Датчики скорости вращения реферат

Обновлено: 05.07.2024

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Московский ордена Ленина, ордена Октябрьской Революции и ордена Трудового Красного Знамени. ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н. Э. БАУМАНА

Факультет: Информатики и систем управленияКафедра: Проектирование и технология производства электронной аппаратуры (ИУ4)______________________________________________________________________________РефератДатчики скоростиПо курсу:Введение в специальность

Студент:Федосов А. В.ИУ4-12

(фамилия, инициалы)(индекс группы)Руководитель:Шахнов В. А.(фамилия, инициалы) Москва 2003

В работе рассказывается как о датчиках скорости, их области применения и принципах действия, так и об общих свойствах датчиков, их месте в воспринимающих системах и величинах, которые используют для их описания.In this work it is being told as about detectors of speed, area of their application and principles of work as about general properties, their place in grasp systems and values, which are used for their description.Содержание

Общие свойства датчиков

Список использованных источников

Приложение 1: внешний вид некоторых моделей датчиков скорости.

Введение За последние годы в технике измерения и регулирования параметров различных процессов всё более и более возрастает роль отрасли изготовления и применения датчиков. Эта отрасль, постоянно развиваясь, служит основой создания разнообразных вариантов систем автоматического регулирования.

Такое развитие обусловлено прежде всего гигантским прогрессом микроэлектроники. Широкий спектр применений микро-ЭВМ в бытовой технике, автомобилестроении и других областях промышленности всё в большей мере требует недорогих датчиков, выпускаемых крупными сериями. Как следствие этого появляются новые интересные и в то же время недорогие устройства на датчиках.

Общие свойства датчиков

На датчик могут одновременно воздействовать различные физические величины (давление, температура, влажность, вибрация, ядерная реакция, магнитные и электрические поля и т. д.), но воспринимать он должен только одну величину, называемую естественной величиной .

На рисунке 1 показано устройство воспринимающей системы. Датчик возвращает некую величину , зависящую от , которая затем поступает на предварительную обработку.Рис. 1. Устройство воспринимающей системы с получением, обработкой и преобразованием сигнала:- первичный процесс,- вторичный процесс,- измерительный мост, Amp – усилитель.

Функциональную зависимость выходной величины датчика от естественной измеряемой величиныв статических условиях, выраженную аналитически, таблично или графически, называют статической характеристикой датчика.

Статическая чувствительность представляет собой отношение малых приращений выходной величины к соответствующим малым приращениям входной величины в статических условиях. По определению, статическая чувствительность равнаили, переходя к пределу, будем иметь

Это соотношение является постоянным, когда выходная величина (выходной сигнал) представляет собой линейную

В работе рассказывается как о датчиках скорости, их области применения и принципах действия, так и об общих свойствах датчиков, их месте в воспринимающих системах и величинах, которые используют для их описания.

In this work it is being told as about detectors of speed, area of their application and principles of work as about general properties, their place in grasp systems and values, which are used for their description.

Общие свойства датчиков

Список использованных источников

Приложение 1: внешний вид некоторых моделей датчиков скорости.

За последние годы в технике измерения и регулирования параметров различных процессов всё более и более возрастает роль отрасли изготовления и применения датчиков. Эта отрасль, постоянно развиваясь, служит основой создания разнообразных вариантов систем автоматического регулирования.

Такое развитие обусловлено прежде всего гигантским прогрессом микроэлектроники. Широкий спектр применений микро-ЭВМ в бытовой технике, автомобилестроении и других областях промышленности всё в большей мере требует недорогих датчиков, выпускаемых крупными сериями. Как следствие этого появляются новые интересные и в то же время недорогие устройства на датчиках.


На датчик могут одновременно воздействовать различные физические величины (давление, температура, влажность, вибрация, ядерная реакция, магнитные и электрические поля и т. д.), но воспринимать он должен только одну величину, называемую естественной величиной .

На рисунке 1 показано устройство воспринимающей системы. Датчик возвращает некую величину , зависящую от , которая затем поступает на предварительную обработку.

Рис. 1. Устройство воспринимающей системы с получением, обработкой и преобразованием сигнала: - первичный процесс, - вторичный процесс, - измерительный мост, Amp – усилитель.

Функциональную зависимость выходной величины датчика от естественной измеряемой величины в статических условиях, выраженную аналитически, таблично или графически, называют статической характеристикой датчика.


Статическая чувствительность представляет собой отношение малых приращений выходной величины к соответствующим малым приращениям входной величины в статических условиях. По определению, статическая чувствительность равна или, переходя к пределу, будем иметь


.

Это соотношение является постоянным, когда выходная величина (выходной сигнал) представляет собой линейную функцию входной величины (выходного сигнала). Если имеется нелинейная функция, то должны быть указаны точки, к которым относится данная чувствительность. В некоторых случаях чувствительность может быть представлена в виде наклона секущей между двумя характеристическими точками статической нелинейной характеристики.

Понятие статической чувствительности аналогично понятию коэффициента усиления; градиента; коэффициента чувствительности.

Чувствительность датчика – это, как правило, именованная величина с разнообразной размерностью, зависящей от природы входной и выходной величин.

Понятие чувствительности можно распространить на динамические условия работы. При этом под чувствительностью подразумевают отношение скорости изменения выходного сигнала к соответствующей скорости изменения входного сигнала:


.

В случае периодических, в частности синусоидальных, сигналов чувствительность может быть определена как отношение амплитуд выхода и входа.

Под порогом чувствительности датчика понимают минимальное изменение измеряемой величины (входного сигнала), вызывающее изменение входного сигнала. Наиболее характерным показателем качества датчика является полный диапазон датчика, выражаемый отношением


,

где - естественный предел измерения; - порог чувствительности датчика.


Для каждого типа датчиков существует практически достижимый предел величины , определяемый принципом действия и характеристиками чувствительного элемента.

Гистерезисом называют неоднозначность хода статической характеристики датчика при увеличении и уменьшении входной величины.

Для упругих элементов (мембраны, пружины и т. д.) в понятие гистерезис также включают понятие упругое последействие.

Гистерезис относится в общем случае к случайным погрешностям, так как его величина определяется не только значениями входной величины, но и временными характеристиками работы датчика. Гистерезис выражается в процентах


,


где - изменение выходной величины в рабочих пределах.

Гистерезис возникает в датчиках из-за внутреннего трения в упругих элементах, трения в подвижных элементах, ползучести (например, в наклеиваемых тензодатчиках), магнитного гистерезиса и т. п.

Основной погрешностью датчика является максимальная разность между действительным значением выходного сигнала и его величиной, соответствующей истинному значению входного параметра. Эта разность определяется по статической характеристике датчика при нормальных условиях и обычно относится к разности предельных значений выходной величины:


.

Нормальными условиями эксплуатации датчика являются: температура окружающей среды ; атмосферное давление Па/ мм рт. ст.; относительная влажность окружающего воздуха ; отсутствие вибрации и полей, кроме гравитационного.

Дополнительные погрешности датчика – это погрешности, вызываемые изменением внешних условий по сравнению с нормальными. Они выражаются в процентах, отнесённых к изменению неизмеряемого параметра (например, температурная погрешность на и т. д.).

Первичной погрешностью датчика называют отклонение его параметра от расчётного значения:


,

где - первичная погрешность параметра ; - расчётное значение параметра ; - индекс (номер) преобразователя; - индекс (номер) параметра.

Первичная погрешность датчика вызывает отклонение выходной величины от её расчётного значения при заданном значении входной величины . Это отклонение принято называть частной погрешностью датчика:


;


.

Суммарная погрешность датчика определяется как сумма частных погрешностей. Способ суммирования определяется природой первичных погрешностей.

При систематических первичных погрешностях частная погрешность датчика определяется по зависимости


.

Если первичные погрешности случайные, то предельное значение погрешности датчика можно определить квадратичным суммированием предельных значений частных погрешностей:


.

Практическая оценка погрешности измерений различных физических параметров часто усложняется большим числом одновременно действующих независимых факторов, вызывающих частные погрешности.

Датчики скорости широко применяются в разных отраслях промышленности, сегодня существует много моделей, действующих по разному принципу и способных работать в различных условиях.

В промышленной измерительной технике требуются очень точные методы определения расхода и скоро ­ сти потока. При этом допустимые погрешности не должны превышать одного процента, а иногда и од ­ ной десятой процента. Довольно точные измерители расхода требуются иногда и в быту (например, газовый счетчик). Недавно появились оптоэлектронные измерители расхода и скорости, рабо ­ тающие па оптическом эффекте Допплера (см. рисунок 2), которые исполь ­ зуют особый вид рассеяния света.

В данном случае луч лазера разделяется светоделительной пластинкой на два отдельных световых пучка, которые фокусируются затем с помощью линзы в протекающей среде. Рассеянный потоком свет попадает затем на фотодетектор (фотоумножитель), где он преобразуется в электрический ток. Усиленный допплеровский сигнал электронным путём преобразуется затем в пропорциональное расходу измерительное напряжение.


Рис. 2. Устройство лазерного допплеровского анемометра для измерения скоростей потоков в трубопроводе.

Такой способ измерения расхода довольно дорог, но его достоинство состоит в том, что поток не искажается процедурой измерения и профиль потока может быть измерен с очень хорошим разрешением, так как регистрируется только скорость в точке фокуса. Однако для любительской практики этот метод непригоден.

Измерения расхода можно осуществить чисто электронным путём, применяя в качестве датчика самонагревающийся резистор. Сопротивление такого резистора изменяется вследствие охлаждения потоком, в результате чего резистор действует как датчик расхода. На рисунке 3 показано омическое сопротивление (элемент датчика) в канале потока.


Рис. 3. Схематическое изображение процессов теплопередачи от самонагревающегося резистора в канале потока.

Ток нагревает этот элемент до температуры . В этих условиях теплоотвод осуществляется несколькими путями:

- теплопроводность через среду потока к стенкам трубы; ;

- теплопроводность через механический держатель и электропровода; ;

- теплопередача путём излучения (по закону Стефана-Больцмана );

- теплопередача путём свободной конвекции; ;


- теплопередача путём вынужденной конвекции (поток):


,


где - объёмный расход.

В итоге омический элемент датчика оказывается в состоянии теплового равновесия, т. е. Количество подводимой энергии равно количеству отводимой.


Поскольку подводимая электрическая энергия равна , равновесие определяется выражением


,


где представляет собой собственно измеряемую величину, т. к. она определяется потоком в канале. Поэтому все остальные формы теплопередачи могут быть выражены константой. В этом случае получается т. н. уравнение Кинга


,

где . В этом уравнении и можно считать аппаратурными параметрами, остающимися постоянными в известных пределах.

Применяется также ультразвуковой датчик скорости, излучающий ультразвуковой сигнал, который при отражении от частиц, движущихся с разной скоростью, дает широкополосный отраженный сигнал, который принимается датчиком. Анализ спектра этого сигнала позволяет рассчитать осредненную скорость потока с учетом неравномерного распределения скоростей по поперечному профилю сечения.

Датчик скорости автомобиля (ДСА) сконструирован по принципу эффекта Холла и предназначен для преобразования частоты вращения приводного вала в частоту электрических импульсов, пропорциональных скорости движения автомобиля, или преобразования количества оборотов приводного вала в количество электрических импульсов, пропорциональных пройденному пути автомобиля, а также для систем управления впрыском топлива.

Интегрированный датчик скорости вращения вентилятора TC670, предсказывающий и/или обнаруживающий выход из строя вентилятора, предотвращая тепловое повреждение устройства с охлаждением вентиляторами. Когда скорость вращение вентилятора ниже установленного, формируется сигнал тревоги -ALERT (низкий логический уровень). Нижнее значение скорости вращения вентилятора задается резистором, подключенным к выводу THRESHOLD. Микросхема предназначена для работы с 2-х выводными вентиляторами. TC670 позволяет отказаться от использования 3-х выводных вентиляторов в устройстве. По сигналу CLEAR сбрасывается активный уровень на выводе -ALTER. Эта функция позволяет использовать TC670 в составе системы контроля работы вентиляторов.

Бесконтактные магнитные датчики VSP-DD-3000M применяются как датчики скорости. Устройства реагируют на движущиеся тела из токопроводящих материалов. Применение этих датчиков особенно удобно для контроля транспортных механизмов (типа норий, транспортеров и т.п.), которые перемещают продукт диэлектрической природы. В этом случае можно исключить влияние продукта на срабатывание датчика. Достаточно большая рабочая зона датчика позволяет не изготавливать специальные крыльчатки и другие дополнительные приспособления для контроля скорости движущихся механизмов, а использовать уже имеющиеся в конструкциях механизмов движущиеся металлические детали (спицы колес, болты крепления на колесах, лентах и т.п.). Эти элементы конструкции периодически проходя через зону чувствительности датчика, вызывают его срабатывание, что позволяет контролировать скорость этих механизмов при помощи устройств с функцией контроля скорости.

В работе были рассмотрены общие свойства датчиков и область их применения. Более подробно затрагиваются датчики скорости, объясняется принцип действия на примере конкретных моделей.

На сегодняшний день существует большое количество различных датчиков скорости, предназначенных для работы в разных условиях, с разными входными параметрами. Датчики скорости нашли широкое применение в промышленности и техники.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Человек глазами воспринимает форму, размеры и цвет окружающих предметов, ушами слышит звуки, носом чувствует запахи. Обычно говорят о пяти видах ощущений, связанных со зрением, слухом, обонянием, вкусом и осязанием. Для формирования ощущений человеку необходимо внешнее раздражение определенных органов - "датчиков чувств". Для различных видов ощущений роль датчиков играют определенные органы чувств:

Однако для получения ощущения одних только органов чувств недостаточно. Например, при зрительном ощущении совсем не значит, что человек видит только благодаря глазам. Общеизвестно, что через глаза раздражения от внешней среды в виде сигналов по нервным волокнам передаются в головной мозг и уже в нем формируется ощущение большого и малого, черного и белого и т.д. Эта общая схема возникновения ощущения относится также к слуху, обонянию и другим видам ощущения, т.е. фактически внешние раздражения как нечто сладкое или горькое, тихое или громкое оцениваются головным мозгом, которому необходимы датчики, реагирующие на эти раздражения.

Аналогичная система формируется и в автоматике. Процесс управления заключается в приеме информации о состоянии объекта управления, ее контроле и обработке центральным устройством и выдачи им управляющих сигналов на исполнительные устройства. Для приема информации служат датчики неэлектрических величин. Таким образом, контролируется температура, механические перемещения, наличие или отсутствие предметов, давление, расходы жидкостей и газов, скорость вращения и т.п..

Датчики информируют о состоянии внешней среды путем взаимодействия с ней и преобразования реакции на это взаимодействие в электрические сигналы. Существует множество явлений и эффектов, видов преобразования свойств и энергии, которые можно использовать для создания датчиков. При классификации датчиков в качестве основы часто используется принцип их действия, который, в свою очередь, может базироваться на физических или химических явлениях и свойствах.

С температурой мы сталкиваемся ежедневно, и это наиболее знакомая нам физическая величина. Среди прочих датчиков температурные отличаются особенно большим разнообразием типов и являются одним из самых распространенных.

Стеклянный термометр со столбиком ртути известен с давних времен и широко используется в наши дни. Терморезисторы сопротивления, которых изменяется под влиянием температуры, используются довольно часто в разнообразных устройствах благодаря сравнительно малой стоимости датчиков данного типа. Существует три вида терморезисторов: с отрицательной характеристикой (их сопротивление уменьшается с повышением температуры), С положительной характеристикой (с повышением температуры сопротивление увеличивается) и с критичной характеристикой (сопротивление увеличивается при пороговом значении температуры). Обычно сопротивление под влиянием температуры изменяется довольно резко. Для расширения линейного участка этого изменения параллельно и последовательно терморезистору присоединяются резисторы.

Термопары особенно широко применяются в области измерений. В них используется эффект Зеебека: в спае из разнородных металлов возникает ЭДС, приблизительно пропорциональная разности температур между самим спаем и его выводами. Диапазон измеряемых термопарой температур зависит от применяемых металлов. В термочувствительных ферритах и конденсаторах используется влияние температуры соответственно на магнитную и диэлектрическую проницаемость, начиная с некоторого значения, которое называется температурой Кюри и для конкретного датчика зависит от применяемых в нем материалов. Термочувствительные диоды и тиристоры относятся к полупроводниковым датчикам, в которых используется температурная зависимость проводимости p-n-перехода (обычно на кристалле кремния). В последнее время практическое применение нашли так называемые интегральные температурные датчики, представляющие собой термочувствительный диод на одном кристалле с периферийными схемами, например усилителем и др.

Подобно температурным оптические датчики отличаются большим разнообразием и массовостью применения по принципу оптико-электрического преобразования эти датчики можно разделить на четыре типа: на основе эффектов фотоэлектронной эмиссии, фотопроводимости, фотогальванического и пироэлектрических. Фотогальваническая эмиссия, или внешний фотоэффект,0 - это испускание электронов при падении света физическое тело. Для вылета электронов из физического тела им необходимо преодолеть энергетический барьер. Поскольку энергия фотоэлектронов пропорциональна1hc/л0 (где1h0 - постоянная Планка,1с0 - скорость света,1л0 - длина волны света), то, чем короче длина волны облучающего света, тем больше энергия электронов и легче преодоление ими указанного барьера.

Эффект фотопроводимости, или внутренний фотоэффект,0 - это изменение электрического сопротивления физического тела при облучении его светом. Среди материалов, обладающих эффектом фотопроводимости,- ZnS, CdS, GaAs, Ge, PbS и др. Максимум спектральной чувствительности CdS приходится приблизительно на свет с длиной волны 500-550 нм, что соответствует приблизительно середине зоны чувствительности человеческого зрения. Оптические датчики, работающие на эффекте фотопроводимости, рекомендуется использовать в экспонометрах фото и кинокамер, в автоматических выключателях и регуляторах света, обнаружителях пламени и др. Недостаток этих датчиков - замедленная реакция (50 мс и более).

Фотогальванический эффект 0 заключается в возникновении ЭДС на выводах p-n-перехода в облучаемом светом полупроводнике. Под воздействием света внутри p-n-перехода появляются свободные электроны и дырки и генерируется ЭДС. Типичные датчики, работающие по этому принципу, - фотодиоды, фототранзисторы. Такой же принцип действия имеет оптико-электрическая часть двухмерных твердотельных датчиков изображения, например датчиков на приборах с зарядовой связью (ПЗС-датчиков). В качестве материала подложки для фотогальванических датчиков чаще всего используется кремний. Сравнительно высокая скорость отклика и большая чувствительность в диапазоне от ближней инфракрасной (ИК) зоны до видимого света обеспечивает этим датчикам широкую сферу применения. Пироэлектрические эффекты 0 - это явления, при которых на поверхности физического тела вследствие изменений поверхностного температурного "рельефа" возникают электрические заряды, соответствующие этим изменениям. Среди материалов, обладающих подобными свойствами и множество других так называемых пироэлектрических материалов. В корпус датчика встроен полевой транзистор, позволяющий преобразовывать высокое полное сопротивление пиротехнического элемента с его оптимальными электрическими зарядами в более низкое и оптимальное выходное сопротивление датчика. Из датчиков этого типа наиболее часто используются ИК-датчики. Среди оптических датчиков мало найдется таких, которые обладали бы достаточной чувствительностью во всем световом диапазоне.

Большинство датчиков имеет оптимальную чувствительность в довольно узкой зоне ультрафиолетовой, или видимой, или инфракрасной части спектра. Основные преимущества перед датчиками других типов:

2. Возможность (при соответствующей оптике) измерения объектов как с чрезвычайно большими, так и с необычайно малыми размерами.

4. Удобство применения интегральной технологии (оптические датчики, как правило, твердотельные и полупроводниковые), обеспечивающей малые размеры и большой срок службы.

5. Обширная сфера использования: измерение различных физических величин, определение формы, распознавания объектов и т.д. Наряду с преимуществами оптические датчики обладают и некоторыми недостатками, а именно чувствительны к загрязнению, подвержены влиянию постороннего света, светового фона, а также температуры(при полупроводниковой основе).

В датчиках давления всегда испытывается большая потребность, и они находят весьма широкое применение.

Принцип регистрации давления служит основой для многих других типов датчиков, например датчиков массы, положения, уровня и расхода жидкости и др. В подавляющем большинстве случаев индикация давления осуществляется благодаря деформации упругих тел, например диафрагмы, трубки Прудона, гофрированной мембраны. Такие датчики имеют достаточную прочность, малую стоимость, но в них затруднено получение электрических сигналов. Потенциалометрические (реостатные), емкостные, индукционные, магнитнострикционные, ультразвуковые датчики давления имеют на выходе электрический сигнал, но сравнительно сложны в изготовлении.

В настоящее время в качестве датчиков давления все шире используются тензометры. Особенно перспективными представляются полкпроводниковые тензометры диффузионного типа. Диффузионные тензометры на кремниевой подложке обладают высокой чувствительностью, малыми размерами и легко интегрируются с периферийными схемами. Путем травления по тонкопленочной технологии на поверхности кристалла кремния с 1 n 0-продимостью формируется круглая диафрагма. На краях диафрагмы методом диффузии наносятся пленочные резисторы, имеющие 1p 0-проводимость. Если к диафрагме прикладывается давление, то сопротивление одних резисторов увеличивается, а других - уменьшается.

Выходной сигнал датчика формируется с помощью мостовой схемы, в которою входят эти резисторы. Полупроводниковые датчики давления диффузионного типа, подобные вышеописанному, широко используются в автомобильной электронике, во всевозможных компрессорах. Основные проблемы - это температурная зависимость, неустойчивость к внешней среде и срок службы.

Влажность - физический параметр, с которым, как и с температурой, человек сталкивается с самых древних времен; однако надежных датчиков не было в течение длительного периода. Чаще всего для подобных датчиков использовались человеческий или конский волос, удлиняющиеся или укорачивающиеся при изменении влажности. В настоящее время для определения влажности используется полимерная пленка, покрытая хлористым литием, набухающим от влаги. Однако датчики на этой основе обладают гистерезисом, нестабильностью характеристик во времени и узким диапазоном измерения. Более современными являются датчики, в которых используются керамика и твердые электролиты. В них устранены вышеперечисленные недостатки. Одна из сфер применения датчиков влажности - разнообразные регуляторы атмосферы. Газовые датчики широко используются на производственных предприятиях для обнаружения разного рода вредных газов, а в домашних помещениях - для обнаружения утечки горючего газа. Во многих случаях требуется обнаруживать определенные виды газа и желательно иметь газовые датчики, обладающие избирательной характеристикой относительно газовой среды. Однако реакция на другие газовые компоненты затрудняет создание избирательных газовых датчиков, обладающих высокой чувствительностью и надежностью. Газовые датчики могут быть выполнены на основе МОП-транзисторов, гальванических элементов, твердых электролитов с использованием явлений катализа, интерференции, поглощения инфракрасных лучей и т.д. Для регистрации утечки бытового газа, например сжиженного природного или горючего газа типа пропан, используется главным образом полупроводниковая керамика, в частности , или устройства, работающие по принципу каталитического горения. При использовании датчиков газа и влажности для регистрации состояния различных сред, в том числе и агрессивных, часто возникает проблема долговечности.

Главной особенностью магнитных датчиков, как и оптических, является быстродействие и возможность обнаружения и измерения бесконтактным способом, но в отличие от оптических этот вид датчиков не чувствителен к загрязнению. Однако в силу характера магнитных явлений эффективная работа этих датчиков в значительной мере зависит от такого параметра, как расстояние, и обычно для магнитных датчиков необходима достаточная близость к воздействующему магнитному полю.

Среди магнитных датчиков хорошо известны датчики Холла. В настоящее время они применяются в качестве дискретных элементов, но быстро расширяется применение элементов Холла в виде ИС, выполненных на кремниевой подложке. Подобные ИС наилучшим образом отвечают современным требованиям к датчикам. Магниторезистивные полупроводниковые элементы имеют давнюю историю развития. Сейчас снова оживились исследования и разработки магниторезистивных датчиков, в которых используется ферромагнетики. Недостатком этих датчиков является узкий динамический диапазон обнаруживаемых изменений магнитного поля. Однако высокая чувствительность, а также возможность создания многоэлементных датчиков в виде ИС путем напыления, т. е. технологичность их производства, составляют несомненные преимущества.

До определенного момента эта форма дат­чика позволяет измерять мгновенную скорость в точках на окружности и, соот­ветственно, регистрировать очень мелкие угловые доли.

Примерами относительной частоты враще­ния являются частота вращения коленчатого или распределительного вала двигателя, частота вращения кулачкового вала топлив­ного насоса высокого давления дизеля, ча­стота вращения колес автомобиля (ABS, TCS, ESP). Измерения в основном выполняются с помощью системы инкрементных датчиков, состоящей из шестерни и датчика частоты вращения.

Формы датчиков скорости

Требования к новым датчикам скорости

Что такое датчик частоты вращения? как устроен, где применяется?

Во многих отношениях более ранние тра­диционные датчики индуктивного типа по­казывают очень неудовлетворительные ре­зультаты. Они выдают амплитуду, зависимую от частоты вращения, и поэтому непригодны для низких оборотов, допускают лишь от­носительно небольшие допуски воздушного зазора, и большей частью неспособны отли­чить колебания зазора от импульсов частоты вращения. По крайней мере, конец датчика- из-за своей близости к тормозу (в случае с датчиками скорости вращения колес), дол­жен быть стойким к высоким температурам. Эти недостатки находятся позади дополни­тельных функций, на которые нацелено но­вое поколение датчиков:

  • Статическое определение (т.е. при нуле­вой скорости: сверхмалые обороты колен­чатого вала или частота вращения колес);
  • Эффективное измерение в больших зазорах (не совмещенный монтаж с зазорами> 0);
  • Небольшой размер;
  • Эффективная работа независимо от колебаний зазора;
  • Термостойкость до 200 °С;
  • Определение направления (опция для системы навигации);
  • Определение опорной метки (зажигание).

Магнитостатические датчики (датчики Холла, магниторезисторы, AMR) очень хорошо отвечают первым двум требованиям. И, как правило, они также обеспечивают соответствие второму и третьему требованиям.

Роторы

Ротор имеет ключевое значение для измере­ния скорости вращения; однако он обычно поставляется автопроизводителем, в то время как сам датчик приходит от постав­щика. До недавних пор почти исключительно использовались магнитнопассивные роторы, состоящие из магнитомягкого материала, обычно железа. Они дешевле магнитотвер­дых полюсных колес и проще в обращении, поскольку не намагничиваются, и нет опас­ности взаимного намагничивания (например, во время хранения). Как правило, при оди­наковых инкрементной ширине и выходном сигнале, внутренний магнетизм полюсного колеса (полюсное колесо определяется как магнитноактивный ротор) допускает значи­тельно больший зазор.

О справочнике

Что такое датчик оборотов и зачем он нужен?

Датчик оборотов предусмотрен в устройстве мотора для выполнения функции синхронизирования системы зажигания и впрыска топлива. Нередко этот измеритель еще называют измерителем частоты вращения. Датчик оборотов передает нужную информацию в электрический блок, а также данные о том, какие вращения поддерживает коленчатый вал в конкретный момент. Данный измеритель считается важнейшим механизмом автомобиля, поскольку именно от него зависит взаимодействие большинства систем. Он помогает обеспечить корректное функционирование всего транспортного средства. Особые сигналы обрабатываются ЭБУ и посылаются в измеритель для того, чтобы выяснить несколько важных моментов. Это количество впрыскиваемого топлива в данный момент, сам момент впрыска и время для активации клапана адсорбера, а также момент зажигания и угол поворота распределительного вала. Ну и понятное дело, для определения неисправности и проверки прибора, его для начала необходимо найти в автомобиле.

Что такое датчик частоты вращения? как устроен, где применяется?

Современные датчики скорости

Гоадиентные датчики

Содержат постоянный магнит, полюс ко­торого обращен к зубчатому колесу. Его поверхность гомогенезирована тонкой ферромагнитной пластиной, на которой расположены два гальваномагнитных эле­мента на расстоянии примерно половины зубчатого интервала. Таким образом, один из элементов всегда находится напротив межзубного промежутка, а другой — напротив зуба. Измеряется различие в напряженности поля в двух смежных местоположениях на окружности. Выходной сигнал приблизи­тельно пропорционален отклонению силы поля как функции угла на окружности, поэ­тому полярность не зависит от зазора.

Тангенциальные датчики

При использовании интегрированного в подшипник датчика частоты вращения коленчатого вала, на общей рамке с вы­водами устанавливаются тонкопленочный анизотропный магниторезистивный датчик (AMR-датчик) и монолитная интегральная схема, производящая вычисления. С целью экономии пространства и защиты от влияния температуры, интегральная схема устанавли­вается под углом 90°.

Где располагается датчик частоты вращения?

Индукционный измеритель или датчик оборотов в основном располагается над маркерным диском транспортного средства. В свою очередь этот элемент может находится либо на маховике, либо на коленвале внутри блока цилиндров, либо спереди моторного отсека на коленвале. Очень часто небольшая кривизна зубцов маховика или наличие маленького скола могут привести к нарушениям в работе системы зажигания. Тогда силовой агрегат не сможет работать на повышенных частотах вращения и будет происходить хаотичное искрообразование. Кроме того, на некоторых автомобилях этот датчик может быть заменен датчиком Холла. Это устройство способно передавать в главный блок управления сигнал о фазах механизма газораспределения, а также обороты мотора. Если это так, то прибор будет расположен у распределительного вала. Если измеритель частоты вращения выйдет из строя, автомобилист не сможет завести свое транспортное средство. И если после доскональной проверки систем зажигания и топлива существенных отклонений не будет выявлено, нужно обязательно проверить работоспособность самого датчика оборотов. Если же возникает так называемое плавающее вращение двигателя, то понадобится проверить сразу все варианты проблем. Ну а для своевременного обнаружения неполадок желательно повести диагностику автомобиля.

Что можно сделать при выходе из строя датчика оборотов, подробнее будет рассказано в этом видео:

Технические характеристики

Таблица 1 — Метрологический характеристики

Диапазон преобразований частот входного сигнала, Гц

Пределы допускаемой относительной погрешности преобразований частоты вращения, %

Таблица 2 — Основные технические характеристики

Рабочие условия эксплуатации

— температура окружающей среды, °С

Параметры электрического питания — напряжение постоянного тока, В

Потребляемая мощность, В • А, не более

Г абаритные размеры, мм, не более

— диаметр наружной резьбы метрический

— диаметр наружной резьбы дюймовый

М12, М14, М18, М22 5/8UNF

Масса, кг, не более

Средний срок службы, лет

Средняя наработка на отказ, ч

Примечание: 1) — только для исполнений А5S1

Индуктивные датчики скорости вращения

Что такое датчик частоты вращения? как устроен, где применяется?

Конструкция и принцип действия Датчик монтируется прямо напротив ферромагнитного зубчатого колеса (поз. 7) с определенным воздушным зазором. Он имеет сердечник из магнитомягкой стали (полюсный контактный штифт, поз. 4) с обмоткой (5). Полюсный контактный штифт соединен с постоянным магнитом (1). Магнитное поле распространяется через полюсный контактный штифт, проходя в зубчатое колесо. Магнитный поток, проходящий через катушку, зависит от того, попадает ли расположение датчика напротив впадины или зуба колеса. Зубец соединяет в пучок магнитный поток рассеяния, исходящий от магнита. Через катушку происходит усиление сетевого потока. Впадина, наоборот, ослабляет магнитный поток. Эти изменения магнитного потока при вращении зубчатого колеса индуцируют в катушке синусоидальное выходное напряжение, пропорциональное скорости изменения и числу оборотов двигателя. Амплитуда переменного напряжения интенсивно возрастает с увеличением числа оборотов (несколько мВ… > 100 В). Достаточная амплитуда присутствует, начиная с минимального числа оборотов от 30 в минуту.

Читайте также: