вращения:
f1 = pn1/60
Здесь — число пар полюсов; в рассматриваемом генераторе два полюса, т. е. p=1. Для получения промышленной частоты ЭДС (50 Гц) ротор такого генератора необходимо вращать с частотой n1=3000 об/мин,
тогда f1 = 1 3000/60 = 50 Гц.
Постоянные магниты на роторе применяются лишь в синхронных генераторах весьма малой мощности, в большинстве же синхронных генераторов для получения возбуждающего магнитного поля применяют обмотку возбуждения, располагаемую на роторе. Эта обмотка подключается к источнику постоянного тока через скользящие контакты, осуществляемые посредством двух контактных колец, располагаемых на валу и изолированных от вала и друг от друга, и двух неподвижных щеток.
Как уже отмечалось, приводной двигатель (ПД) приводит во вращение ротор синхронного генератора с синхронной частотой n1. При этом магнитное поле ротора также вращается с частотой n1 и индуцирует в трехфазной обмотке статора переменные ЭДС ЕA ЕВ ЕC, которые, будучи одинаковыми по значению и сдвинутыми по фазе относительно друг друга на периода (120 эл. град), образуют трехфазную симметричную систему ЭДС.
С подключением нагрузки в фазах обмотки статора появляются токи IА, IB, IC. При этом трехфазная обмотка статора создает вращающееся магнитное поле. Частота вращения этого поля равна частоте вращения ротора генератора (об/мин):
n1 = f160/p.

Фрагмент для ознакомления 3

Электрический генератор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.
До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой.

Содержание

Содержание 2
Введение 3
1. Принципы работы электрогенератора 5
2. Физические методы диагностирования генераторов 9
3. Типовые дефекты 11
4. Методы шумо-вибро диагностирования 12
Заключение 18
Список литературы 19

Работа состоит из 1 файл

Диагностирование технического состояния электрогенераторов.doc

Диагностирование технического состояния электрогенераторов

Содержание

Введение

Электрический генератор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой. Заряды вырабатывались, используя один из двух механизмов:

  • Электростатическую индукцию
  • Трибоэлектрический эффект, при котором электрический заряд возникал из-за механического контакта двух диэлектриков

По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.

В 1827 венгр Аньош Иштван Йедлик начал экспериментировать с электромагнитными вращающимися устройствами, которые он называл электромагнитные самовращающиеся роторы. В прототипе его униполярного электродвигателя (был завершен между 1852 и 1854) и стационарная и вращающаяся части были электромагнитные. Он сформулировал концепцию динамо-машины по меньшей мере за 6 лет до Сименса и Уитстона, но не запатентовал изобретение, потому что думал, что он не первый, кто это сделал. Суть его идеи состояла в использовании вместо постоянных магнитов двух противоположно расположенных электромагнитов, которые создавали магнитное поле вокруг ротора. Изобретение Йедлика на десятилетия опередило его время.

Рис.1. Диск Фарадея

В 1831—1832 Майкл Фарадей открыл принцип работы электромагнитных генераторов. Принцип, позднее названный законом Фарадея, заключался в том, что разница потенциалов образо вывалась между концами проводника, который двигался перпендикулярно магнитному полю.

Конструкция была несовершенна, потому что ток самозамыкался через участки диска, не находившиеся в магнитном поле. Паразитный ток ограничивал мощность, снимаемую с контактных проводов и вызывал бесполезный нагрев медного диска. Позднее в униполярный генераторах удалось решить эту проблему, расположив вокруг диска множество маленьких, распределенных по всему периметру диска, чтобы создать равномерное поле и ток только в одном направлении.

Другой недостаток состоял в том, что выходное напряжение было очень маленьким, потому что образовывался только один виток вокруг магнитного потока. Эксперименты показали, что используя много витков провода в катушке можно получить часто требовавшееся более высокое напряжение. Обмотки из проводов стали основной характерной чертой всех последующих разработок генераторов.

1. Принципы работы электрогенератора

Генераторы могут быть двух типов: синхронные и асинхронные.

Синхронные генераторы составляют основу электрического оборудования электростанций, т.е. практический вся электроэнергия вырабатывается синхронными генераторами.

Устройство и принцип действия синхронного генератора заключается в следующем (рис.2).

Рис. 2. Упрощенная модель синхронного генератора

Неподвижная часть машины, называемая статором, представляет собой полый шихтованный цилиндр 1 (сердечник статора) с двумя продольными пазами на внутренней поверхности. В этих палах расположены стороны витка 2, являющегося обмоткой статора. Во внутренней полости сердечника статора расположена вращающаяся часть машины - ротор, представляющий собой постоянный магнит 4 с полюсами N и S, закрепленный на валу 3. Вал ротора посредством ременной передачи механически связан с приводным двигателем (на рисунке не показан). В реальном синхронном генераторе в качестве приводного двигателя может быть использован двигатель внутреннего сгорания либо турбина. Под действием вращающего момента приводного двигателя ротор генератора вращается с частотой n1 против часовой стрелки. При этом в обмотке статора в соответствии с явлением электромагнитной индукции наводится ЭДС, направление которой показано на рисунке стрелками. Так как обмотка статора замкнута на нагрузку Z, то в цепи этой обмотки появится ток i.

В процессе вращения ротора магнитное поле постоянного магнита также вращается с частотой n1, а поэтому каждый из проводников обмотки статора попеременно оказывается то в зоне северного (N) магнитного полюса, то и зоне южного (S) магнитного полюса. При этом каждая смена полюсов сопровождается изменением направления ЭДС в обмотке статора. Таким образом, в обмотке статора синхронного генератора наводится переменная ЭДС, а поэтому ток i в этой обмотке и в нагрузке Z также переменный.

Мгновенное значение ЭДС обмотки статора в рассматриваемом синхронном генераторе

где — магнитная индукция в воздушном зазоре между сердечником статора и полюсами ротора, Тл; — активная длина одной пазовой стороны обмотки статора, м; — скорость движения полюсов ротора относительно статора, м/с; D1 — внутренний диаметр сердечника статора, м.

Эта формула показывает, что при неизменной частоте вращения ротора форма кривой переменной ЭДС обмотки якоря определяется исключительно законом распределения магнитной индукции в зазоре. Если бы график магнитной индукции в зазоре представлял собой синусоиду ( ), то ЭДС генератора была бы синусоидальной. Однако получить синусоидальное распределение индукции в зазоре практически невозможно. Так, если воздушный зазор постоянен то магнитная индукция в воздушном зазоре распределяется по трапецеидальному закону, а следовательно, и график ЭДС генератора представляет собой трапецеидальную кривую. Если края полюсов скосить так, чтобы зазор на краях полюсных наконечников был равен , то график распределения магнитной индукции в зазоре приблизится к синусоиде, а следовательно, и график ЭДС генератора приблизится к синусоиде.

Частота ЭДС синхронного генератора (Гц) прямо пропорциональна частоте вращения ротора n1 (об/мин), которую принято называть синхронной частотой вращения:

Здесь — число пар полюсов; в рассматриваемом генераторе два полюса, т. е. =1

Для получения промышленной частоты ЭДС (50 Гц) ротор такого генератора необходимо вращать с частотой n1=3000 об/мин,

Постоянные магниты на роторе применяются лишь в синхронных генераторах весьма малой мощности, в большинстве же синхронных генераторов для получения возбуждающего магнитного поля применяют обмотку возбуждения, располагаемую на роторе. Эта обмотка подключается к источнику постоянного тока через скользящие контакты, осуществляемые посредством двух контактных колец, располагаемых на валу и изолированных от вала и друг от друга, и двух неподвижных щеток.

Как уже отмечалось, приводной двигатель (ПД) приводит во вращение ротор синхронного генератора с синхронной частотой n1. При этом магнитное поле ротора также вращается с частотой n1 и индуцирует в трехфазной обмотке статора переменные ЭДС ЕA ЕВ ЕC, которые, будучи одинаковыми по значению и сдвинутыми по фазе относительно друг друга на периода (120 эл. град), образуют трехфазную симметричную систему ЭДС.

С подключением нагрузки в фазах обмотки статора появляются токи IА, IB, IC. При этом трехфазная обмотка статора создает вращающееся магнитное поле. Частота вращения этого поля равна частоте вращения ротора генератора (об/мин):

Таким образом, в синхронном генераторе поле статора и ротор вращаются синхронно, отсюда и название — синхронный генератор.

2. Физические методы диагностирования генераторов

Периодичность, объем и нормы испытаний генераторов, электродвигателей, трансформаторов, выключателей и другого электрооборудования электрических станций и сетей РД 34.45-51.300-97 утверждены начальником Департамента науки и техники РАО "ЕЭС России" А.П. Берсеневым 8 мая 1997 г. В дальнейшем в них были внесены ряд изменений. Типовой объем и нормы измерений и испытаний генераторов во время или после монтажа, при капитальных и текущих ремонтах, а также в межремонтный период, приведены в пп. 3.2-3.34 данных правил.

Обслуживание и диагностика генератора

В объем технического обслуживания входят контрольно-диагностические, крепежные, смазочные, регулировочные, электротехнические и монтажно-демонтажные работы, связанные с проверкой и регулировкой отдельных узлов и агрегатов на специальных стендах и оборудовании.

Если при техническом обслуживании возникает сомнение в полной исправности отдельной сборочной единицы, то ее проверяют специальным прибором или на стенде.

Если генератор поступает в электроцех при неудовлетворительной работе – проверять его сразу на стационарном стенде нет смысла. Его необходимо в начале разобрать, тщательно промыть и высушить все узлы и детали, затем провести проверку и обслуживание узлов. Сильно загрязненные кольца, с небольшим подгоранием и шероховатостями, следует зачистить стеклянной бумагой (зернистость 80–100), вращая якорь от руки.

Методика проверки генератора:

В начале производится проверка без нагрузки. – если при заданном напряжение число оборотов ротора не превышает соответствующего значения – можно перейти к проверке генератора под нагрузкой.

Проверка генератора под нагрузкой

Выключателем включают цепь нагрузки и при вращающемся роторе генератора увеличивают силу нагрузки, наблюдая за показаниями амперметра и вольтметра.

Номинальная величина напряжения поддерживается при этом увеличением частоты вращения ротора.

Как только сила тока нагрузки достигнет необходимой величины при номинальной величине напряжения, снимают показания тахометра. Генератор считают исправным, если необходимая сила тока нагрузки при номинальном напряжении достигается при частоте вращения ротора, не превышающей величины, указанной в технических условиях.

3. Типовые дефекты

Выходные параметры работы генератора не соответствуют техническим требованиям – т.е. несоответствие норме зарядного тока и напряжения. Эти показатели фиксируются амперметрами, вольтметрами.

Причины – неисправна электрическая часть генератора:

замасливание щеток и контактных колец;

подгорание контактных колец – происходит обычно при сильном искрообразовании между щетками и контактными кольцами;

износ щеток и колец – при этом уменьшается сила прижатия щеток, что приводит к зависанию (заеданию в гнездах) щеток и повышенному подгоранию контактных колец;

межвитковое замыкание в обмотках или замыкание проводов обмоток на массу – происходит в результате повреждения или естественного старения изоляции проводов катушек обмотки статора и обмотки возбуждения ротора, приводящая к снижению сопротивления изоляции – происходящее при этом замыкание смежных проводов катушек (или их замыкание на массу) как бы уменьшает количество проводов в обмотках и соответственно происходит отклонение выходных параметров от нормы (снижается напряжение, а сила зарядного тока наоборот увеличивается);

обрыв проводов или выводов обмотки статора или ротора;

окисление, ослабление или разрушение контактов соединительных проводов подключения генератора;

пробой или обрыв диодов в выпрямителе.

4. Методы шумо-вибро диагностирования

Анализируя сигналы с вибродатчиков, установленных на подшипниках электрических машин можно выявить достаточно много специфических причин повышенной вибрации, возникающих только в электродвигателях и генераторах различного типа. Эти причины могут являться как прямым результатом наличия различных внутренних электромагнитных дефектов электрических машин, так и быть просто связанными со специфическими особенностями проявления электромагнитных процессов в обмотках и сердечниках, отражать особенности нормальной работы электродвигателей и генераторов в агрегатах.

На рис. 1 показаны внешние естественные характеристики трехфазного синхронного генератора, иллюстрирующие зависимость напряжения U г на его зажимах от тока обмотки статора Ir при заданном коэффициенте мощности приемников соs φ = const, неизменном токе возбуждения в обмотке ротора IB = const и постоянной частоте вращения ротора, чему отвечает неизменная частота переменного тока f=const. Эти характеристики могут исходить как из общей точки (0, Егx ), отвечающей режиму холостого хода, так и пересекаться в точке (Iг ном , U г ном ), соответствующей номинальной нагрузке. Первые характеристики


Рис. 1.1. Внешние характеристики трехфазного синхронного генератора при изменении нагрузки с заданным коэффициентом мощности нагрузки: а - от режима холостого хода до номинальной; б - от номинальной до режима холостого хода

позволяют определить изменение напряжения генератора при увеличении нагрузки от режима холостого хода до номинального тока, а вторые - при снижении нагрузки от номинальной до режима холостого хода.

Основной естественной внешней характеристикой синхронного генератора считают кривую Uг (Iг), полученную при симметричном режиме, коэффициенте мощности приемников cos φ = 0,8 и φ > 0.

Для поддержания напряжения синхронного генератора неизменным при переменной нагрузке приходится регулировать ток возбуждения IB в обмотке ротора по закону, определяемому регулировочными характеристиками, крутизна которых зависит от характера нагрузки и ее коэффициента мощности (рис. 6.6). Так, при увеличивающемся токе нагрузки, отстающем по фазе от напряжения на угол φ > 0, возникает размагничивающее действие реакции якоря и соответствующая регулировочная характеристика поднимается, а при возрастающем токе нагрузки, опережающем по фазе напряжение на угол φ Iв.гр (P)] ток синхронного генератора имеет емкостную IрС (индуктивную IpL) реактивную составляющую φ 0) (см. рис. 3.2). Следовательно, при недовозбуждении (перевозбуждении) реактивная мощность генератора имеет емкостный (Qc = - 3UIр L) [индуктивный (QL = 3UIp L)] характер.

Если синхронный генератор подключен к электрической системе большой мощности U = const, то его эквивалентную схему замещения можно представить в виде параллельного соединения двух источников тока: источника активной составляющей тока генератора, зависящей от вращающего момента первичного двигателя, Iавр ), и источника реактивной составляющей тока генератора, зависящей от момента вращения первичного двигателя и тока возбуждения, Ip (Iв , Mвр )



Зависимость тока статора от тока возбуждения I(Iв ) при постоянном вращающем моменте первичного двигателя Мвр = const называется U-образной характеристикой синхронного генератора (рис. 3.2). При некотором малом значении тока возбуждения угол |θ| (рис. 3.1) может превысить значение π/2 и устойчивость работы синхронного генератора нарушится. Чем больше значение активной мощности синхронного генератора, тем при больших значениях тока возбуждения наступит потеря устойчивости. На рис. 3.2 граница устойчивости синхронного генератора показана штриховой линией.

Если вращающий момент первичного двигателя равен нулю (Мвр = 0), то, пренебрегая всеми видами потерь, можно считать, что ток синхронного генератора реактивный (рис. 3.2, Р = 0):


(3.2)

Ток генератора в этом случае зависит линейно от тока возбуждения. Линейность зависимости I(Iв) нарушается лишь при больших значениях тока возбуждения вследствие насыщения магнитопровода машины.

1. Электромагнитный момент и угловая характеристика синхронного Характеристики генераторов переменного тока // Основы электрооборудования летательных

2. Характеристики и уравнения приводов синхронных генераторов Характеристики и уравнения приводов синхронных генераторов

Устойчивость и бесперебойность электроснабжения потребителей при имеющемся резерве генерирующей мощности достигаются повышением надежности энергетических агрегатов и оптимизацией затрат на техническое обслуживание и ремонт. В последнее десятилетие в стране и за рубежом особое внимание уделяется долговечности машин, их узлов и элементов. В связи с этим созданы и продолжают разрабатываться многочисленные системы мониторинга и диагностики генераторов для электрических станций. Такие системы позволяют наблюдать за изменением состояния узлов и элементов генераторов, за ранним зарожден нем дефектов и скоростью их развития, обеспечивая оптимизацию режимов эксплуатации машин. Информационная часть средств диагностики помогает эксплуатационному персоналу принимать решение о необходимости проведения дополнительных осмотров, о времени проведения ремонтных работ, о временном изменении режимов работы или ограничении определенных режимов и др.

В первую очередь должны быть исключены самые тяжелые по последствиям повреждения узлов генератора: вала и бандажных колец ротора, обмотки и сердечника статора. Наряду с этим необходимо предупреждать нарушения и в других элементах машины, к которым относятся витковые замыкания в катушках обмотки ротора, повреждение изоляции обмотки статора, повышенное искрение в щеточно-контактном аппарате, ухудшение уплотнений вала ротора и подшипников. Особое внимание должно уделяться контролю за уровнем вибраций элементов ротора и статора. Своевременное обнаружение возникшей неисправности на ранней стадии ее развития, как правило, возможно за счет применения новых нетрадиционных методов контроля.
Другой стороной проблемы является оценка технического состояния генератора во время ревизий путем проведения инструментальных исследований. Разработка новых методов дополняет диагностику генераторов во время работы, так как выявляет те дефекты, которые не проявились во время эксплуатации. Это позволяет выполнить предупредительный ремонт и устранить дефект или ограничить опасные режимы работы генераторов и сократить период между ревизиями для оценки динамики развития дефекта (так называемый ремонт по техническому состоянию - как альтернатива планово-предупредительному ремонту).
В ГОСТ 20911-89 сформулированы следующие задачи технического диагностирования:

  1. Контроль технического состояния.
  2. Поиск места и определение причин отказа (неисправности).
  3. Прогнозирование технического состояния.

Читайте также: