Датчик температуры lm335 реферат

Обновлено: 05.07.2024

Начнём с того, что мне как-то понадобился для одного проекта электронный термометр - ртутный казался громоздким и неудобным. Сходу придумалась схема, использовавшая терморезистор (а то и просто резистор, а в одном случае использовалась вообще галогенная лампочка), с усилителем, компаратором и ещё рядом хитростей, чтобы повысить точность. Получалась всё более и более навороченная схема, которая, конечно, после n-ного по счёту изменения не заработала, и разбираться желания уже не было, да и китайский термометр появился в процессе, и разработка заглохла за ненадобностью.

Но одной функции всё-таки не хватало. Термометр бывает полезен, когда надо не перегреть что-нибудь (например, воду в чайнике - для некоторых целей она не должна кипеть). Готового решения нет, значит надо что-то сделать.

Но только наученный горьким опытом (с электроникой всегда не везло, и до сих пор мне всегда удавались только очень простые конструкции), решил, что сделаю так, чтобы было просто и надёжно. И с неба свалилась микросхема LM35! Благодаря этому чуду задача упрощается до смешного.

Давайте покажу вам схему, которая обрадует любого новичка:

принципиальная схема

Оказалось, что к микросхеме не нужен даже компаратор.

Помню, когда сам читаешь чужую статью, вечно хочется спросить: а это зачем? а это? Теперь сам попытаюсь сделать так, чтобы никаких вопросов не возникало. Обо всё по порядку:

1. Микросхема LM35 (у неё есть несколько аналогов) специально создана для измерения температуры. Всё, что нужно - это подключить 1 и 3 ногу к плюсу и минусу питания соответственно, и измерить напряжение на среднем выводе. Оно составляет 10 милливольт на каждый градус Цельсия температуры корпуса микросхемы (она сама выглядит как транзистор, кстати). Значит, если там напряжение 230мВ, то температура 23°С.

В даташите про неё расписано ещё много хорошего: и потребляет она 130мкА, и выход у неё низкоомный, и точность в полградуса, и собственный перегрев порядка 0,1°С. В общем, круче некуда. Единственное - страдает она от слишком высоких температур - 150°С максимум.

2. Казалось бы, дальше должна идти микросхема компаратора, которая сравнит это напряжение с тем, которое мы выставим, например, потенциометром? Да, но можно обойтись и без компаратора. Напряжение открывания полупроводниковых приборов - 0,6В, надо это использовать.

3. Лезем в даташит на самый дешёвый транзистор - BC847 и видим, что в очень узком диапазоне напряжения база-эмиттер коллекторный ток сильно меняется. В качестве нагрузки, которая и будет сигнализировать об открытии транзистора, возьмём пьезоэлемент - зуммер. Приятным сюрпризом оказывается то, что от батарейки 9В от потребляет около 5мА, а при небольшом понижении тока перестаёт звучать. То есть включается достаточно резко.

4. Нужно как-то настраивать температуру срабатывания. Поставим переменный резистор, который будет делить напряжение. Движок вверх (по схеме) - напряжение передаётся напрямую, то есть срабатывание будет чуть выше 60 градусов. Движок вниз - коэффициент передачи 0,5, для срабатывания при максимально допустимой температуре в 150 градусов. Постоянный резистор на 10К нужен как раз для того, чтобы при полностью опущенном движке срабатывание всё-таки происходило.

5. Собираем на макетной плате - работает. Можно померить ток базы, необходимый для срабатывания, померить рабочий ток зуммера и обнаружить, что сделать его тише, включив последовательно ему резистор, не получится - он просто перестаёт звучать. Возникает другой вопрос: а что, если при коэффициенте передачи, равном 1, датчик нагреется до 150 градусов и выдаст, соответственно, 1,5В прямо на базу транзистора? Оказалось, что ничего страшного в этом нет - ток базы транзистора может с лёгкостью превышать 10мА, а LM35 выдаёт ток короткого замыкания в 2-3мА. Значит, даже при самом лютом перегреве транзистору ничего не будет.

Значит пора делать печатную плату. Файл формата Sprint-layout есть в приложениях. Вот так оно выглядит на этапе запайки smd-компонентов: (внимание, SMD резистор на фото - 1кОм, под имевшийся у меня подстроечник. Если следовать схеме, то маркировка должна быть 103, то есть 10кОм. В принципе, номиналы можно менять в широких пределах, чем меньше сопротивления - тем больше потребляемый ток в "спящем" режиме, но тем точнее температура срабатывания к расчётной


Верхние три отверстия - под разъём подключения датчика. Три здоровых - под переменный резистор. Ещё две - под питание. А что за три оставшихся, в ряд выстроившихся? Я, честно говоря, не знаю, как это назвать. Это то ли аналоговый выход, то ли отладочный порт, оба названия в такой схеме звучат одинаково смешно. Но факт в том, что сюда можно подпаять разъём и смотреть напряжение на выходе и напряжение на базе транзистора. Всё-таки, втыкать провода в разъём удобнее, чем подпаиваться каждый раз, если что-то понадобится посмотреть.

Вот такой резистор будет использоваться. Обратите внимание, что ножки у него немного подточены и загнуты так, чтобы проходить в нужные отверстия. Есть, правда, проблема, что они слишком короткие для таких извращений и не достают до обратной поверхности платы. Пришлось потом тонкой проволочкой наращивать.


После запайки остальных компонентов выглядит примерно так:



Вот и всё. Разъём для термометра таков, что в него можно напрямую вставить 3 ноги микросхемы (Vcc, то есть плюс питания, то есть левая нога, если смотреть на маркировку, должна быть со стороны зумера), погреть её на свечке (осторожно!), да посмотреть, как меняется выходное напряжение и в какую сторону крутить резистор. Для этого второй разъём как раз и нужен. Температура срабатывания получается немного выше ожидаемой из-за ненулевого тока базы транзистора, но это не страшно.

Для полного счастья датчик надо сделать выводным. Припаиваем 3 провода к датчику и штекер на другой конец. Я ещё залил ноги датчика термоклеем и загнал всё в термоусадку. Получилось вот так:

датчик на проводе

В таком виде его можно прямо окунать в воду. Если переменный резистор выставить так, чтобы зуммер срабатывал при температуре 90°С, то можно больше никогда не бояться садиться за компьютер, грея что-то на плите. А если на 110, то он будет срабатывать на полное выкипание воды.

Общее описание датчиков температуры LM135, LM235, LM335, LM135A, LM235A, LM335A, LM335Z, LM335AZ, LM335M, LM135H, LM235H, LM335H, LM135AH, LM235AH, LM335AH

Датчики LM135, LM235, LM335 с разными буквенными индексами представляют собой интегральные параллельные стабилизаторы напряжения с линейной зависимостью напряжения стабилизации от температуры. То есть, если включить такой датчик, как обыкновенный стабилитрон, то напряжение на нем будет пропорционально температуре среды, в которой он находится. При температуре 25 грЦ напряжение составляет около 3V. Изменение температуры на один градус приводит к изменению напряжения на 10 mV.

Обозначение на схемах

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Честно говоря, устоявшегося обозначения для этих термодатчиков нет. Но я люблю такой вариант:

Применение термодатчиков LM135, LM235, LM335 (A, AZ, M, H, AH). Схемы

Типовые схемы

Описанное выше свойство позволяет строить схемы, основанные на том, что напряжение пропорционально температуре. Вот примеры таких схем:

(А) - Стандартное включение. Резистор R1 - в этой и последующих схемах - 6.8 кОм.

(Б) - Определение минимальной температуры. Применяется, например, для включения отопления при угрозе замерзания в одном из мест установки датчиков (под полом, в санузле, в гараже).

(В) - Определение средневзвешенной температуры. Веса определяются резисторами R2, R3, R4. Сопротивления этих резисторов лучше выбирать более 50 кОм.

(Г) - Термодатчики допускают подстройку. Для этого у них есть специальный вывод (подстройка). Схема включения с подстройкой.

(Д) - Определение максимальной температуры. Диоды - маломощные, например, детекторные. Резистор R2 - 100 кОм.

Термодатчики LM135, LM235, LM335 к схеме можно подключать довольно длинным экранированным проводом. Я подключал 10-метровым. Все работало отлично.

Используя эти датчики, натолкнулся на такой эффект. На них наблюдается высокочастотный шум. Возможно, это внешние помехи, но датчик их не гасит. Так что ставлю параллельно датчикам конденсаторы 0.1 - 1 мкФ, можно электролитические.

Законченные устройства

Цоколевка

Цоколевка LM335Z, LM335AZ

Вид со стороны выводов. Транзисторный пластмассовый корпус, такой, как, например, у КТ502. (TO-92).

Цоколевка LM335M

Вид сверху. Корпус SO-8.

Цоколевка LM135H, LM135H-MIL, LM235H, LM335H, LM135AH, LM235AH, LM335AH

Вид со стороны выводов. Транзисторный металлический корпус TO-46. Корпус соединен анодом (на него подается минус, как у всех стабилитронов)

Параметры

Температура измерения

LM135, LM135A - от -55 грЦ до 150 грЦ

LM235, LM235A - от -40 грЦ до 125 грЦ

LM335, LM335A - от -40 грЦ до 100 грЦ

Напряжение при температуре 25 грЦ - около 3V.

Зависимость напряжения от температуры - линейная, положительная. Напряжение возрастает на 10 мВ при росте температуры на 1 грЦ.

Рабочий ток

от 400 мкА до 5 мА

Здравствуйте! Как можно использовать датчик LМ335Z в пластмассовом корпусе для выключения силового питающего устройства (инвертора, или сварочника) при перегреве транзистора на радиаторе? Клеить (прижать) датчик к корпусу транзистора? По схеме: как можно использовать Ваш первый вариант (А) включения датчика для подачи сигнала на шим контроллер с целью прерывания выходного Читать ответ.

Про датчик LM 335 в термореле ВМ707F. При включении лампочки освещения холодильника или выключении вентилятора No Frost сбрасывается (выключается) реле. Это происходит когда температура в камере холодильника падает ниже границы верхнего порога т.е. на датчик действует коммутационные скачки тока. Также, позже заметил, реле быстро выключается и восстанавливается, когда темпер Читать ответ.

Изготовление дросселя, катушки индуктивности своими руками, самому, са.
Расчет и изготовление катушки индуктивности, дросселя. Типовые электронные схемы.

Составной транзистор. Схемы Дарлингтона, Шиклаи. Расчет, применение.
Составной транзистор - схемы, применение, расчет параметров. Схемы Дарлингтона, .

Транзисторный аналог тиристора (динистора / тринистора). Имитатор, эму.
Схема аналога тиристора (диодного и триодного) на транзисторах. Расчет параметро.

Оптроны, оптопары тиристорные, динисторные. MOC3061, MOC3062, MOC3063.
Описание и параметры MOC3061, MOC3062, MOC3063. Применение в тиристорных схемах .

Вариант использования терморезистора мы мельком рассмотрели здесь.
Сейчас же рассмотрим, как работать с аналоговыми датчиками температуры, на примере LM335.

LM335 – это недорогой (~ 40 рублей) температурный чувствительный элемент с диапазоном от -40 °C до +100°C и точностью в 1°C.


Даташит (datasheet – документация на элемент) на LM335 можно посмотреть здесь

Фактически, LM335 — это стабилитрон с нормированным Температурным Коэффициентом Напряжения (ТКU =10 мВ/K).

Т.е. изменение температуры датчика на 1 градус ведёт к изменению напряжения на 10mV.


Схема включения (соответствует типовой схеме включения стабилитрона):

Задавая ток через датчик в диапазоне от 0.45mA до 5mA (резистором R1), получаем напряжение на датчике, которое в десятках mV представляет абсолютную температуру в градусах Кельвина.

Как видим, используются только вторая и третья ножки датчика (если повернуть датчик к себе плоской стороной – то нумерация ножек будет идти слева-направо)

То есть, схему можно представить так:

Сопоставим напряжение на датчике и температуру, припоминая, что
0С = 273.15К
На датчике, при этом будет напряжение 2.7315V

-40С = 233.15К
на датчике будет 2.3315V
+100С = 373.15К
на датчике будет 3.7315V

Получается – нам нужно только снять это напряжение на аналоговом входе (например, analog input 0) 🙂
Однако, функция analogRead, возвращает значение от 0 до 1023, причём 1023 соответствует величине Опорного Напряжения, задаваемого функцией analogReference и по умолчанию, составляющего 5V.
Т.о., чтобы узнать какое напряжение поступило к нам на вход – нужно выполнить простое преобразование:

, где val – величина, полученная от analogRead
Далее остаётся только перевести это напряжение в градусы, а потом привести из градусов Кельвина в более привычные градусы Цельсия:

в температуру переводим – просто умножая на 100

В последнем столбце вывода получаем заветную температуру в градусах Цельсия 🙂

Датчик температуры LM35 представляет собой интегральную схему предназначенную для измерения температуры, используется в устройствах, так или иначе связанных с контролем температуры. LM35 является недорогой, надежной и достаточно точной микросхемой (погрешность измерения составляет около ± 0,5º С). Применение датчика LM35 намного предпочтительнее, чем использование термистора, из-за точности измерения.

Датчик температуры LM35 — описание

datchik-temperatury-lm35-opisanie-sxema-podklyucheniya-datasheet-1

Как вы можете видеть на приведенном выше рисунке, LM35 имеет три вывода, два из которых предназначены для питания датчика, а третий является выходом. Для получения точных результатов LM35 не требует какой-либо калибровки.

Достоинства датчика LM35: линейная зависимость выходного сигнала (температура/напряжение), низкое выходное сопротивление, встроенная схема калибровки. Датчик может работать в диапазоне от -55 º до 150 º С.

Как было сказано ранее, аналоговый сигнал на выходе прямо пропорционален изменению температуры в градусах Цельсия, и на каждый градус приходится 10мВ. Ток потребления датчика составляет около 60 мкА, и из-за этого саморазогрев LM35 составляет всего 0,1 º С.

Параметры LM35

datchik-temperatury-lm35-opisanie-sxema-podklyucheniya-datasheet-2

Корпус и цоколевка датчика LM35

В основном датчик LM35 выпускается в корпусе TO-92. Но он так же может быть в корпусе TO-220 или TO-46. Их характеристики одинаковы, различие только в конкретных областях применения.

datchik-temperatury-lm35-opisanie-sxema-podklyucheniya-datasheet-3

Например, в отличие от корпуса TO-92, датчик в металлическом корпусе TO-46 может быть использован для контактного измерения температуры поверхности. Датчик в TO-92 используется в основном для измерения температуры воздуха.

Пример использования температурного датчика LM35

Пример применения LM35 можно продемонстрировать на простой схеме, которая путем переключения светодиодов, показывает превышение заданного порога температуры:

применения LM35

В данной схеме операционный усилитель 741 используется в качестве компаратора. ОУ сконфигурирован как неинвертирующий усилитель. Это означает, что, когда LM35 регистрирует температуру выше установленного уровня, на выходе ОУ появляется положительный уровень и загорается красный светодиод, а когда температура падает ниже заданного уровня, на 741 возникает отрицательный уровень напряжения, что приводит к загоранию зеленного светодиода. Переменным резистором R2 задается порог переключения.

Читайте также: