Действие магнитного поля на движущийся заряд сила лоренца реферат

Обновлено: 02.07.2024

Сила Ампера, воздействующая на часть проводника длиной Δ l с некоторой силой тока I , находящийся в магнитном поле B , F = I · B · Δ l · sin α может выражаться через действующие на конкретные носители заряда силы.

Пускай заряд носителя обозначается как q , а n является значением концентрации носителей свободного заряда в проводнике. В этом случае произведение n · q · υ · S , в котором S представляет собой площадь поперечного сечения проводника, эквивалентно току, протекающему в проводнике, а υ – это модуль скорости упорядоченного движения носителей в проводнике:

Формула силы Ампера может записываться в следующем виде:

F = q · n · S · Δ l · υ · B · sin α .

По причине того, что полное число N носителей свободного заряда в проводнике сечением S и длиной Δ l равняется произведению n · S · Δ l , действующая на одну заряженную частицу сила равняется выражению: F Л = q · υ · B · sin α .

Найденная сила носит название силы Лоренца. Угол α в приведенной формуле эквивалентен углу между вектором магнитной индукции B → и скоростью ν → .

Направление силы Лоренца, которая воздействует частицу с положительным зарядом, таким же образом, как и направление силы Ампера, находится по правилу буравчика или же с помощью правила левой руки. Взаимное расположение векторов ν → , B → и F Л → для частицы, несущей положительный заряд, проиллюстрировано на рис. 1 . 18 . 1 .

Рисунок 1 . 18 . 1 . Взаимное расположение векторов ν → , B → и F Л → . Модуль силы Лоренца F Л → численно эквивалентен произведению площади параллелограмма, построенного на векторах ν → и B → и заряда q .

Сила Лоренца направлена нормально, то есть перпендикулярно, векторам ν → и B → .

Сила Лоренца не совершает работы при движении несущей заряд частицы в магнитном поле. Данный факт приводит к тому, что модуль вектора скорости в условиях движения частицы так же не меняет своего значения.

Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость ν → лежит в плоскости, которая направлена нормально по отношению к вектору B → , то частица будет совершать движение по окружности некоторого радиуса, рассчитывающегося с помощью следующей формулы:

Сила Лоренца в данном случае применяется в качестве центростремительной силы (рис. 1 . 18 . 2 ).

Рисунок 1 . 18 . 2 . Круговое движение заряженной частицы в однородном магнитном поле.

Для периода обращения частицы в однородном магнитном поле будет справедливо следующее выражение:

T = 2 π R υ = 2 π m q B .

Данная формула наглядно демонстрирует отсутствие зависимости заряженных частиц заданной массы m от скорости υ и радиуса траектории R .

Применение силы Лоренца

Приведенное снизу соотношение представляет собой формулу угловой скорости движения заряженной частицы, происходящего по круговой траектории:

ω = υ R = υ q B m υ = q B m .

Оно носит название циклотронной частоты. Данная физическая величина не имеет зависимости от скорости частицы, из чего можно сделать вывод, что и от ее кинетической энергии она не зависит.

Данное обстоятельство находит свое применение в циклотронах, а именно в ускорителях тяжелых частиц (протонов, ионов).

На рисунке 1 . 18 . 3 приводится принципиальная схема циклотрона.

Рисунок 1 . 18 . 3 . Движение заряженных частиц в вакуумной камере циклотрона.

Дуант – это полый металлический полуцилиндр, помещенный в вакуумную камеру между полюсами электромагнита в качестве одного из двух ускоряющих D -образного электрода в циклотроне.

К дуантам приложено переменное электрическое напряжение, чья частота эквивалентна циклотронной частоте. Частицы, несущие некоторый заряд, инжектируются в центре вакуумной камеры. В промежутке между дуантами они испытывают ускорение, вызываемое электрическим полем. Частицы, находящиеся внутри дуантов, в процессе движения по полуокружностям испытывают на себе действие силы Лоренца. Радиус полуокружностей возрастает с увеличением энергии частиц. Как и во всех других ускорителях, в циклотронах ускорение заряженной частицы достигается путем применения электрического поля, а ее удержание на траектории с помощью магнитного поля. Циклотроны дают возможность ускорять протоны до энергии, приближенной к 20 М э В .

Однородные магнитные поля используются во многих устройствах самых разных типов назначений. В частности, они нашли свое применение так называемых масс-спектрометрах.

Масс-спектрометры – это такие устройства, использование которых позволяет нам измерять массы заряженных частиц, то есть ионов или ядер различных атомов.

Данные приборы используются для разделения изотопов (ядер атомов с одинаковым зарядом, но разными массами, к примеру, Ne 20 и Ne 22 ). На рис. 1 . 18 . 4 изображен простейшая версия масс-спектрометра. Вылетающие из источника S ионы проходят через несколько малых отверстий, которые в совокупности формируют узкий пучок. После этого они попадают в селектор скоростей, где частицы движутся в скрещенных однородных электрическом, создающимся между пластинами плоского конденсатора, и магнитном, возникающим в зазоре между полюсами электромагнита, полях. Начальная скорость υ → заряженных частиц направлена перпендикулярно векторам E → и B → .

Частица, которая движется в скрещенных магнитном и электрическом полях, испытывает на себе воздействия электрической силы q E → и магнитной силы Лоренца. В условиях, когда выполняется E = υ B , данные силы полностью компенсируют воздействие друг друга. В таком случае частица будет двигаться равномерно и прямолинейно и, пролетев через конденсатор, пройдет через отверстие в экране. При заданных значениях электрического и магнитного полей селектор выделит частицы, которые движутся со скоростью υ = E B .

После данных процессов частицы с одинаковыми значениями скорости попадают в однородное магнитное поле B → камеры масс-спектрометра. Частицы под действием силы Лоренца движутся в камере перпендикулярной магнитному полю плоскости. Их траектории представляют собой окружности с радиусами R = m υ q B ' . В процессе измерения радиусов траекторий при известных значениях υ и B ' , мы имеем возможность определить отношение q m . В случае изотопов, то есть при условии q 1 = q 2 , масс-спектрометр может разделить частицы с разными массами.

С помощью современных масс-спектрометров мы имеем возможность измерять массы заряженных частиц с точностью, превышающей 10 – 4 .

Рисунок 1 . 18 . 4 . Селектор скоростей и масс-спектрометр.

Магнитное поле

В случае, когда скорость частицы υ → имеет составляющую υ ∥ → вдоль направления магнитного поля, подобная частица в однородном магнитном поле будет совершать спиралевидное движение. Радиус такой спирали R зависит от модуля перпендикулярной магнитному полю составляющей υ ┴ вектор υ → , а шаг спирали p – от модуля продольной составляющей υ ∥ (рис. 1 . 18 . 5 ).

Рисунок 1 . 18 . 5 . Движение заряженной частицы по спирали в однородном магнитном поле.

Такое же явление происходит в магнитном поле Земли, которое защищает все живое от потока несущих заряд частиц из космического пространства.

Рисунок 1 . 18 . 7 . Радиационные пояса Земли. Быстрые заряженные частицы от Солнца, в основном электроны и протоны, попадают в магнитные ловушки радиационных поясов.

32. Действие магнитного поля на движущийся заряд. Сила Лоренца.

Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называю силой Лоренца.

Сила Лоренца. Поскольку ток представляет собой упорядоченное движение электрических зарядов, то естественно предположить, что сила Ампера является равнодействующей сил, действующих на отдельные заряды, движущиеся в проводнике. Опытным путём установлено, что на заряд, движущийся в магнитном поле, действительно действует сила. Эту силу называют силой Лоренца. Модуль FL силы находится по формуле


где В — модуль индукции магнитного поля, в котором движется заряд, q и v — абсолютная величина заряда и его скорость, a - угол между векторами v и В. Эта сила перпендикулярна к векторам v и В, её направление находится по правилу левой руки: если руку расположить так, чтобы четыре вытянутых пальца совпадали с направлением движения положительного заряда, линии индукции магнитного поля входили в ладонь, то отставленный на 90 0 большой палец показывает направление силы. В случае отрицательной частицы направление силы противоположное.

Так как сила Лоренца перпендикулярна скорости частицы, то. она не совершает работу.

Силу Лоренца применяют в телевизорах, масс-спектограф.

Принцип работы: Вакуумная камера прибора помещена в магнитное поле. Ускоренные электрическим полем заряженные частицы (электроны или ионы), описав дугу, попадают на фотопластинку, где оставляют след, позволяющий с большой точностью измерить радиус траектории. По этому радиусу определяется удельный заряд иона. Зная же заряд иона, легко определить его массу.

33. Магнитные свойства вещества. Магнитная проницаемость. Ферромагнетизм.

Магнитная проницаемость. Постоянные магниты могут быть изготовлены лишь из немногих веществ, но все вещества, помещенные в магнитное поле, намагничиваются, т. е. сами создают магнитное поле. Благодаря этому вектор магнитной индукции В в однородной среде отличается от вектора Во в той же точке пространства в вакууме.


Отношение характеризующее магнитные свойства среды, получило название магнитной проницаемости среды.

В однородной среде магнитная индукция равна: где m — магнитная проницаемость данной среды безразмерная величина, показывающая во сколько раз μ в данной среде, больше μ в вакууме.

Магнитные свойства любого тела определяются замкнутыми электрическими токами внутри него.

Парамагнетиками называются вещества, которые создают слабое магнитное поле, по направлению совпадающее с внешним полем. Магнитная проницаемость наиболее сильных парамагнетиков мало отличается от единицы: 1,00036- у платины и 1,00034- у жидкого кислорода. Диамагнетиками называются вещества, которые создают поле, ослабляющее внешнее магнитное поле. Диамагнитными свойствами обладают серебро, свинец, кварц. Магнитная проницаемость диамагнетиков отличается от единицы не более чем на десятитысячные доли.

Ферромагнетики и их применение. Вставляя железный или стальной сердечник в катушку, можно во много раз усилить создаваемое ею магнитное поле, не увеличивая силу тока в катушке. Это экономит электроэнергию. Сердечники трансформаторов, генераторов, электродвигателей и т. д. изготовляют из ферромагнетиков.

При выключении внешнего магнитного поля ферромагнетик остается намагниченным, т. е. создает магнитное поле в окружающем пространстве. Упорядоченная ориентация элементарных токов не исчезает при выключении внешнего магнитного поля. Благодаря этому существуют постоянные магниты.

Постоянные магниты находят широкое применение в электроизмерительных приборах, громкоговорителях и телефонах, звукозаписывающих аппаратах, магнитных компасах и т. д.

Большое применение получили ферриты — ферромагнитные материалы, не проводящие электрического тока. Они представляют собой химические соединения оксидов железа с оксидами других веществ. Первый из известных людям ферромагнитных материалов—магнитный железняк — является ферритом.

Температура Кюри. При температуре, большей некоторой определенной для данного ферромагнетика, ферромагнитные свойства его исчезают. Эту температуру называют температурой Кюри. Если сильно нагреть намагниченный гвоздь, то он потеряет способность притягивать к себе железные предметы. Температура Кюри для железа 753 °С, для никеля 365 °С, а для кобальта 1000°С. Существуют ферромагнитные сплавы, у которых температура Кюри меньше 100°С.

34. Электромагнитная индукция. Магнитный поток.


, ЭДС может возникать при изменении магнитной индукции В, при повороте плоскости контура, относительно магнитного поля. Знак минус в формуле объясняется по Правилу Ленца: Индуктивный ток направлен так, что своим магнитным полем препятствует изменению внешнего магнитного потока, порождающего индукционный ток. Соотношение называется законом электромагнитной индукции: ЭДС индукции в проводнике равна быстроте изменения магнитного потока, пронизывающего площадь, охватываемую проводником.


Магнитный поток. Магнитным потоком через некоторую поверхность называют число линий магнитной индукции, пронизывающих её. Пусть в однородном магнитном поле находится плоская площадка площадью S, перпендикулярная к линиям магнитной индукции. (Однородным магнитным полем называется такое поле, в каждой точке которого индукция магнитного поля одинакова по модулю и направлению). В этом случае нормаль n к площадке совпадает с направлением поля. Поскольку через единицу площади площадки проходит число линий магнитной индукции, равное модулю В индукции поля, то число линий, пронизывающих данную площадку будет в S раз больше. Поэтому магнитный поток равен:

Рассмотрим теперь случай, когда в однородном магнитном поле находится плоская площадка, имеющая форму прямоугольного параллелепипеда со сторонами а и b, площадь которой S = аb. Нормаль n к площадке составляет угол a с направлением поля, т.е. с вектором индукции В. Число линий индукции, проходящих через площадку S и её проекцию Sпр на плоскость, перпендикулярную к этим линиям, одинаково. Следовательно, поток Ф индукции магнитного поля через них одинаков. Используя выражение, находим Ф = ВSпр Из рис. видно, что Sпр= ab*cos a =Scosa. Поэтому ф =BScos a.

В системе единиц СИ магнитный поток измеряется в веберах (Вб). Из формулы следует т.е. 1 Вб — это магнитный поток через площадку в 1 м2, расположенную перпендикулярно к линиям магнитнойиндукции в однородном магнитном поле с индукцией 1 Тл. Найдем размерность вебера:

Известно, что магнитный поток является алгебраической величиной. Примем магнитный поток, пронизывающий площадь контура, положительным. При увеличении этого потока возникает з.д.с. индукции , под действием которой появляется индукционный ток, создающий собственное магнитное поле, направленное навстречу внешнему полю, т.е. магнитный поток индукционного тока отрицателен.

Если же поток, пронизывающий площадь контура, уменьшается (), то , т.е. направление магнитного поля индукционного тока совпадает с направлением внешнего поля.

Действие магнитного поля на движущийся заряд. Сила Лоренца

Электрический ток – это упорядоченно движущиеся заряженные частицы. Поэтому действие магнитного поля на проводник с током есть результат действия магнитного поля на движущиеся заряженные частицы внутри проводника. Найдем силу, действующую на одну частицу. Эту силу можно найти с помощью закона Ампера. Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называют силой Лоренца в честь великого голландского физика Хендрик Антон Лоренца (1853-1928) – основателя электронной теории строения вещества.

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называют силой Лоренца. Х.А. Лоренц 1853–1928 гг.

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Cила Лоренца Сила Лоренца — это сила, действующая на каждый заряд со стороны магнитного поля — равна произведению величины заряда, скорости движения частицы, модуля вектора магнитной индукции поля на синус угла между магнитной индукцией и направлением движения заряда.

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Какая сила действует на протон, движущийся со скоростью 10 Мм/с в магнитном поле с индукцией 0,2 Тл перпендикулярно линиям индукции? Дано: Решение: +

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Определите направление силы Лоренца, действующей на электрон. х х х х х х х х х х х х х х х х х х х х х х х х х х х х х х х х х х х х х х х х х х х х х —

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Определите направление силы Лоренца, действующей на протон. . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . .

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Электронно-лучевая трубка Зависимость силы Лоренца от угла между векторами магнитной индукции и направлением движения частицы можно обнаружить, наблюдая смещение электронного луча при изменении угла между осью магнита и осью электронно- лучевой трубки.

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

+ – – + Если заряженная частица влетает в магнитное поле параллельно вектору магнитной индукции, то сила Лоренца равна нулю.

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Веществом, непроницаемым для магнитных сил, является то же самое железо, которое так легко намагничивается.

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Схема масс-спектрографа Батарея, создающая ускоряющее напряжение Фотопластинка Источник частиц К насосу

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Действие магнитного поля на движущийся заряд. Сила Лоренца

Циклотрон Генератор переменного напряжения Место поступления (ионов, протонов) Ускоряющие электроды (дуанты) Траектория ускоряемой частицы

Ликизюк Марина Ивановна

Напра Сила Лоренца — сила , с которой электромагнитное поле согласно классической (неквантовой) электродинамике действует на точечнуюзаряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля , нередко же полную силу — со стороны электромагнитного поля вообще, иначе говоря, со стороны электрического и магнитного полей. В Международной системе единиц (СИ) выражается как:

Названа в честь голландского физика Хендрика Лоренца , который вывел выражение для этой силы в 1892 году . За три года до Лоренца правильное выражение было найдено О. Хевисайдом .

Макроскопическим проявлением силы Лоренца является сила Ампера . вление силы Лоренца определяется по правилу левой руки:

ВложениеРазмер
deystvie_magnitnogo_polya_na_dvizhushchiysya_zaryad._blizneva.pptx 597.68 КБ
Предварительный просмотр:

Подписи к слайдам:

Сила Лоренца - сила, действующая со стороны магнитного поля на движущуюся электрически заряженную частицу. где q - заряд частицы; V - скорость заряда; B - индукции магнитного поля; a - угол между вектором скорости заряда и вектором магнитной индукции.

Направление силы Лоренца определяется по правилу левой руки: Если поставить левую руку так, чтобы перпендикулярная скорости составляющая вектора индукции входила в ладонь, а четыре пальца были бы расположены по направлению скорости движения положительного заряда (или против направления скорости отрицательного заряда), то отогнутый большой палец укажет направление силы Лоренца

Так как сила Лоренца всегда перпендикулярна скорости заряда, то она не совершает работы (т.е. не изменяет величину скорости заряда и его кинетическую энергию ). Если заряженная частица движется параллельно силовым линиям магнитного поля, то Fл = 0 , и заряд в магнитном поле движется равномерно и прямолинейно .

Если заряженная частица движется перпендикулярно силовым линиям магнитного поля, то сила Лоренца является центростремительной и создает центростремительное ускорение равное В этом случае частица движется по окружности.

Согласно второму закону Ньютона: сила Лоренца равна произведению массы частицы на центростремительное ускорение тогда радиус окружности а период обращения заряда в магнитном поле

Так как электрический ток представляет собой упорядоченное движение зарядов, то действие магнитного поля на проводник с током есть результат его действия на отдельные движущиеся заряды.

Читайте также: