Цифровые способы передачи информации реферат

Обновлено: 30.06.2024

Примечания: 1. Если все абоненты компьютерной сети ведут передачу данных по каналу на одной частоте, такой канал называется узкополосным (пропускает одну частоту).

2. Если каждый абонент работает на своей собственной частоте по одному ка­налу, то такой канал называется широкополосным (пропускает много частот). Использование широкополосных каналов позволяет экономить на их количест­ве, но усложняет процесс управления обменом данными.

При цифровом или узкополосном способе передачи (рис. 16) данные передаются в их естественном виде на единой частоте. Узкополосный способ позволяет передавать только цифровую информацию, обеспечивает в каждый данный момент времени возможность использования передающей среды только двумя пользователями и допускает нормальную работу только на ограниченном расстоянии (длина линии связи не более 1000 м). В то же время узкополосный способ передачи обеспечивает высокую скорость обмена данными — до 10 Мбит/с и позволяет создавать легко конфигурируемые вычислительные сети. Подавляющее число локальных вычислительных сетей использует узкополосную передачу.


Рис. 16. Цифровой способ передачи.

Аналоговый способ передачи цифровых данных обеспечивает широко­полосною передачу за счет использования в одном канале сигналов различных несущих частот.

При аналоговом способе передачи происходит управление параметрами сигнала несу­щей частоты для передачи по каналу связи цифровых данных.

Сигнал несущей частоты представляет собой гармоническое колебание, описываемое уравнением:

Передать цифровые данные по аналоговому каналу можно, управляя одним из пара­метров сигнала несущей частоты: амплитудой, частотой или фазой. Так как необходимо передавать данные в двоичном виде (последовательность единиц и нулей), то можно предложить следующие способы управления (модуляции): амплитудный, частотный, фазовый.

Частотная модуляция предусматривает передачу сигналов 0 и 1 на разной часто­те. При переходе от 0 к 1 и от 1 к 0 происходит изменение сигнала несущей частоты.

Наиболее сложной для понимания является фазовая модуляция. Суть ее в том, что при переходе от 0 к 1 и от 1 к 0 меняется фаза колебаний, т.е. их направление.

В сетях высокого уровня иерархии — глобальных и региональных используется также и широкополосная передача, которая предусматривает работу для каждого або­нента на своей частоте в пределах одного канала. Это обеспечивает взаимодействие боль­шого количества абонентов при высокой скорости передачи данных.

Широкополосная передача позволяет совмещать в одном канале передачу цифровых данных, изображения и звука, что является необходимым требованием современных систем мультимедиа.

Пример 5. Типичным аналоговым каналом является телефонный канал. Когда або­нент снимает трубку, то слышит равномерный звуковой сигнал — это и есть сигнал несущей частоты. Так как он лежит в диапазоне звуковых частот, то его называют то­нальным сигналом. Для передачи по телефонному каналу речи необходимо управлять сигналом несущей частоты — модулировать его. Воспринимаемые микрофоном звуки преобразуются в электрические сигналы, а те, в свою очередь, и модулируют сигнал несущей частоты. При передаче цифровой информации управление произво­дят информационные байты — последовательность единиц и нулей.

Аппаратные средства

Чтобы обеспечить передачу информации из ЭВМ в коммуникационную среду, необходимо согласовать сигналы внутреннего интерфейса ЭВМ с параметрами сигналов, передаваемых по каналам связи. При этом должно быть выполнено как физическое согласование (форма, амплитуда и длительность сигнала), так и кодовое.

Технические устройства, выполняющие функции сопряжения ЭВМ с каналами связи, называются адаптерами или сетевыми адаптерами. Один адаптер обеспечи­вает сопряжение с ЭВМ одного канала связи.

Кроме одноканальных адаптеров используются и многоканальные устройства — мультиплексоры передачи данных или просто мульти-плексоры.

Мультиплексор передачи данных — устройство сопряжения ЭВМ с несколькими каналами связи.

Мультиплексоры передачи данных использовались в системах телеобработки дан­ных — первом шаге на пути к созданию вычислительных сетей. В дальнейшем при появле­нии сетей со сложной конфигурацией и с большим количеством абонентских систем для реализации функций сопряжения стали применяться специальные связные процессоры.

Как уже говорилось ранее, для передачи цифровой информации по каналу связи необ­ходимо поток битов преобразовать в аналоговые сигналы, а при приеме информации из ка­нала связи в ЭВМ выполнить обратное действие — преобразовать аналоговые сигналы в поток битов, которые может обрабатывать ЭВМ. Такие преобразования выполняет специ­альное устройство — модем.

Модем — устройство, выполняющее модуляцию и демодуляцию информа­ционных сигналов при передаче их из ЭВМ в канал связи и при приеме в ЭВМ из канала связи.

Наиболее дорогим компонентом вычислительной сети является канал связи. Поэтому при построении ряда вычислительных сетей стараются сэкономить на каналах связи, ком­мутируя несколько внутренних каналов связи на один внешний. Для выполнения функций коммутации используются специальные устройства — концентраторы.

Концентратор — устройство, коммутирующее несколько каналов связи на один путем частотного разделения.

В ЛВС, где физическая передающая среда представляет собой кабель ограниченной длины, для увеличения протяженности сети используются специальные устройства — по­вторители.

Повторитель — устройство, обеспечивающее сохранение формы и ампли­туды сигнала при передаче его на большее, чем предусмотрено данным типом физической передающей среды, расстояние.

Существуют локальные и дистанционные повторители. Локальные повторители позволяют соединять фрагменты сетей, расположенные на расстоянии до 50 м, а дистан­ционные — до 2000 м.

Представление информации в виде цифровых данных не случайно выбрано в качестве основополагающего принципа работы компьютера. У аналоговых сигналов слишком многое зависит от интенсивности, а она постепенно уменьшается в процессе затухания. Другое дело-цифровые данные. Здесь всё просто: сигнал либо есть, либо его нет.

Цифровые данные по проводнику передаются путём смены текущего напряжения: нет напряжения-"0",есть напряжение-"1". Существует два способа передачи информации по физически передающей среде: цифровой и аналоговый.

При цифровом (узкополосном способе передачи) данные.

Передаются в их естественном виде на единой частоте. Он позволяет передавать только цифровую информацию, обеспечивает в каждый данный момент времени возможность использования передающей среды только двумя пользователями и допускает нормальную работу только на ограниченные расстояния. В то же время узкополосной способ передачи обеспечивает высокую скорость обмена данными - до 10 Мбит/с и позволяет создавать легко конфигурируемые вычислительные сети. Подавляющее число локальных вычислительных сетей использует узкополосную передачу.

Аналоговый способ передачи цифровых данных обеспечивает широкополосную передачу за счёт использования в одном канале сигналов различных несущих частот.

При аналоговом способе передачи происходит управление параметрами сигнала несущей частоты для передачи по каналу связи цифровых данных. Сигнал несущей частоты представляет собой гармоническое колебание, описываемое уравнением:

где Xmax -амплитуда колебаний; - частота; t -время; -начальная фаза колебаний.

Передать цифровые данные по аналоговому каналу можно, управляя одним из параметров сигнала несущей частоты: амплитудой, частотой или фазой. Так как необходимо передавать данные в двоичном виде, то можно предложить следующие способы управления: амплитудный, частотный, фазовый.

Амплитудная модуляция:"0"-отсутствие сигнала, то есть отсутствие колебаний несущей частоты;"1"-наличие сигнала, то есть наличие колебаний несущей частоты.

Частотная модуляция предусматривает передачу сигналов 0 и 1 на разной частоте. При переходе от 0 к 1 и от 1 к 0 происходит изменение сигнала несущей частоты.

Фазовая модуляция: при переходе от 0 к 1 и от 1 к 0 меняется фаза колебаний, то есть их направление.

Процесс записи и воспроизводства звука в компьютере в самых общих чертах выглядит следующим образом.

6. Способы записи аудиоинформации

Длительность звучания стандартного компакт-диска составляет 74 минуты. Структура информации на диске следующая. В начале диска располагается так называемая вводная зона. Здесь располагается различная специальная информация о формате диска, структуре и адресах звуковых фрагментов. За этой областью располагается небольшой зазор (около двух секунд) и начинается программная зона, содержащая в себе, собственно, звуковые данные. Выводная зона служит границей диска.

Информацию на диск в данном случае записывается как есть, то есть её помещают на 74 минуты. В этом случае получаем большой размер файлов. На обычном компакт-диске, например, частота дискретизации аудио составляет-441000 Гц, а значение сигнала описано 16 битами. Таким образом, на описание одной секунды аудио в формате CD-DA тратится 176400 байт(172 Кбайт), одной минуты-10 Мбайт.

Применение сжатия позволяет уменьшить размеры файлов. Есть два типа сжатия-с потерями качества и без потерь качества. При упоминании о сжатии аудио подразумевается сжатие с потерями качества. Любое сжатие информации приводит к ухудшению её качества. Однако в процессе эволюции человеческий слух научился адаптироваться к некоторым видам помех, не замечая их присутствия в принимаемой аудиоинформации.

6.3 Структура болванки CD-R

Прежде чем начать описание форматов записи, необходимо обрисовать саму структуру записываемого диска, чтобы понять, какие процессы происходят при его записи. Итак, в структуре CD-R диска можно выделить четыре основных слоя (пятый - изображение, нанесенное на поверхность диска), наносимых поэтапно. Изначально изготавливается пластмассовая основа диска - поликарбонат (Е), которая составляет основную часть CD-R и придает ему необходимую прочность и форму. Далее, на готовую пластмассовую форму наносится активный слой (D) /dye/. Именно этот слой позволяет осуществлять запись на диск и определяет его надежность и качество считывания информации в дальнейшем. На сегодняшний день широко используется два типа активного слоя: цианин и фталоцианин. Цианиновый краситель обладает сине-зеленым (цвет "морской волны") или насыщенно синим оттенком рабочей поверхности, фталоцианин, в большинстве случаев, практически бесцветен, с бледным оттенком салатового или золотистого цвета. Цианиновый краситель более терпим к предельным сочетаниям мощности чтения/записи, чем "золотой" фталоцианиновый, поэтому зачастую диски на основе цианинового слоя проще считывать на некоторых дисководах. Фталоцианин - несколько более современная разработка. Диски на основе этого активного слоя менее чувствительны к солнечному свету и ультрафиолетовому излучению, что способствует увеличению долговечности записанной информации и несколько более надежному хранению в неблагоприятных условиях. После того, как на поликарбонатовую заготовку был нанесен dye, диск покрывается специальным слоем светоотражающего материала (C). В обычных CD-ROM для этой цели применяется алюминий, в CD-R дисках же применяется чистое серебро, позволяющее добиться 65-80%-го коэффициента отражения. Завершающим этапом изготовления диска является нанесение защитного слоя (В), на который в дальнейшем возможно нанесение изображений (А). Наиболее распространенным и простым в изготовлении защитным слоем является специальный лак.

В проигрывателе имеется электродвигатель со следящей систе, мой, обеспечивающей точное считывание дорожки лазерным лучом и неизменную линейную скорость считывания. Поэтому скорость вращения диска непостоянна и изменяется от 500 об. / мин. для внутренней части диска, с которой начинается считывание, до 200 об. / мин. для внешней. Специальный оптико-электронный блок имеет устройства для стабилизации излучения лазера, автоматической фокусировки, слежения за дорожкой при биении диска и выбора треков диска для считывания.

Для считывания информации с CD–ROM используется полупроводниковый диод с фокусирующей и следящей оптической системой. Внутренняя поверхность диска, на которую кладут диск на подставку (в кассету) дисковода, находится не в фокусе оптической системы лазерного излучателя. Диаметр светового пятна от лазера, создающего сходящийся конус света, порядка 1 мм. Поэтому умеренные загрязнения нерабочей поверхности, например, пылинки на ней, отпечатки пальцев и даже небольшие царапины практически не влияют на воспроизведение.

На СD-R информация записывается при помощи CD рекодера. Энергия луча лазера поглощается органическим красителем болванки, вследствие чего он меняет свою отражательную способность. Иногда этот процесс называют "прожигом", что на самом деле не совсем точно отражает процесс формирования "питов" - участков слоя с ухудшенной прозрачностью. Считываются такие болванки немного хуже, чем обычные CD-ROM диски, из-за наличия дополнительного слоя, уменьшающего коэффициент отражения. Большое значение имеет и качество формирования "питов" на диске, что зависит как от свойств органического красителя, так и от самого CD рекордера. Когда лазерный луч высокой интенсивности фокусируется на этом слое, цвет красителя меняется, что, в свою очередь, ведет к изменению отражающей способности данной точки. Под воздействием луча стандартного лазера CD-ROM - с меньшей мощностью, чем записывающий луч CD-R, - изменившие цвет точки отражают меньше света, и это позволяет накопителю распознавать записанные данные. Процесс изменения цвета слоя красителя необратим, поэтому диски CD-R допускают только однократную запись. (Строго говоря, писать на CD-R можно и в несколько сеансов, но всякий раз начинать запись нужно на новом участке диска).

CD-RW, стандарт перезаписываемых CD-дисков, - это сокращение от CD-Rewritable, т.е. перезаписываемый CD. Разница между CD-RW и CD-R заключается в том, что диски CD-RW могут быть стерты и повторно записаны, в то время как на дисках CD-R возможна только однократная запись. В остальном, они используются так же, как и диски CD-R. Технология записи информации на CD-RW диски немного отличается от CD-R. Приводы CD-RW используют технологию изменения фазы. Вместо создания "пузырьков" и деформаций записываемого слоя красителя используется тонкого слоя материала, отражающая способность которого меняется при внешних воздействиях. Под влиянием лазерного луча умеренной мощности, которая называется мощностью записи (write power), этот слой нагревается, а при остывании его материал кристаллизуется. При нагревании лучом большей мощности (мощность стирания, или erase power) происходит переход материала в аморфное состояние. В кристаллическом состоянии слой лучше отражает свет, и накопитель получает возможность считывать данные. Для считывания данных в накопителях CD-RW используется лазерный луч, мощность которого (мощность чтения, или read power) меньше, чем у записывающих и стирающих лучей.

Список используемых источников

1. Новейший самоучитель работы на компьютере под редакцией С. Симоновича, Москва, 1999, 656 с.

4. Популярная медицинская энциклопедия главный редактор Б.В. Петровский-Москва,"Советская энциклопедия", 1984, 704 с.

5. Энциклопедический словарь юного физика-Москва, 1984, 352 с.

6. Н.Е. Ковалёв, Л.Д. Шевчук, О.И. Щуренко Биология для подготовительных отделений медицинских институтов-Москва, "Высшая школа", 1986, 384 с.

7. Кинтуель Т. "Руководство программиста по работе со звуком": Перевод с англ. - Москва: ДМК, 2000.

8. Секунов Н.Ю. "Обработка звука на РС: Наиболее полное руководство в подлиннике ". - Санкт-Петербург, 2001.

Научный руководитель: Сергей Семенович Гарманов, полковник, к. воен. н.

Оглавление

Аналоговый сигнал 7

Амплитудная модуляция 7

Частотная модуляция 11

Фазовая модуляция 12

Цифровой сигнал 14

Аналогово-цифровое преобразование 14

Цифровая модуляция (манипуляция) 17

Импульсная модуляция 18

Список использованной литературы 21

Введение

В данном реферате рассматривается вопрос аналогового и цифрового способов передачи информации. В частности, говорится о разнице данных способов, какие существуют преимущества и недостатки обоих методов, их историческое развитие, методы получения и передачи сигналов обоих типов.

Под передачей информации понимается не только разговор между людьми, а также обмен информацией между оборудованием, объединенным между собой, например, компьютеры, объединенные в сеть, телевидение и т.д.

Также, надо отметить, что термины аналоговый и цифровой способы передачи информации применяются преимущественно к электросвязи.

Электросвязь

Для начала стоит отметить, что электросвязь — это способ передачи информации посредством электромагнитных сигналов. Например, ток по металлическому проводнику или излучение в оптическом или радио диапазонах.

Основными первичными сигналами электросвязи являются: телефонный, звукового вещания, факсимильный, телевизионный, телеграфный.

В широком смысле электросвязь можно классифицировать в зависимости от среды передачи на: электрическую, оптическую и радиосвязь.

Радиосвязь

В свою очередь радиосвязь можно классифицировать по длине волны, а также по применению на:

Сверхдлинные волны — радиоволны с длиной волны свыше 10 км. Они легко огибают Землю, слабо поглощаются земной поверхностью, проникают вглубь морской воды до 20м, в связи с этим применяются для связи с подводными лодками, причем, лодкам нет необходимости всплывать на данную глубину, достаточно выкинуть радио буй до этого уровня, хорошо отражаются от ионосферы.

Длинные волны – длина волны от 1000 м до 100 м, этот тип радиоволны обладает свойством огибать препятствия, используется для связи на большие расстояния. Также обладает слабой проникающей способностью.

Средние волны – радиоволны с длиной волны от 600 м до 190 м. Они хорошо отражаются от ионосферы, находящейся на расстоянии 100-450 км над поверхностью земли. Особенность этих волн в том, что в дневное время они поглощаются ионосферой и эффекта отражения не происходит. Этот эффект используется практически, для связи, обычно на несколько сотен километров в ночное время.

Короткие волны – радиоволны с длинной волны от 100 до 10м. Отражаются от ионосферы с малыми потерями. Поэтому, путём многократных отражений от ионосферы и поверхности Земли, они могут распространяться на большие расстояния. Короткие волны используются для радиовещания, а также для любительской и профессиональной радиосвязи. Качество приёма при этом зависит от различных процессов в ионосфере, связанных с уровнем солнечной активности, временем года и временем суток. Передатчиков большой мощности для этого не требуется. Для связи между наземными станциями и космическими аппаратами они непригодны, так как не проходят сквозь ионосферу.

Ультракороткие Волны – радиоволны с длинной волны от 10 до 1 м. Эти волны могут огибать препятствия размером в несколько метров, а также имеют хорошую проникающую способность. За счет таких свойств, этот диапазон широко используется для радио трансляций. Недостатком является их сравнительно быстрое затухание при встрече с препятствиями. Т.е. основное их требование – прямая видимость на протяжении линии связи.

Высокие частоты – длина волны от 1 до 0.1 м. Не огибают препятствия и имеют хорошую проникающую способность. Используются в сетях сотовой связи wi-fi сетях. Еще одной интересной особенностью волн этого диапазона, является то, что молекулы воды, способны максимально поглощать их энергию и преобразовывать ее в тепловую. Этот эффект используется в микроволновых печах.

Крайне высокие частоты – от 0.1 до 0.01м. Отражаются практически всеми препятствиями, свободно проникают через ионосферу. За счет своих свойств используются в космической связи.

Также можно разделить радиосвязь на:

Спутниковая связь — связь с применением космического ретранслятора(ов)

Радиорелейная связь — связь с применением наземного ретранслятора(ов)

Сотовая связь — радиорелейная связь с использованием сети наземных базовых станций

Аналоговый сигнал


Большинство сигналов можно разделить на две группы: аналоговые и цифровые, что в первом случае означает, что сигнал описывается непрерывной во времени функцией. Например, зависимость напряжения от времени или просто гармонический сигнал.

Амплитудная модуляция

Первичный сигнал, полученный, например, на выходе микрофона находится в достаточно низком диапазоне частот, в связи с чем, его затруднительно передать на большие расстояния без потерь и сильных помех. Решением этой проблемы является перенос первичного сигнала или в данном случае модулирующего (source) из низкочастотного диапазона в более высокий посредствам изменения высокочастотного несущего (carrier) сигнала в соответствии с законом изменения модулирующего. Описанный процесс называется модуляцией.

Для аналогово сигнала, как правило, выделяют следующие типы модуляции: амплитудная, частотная, фазовая.

Рисунок 3 – модель АМ

Рисунок 4 – модель АМ, через коэффициент модуляции

Рисунок 5 – моделирование АМ (перемодуляция)

Надо отметить, что амплитудная модуляция уязвима к помехам, т.к. на амплитуду несущего и модулирующего сигналов влияют, как правило, очень много факторов.

Частотная модуляция

Поскольку гармонический сигнал может менять не только амплитуду, но еще частоту и фазу, то, соответственно существуют еще частотная модуляция и фазовая модуляция.

В частотной модуляции, по аналогии с амплитудной, меняется частота несущего сигнала по закону изменения модулирующего. Причем частота меняется в диапазоне какого-то значения, т.е. отклоняется на некоторое значение от значения частоты несущей. Наибольшим отклонением частоты модулированного сигнала от частоты несущего называется девиацией. А отношение девиации к частоте модулирующего сигнала называется индексом модуляции.

Рисунок 6 – моделирование частотной модуляции

Частотная модуляция является более помехоустойчивой, что дает ей преимущества по сравнению с АМ.

Фазовая модуляция

Последним рассмотренным видом модуляции будет фазовая модуляция, по аналогии с предыдущими типами этот вид модуляции отличается тем, что фаза несущего сигнала изменяется в соответствии с законом изменения модулирующего сигнала.

В качестве демонстрации работы данного метода используется среда автоматизации инж. расчетов Mathcad, иллюстрации приведены на рисунке 7.

Рисунок 7 – Иллюстрация фазовой модуляции

Цифровой сигнал

Цифровым сигналом называется такой сигнал, который можно представить в виде последовательности дискретных(цифровых) значений. Сегодня наиболее распространены двоичные цифровые сигналы.

Важным свойством цифрового сигнала является его возможность к полной регенерации в ретрансляторе. С другой стороны, если сигнал приходит с большими помехами, восстановить его невозможно.

Аналогово-цифровое преобразование

Аналоговый сигнал можно привести к виду цифрового сигнала с помощью процесса аналогово-цифрового преобразования и соответственно с помощью аналогово-цифрового преобразователя (АЦП). Преобразование можно разделить на два этапа: дискретизация и квантование.

Дискретизацией называется измерение изменяющейся во времени величины (сигнала) с заданной частотой (частотой дискретизации), разбивая таким образом сигнал по временной составляющей, демонстрация на рисунке 8.

Рисунок 8 – дискретизация сигнала

Следует отметить, что согласно теореме Котельникова-Шеннонна для преобразования аналогового сигнала в цифровой без потерь необходимо, чтобы частота дискретизации была равна или была больше удвоенной максимальной частоты спектра сигнала.

Квантованием же называется разбиением дискретных значений на определенные уровни, путём округления. Количество уровней квантования также называют глубиной дискретизации или разрядностью. Как правило под разрядностью имеют ввиду степень двойки (квантование по уровню). На рисунке приведен пример квантования по уровню. В однородном квантовании диапазон делится на равные отрезки времени, разница между которыми - шаг квантования.

Рисунок 9 – Квантование

Сегодня существует множество различных типов АЦП и тщательное рассмотрение их всех выходит за рамки данного реферата, поэтому рассмотрим схему работы только параллельного АЦП, принципиальная схема которого приведена на рисунке 10.

Рисунок 10 – АЦП параллельного типа

Данный вид АЦП обладает большим быстродействием, но для большого количества разрядности необходимо слишком большое количество элементов. Сам АЦП состоит из последовательно соединенных резисторов, делящих опорное напряжение на уровни квантования, а входное напряжение сравнивается с помощью компараторов, которые сравнивают входное напряжение с опорным и выдают единицу на выходе, если Uвх > Uоп.

На рисунке 11 показана схема шифратора на 3-ех элементах или.

Рисунок 11- Шифратор 8 в 3

Цифровая модуляция (манипуляция)

Как и в аналоговой модуляции, в цифровой модуляции, как правило, выделяют три типа: амплитудный, частотный, фазовый. Но основным отличием цифровой модуляции является, как видно из рисунка 12 использование цифрового сигнала (принимает значения 0 или 1) в качестве модулирующего сигнала, а в качестве несущей используется аналоговый сигнал, параметры которого меняются в соответствии с изменением модулирующего.

Рисунок 12 – виды цифровой модуляции, а) модулирующий сигнал, б)АМ, в)ЧМ, г)ФМ.

Импульсная модуляция

Импульсная модуляция, в отличие от цифровой и аналоговой в качестве несущего сигнала используют импульсную последовательность, которая обладает в свою очередь такими характеристиками как: частота импульсов, ширина импульсов, амплитуда импульсов, временное следование. На основе изменения этих значений несущей и базируются методы импульсной модуляции, но есть некоторые, которые используют более сложные зависимости и говорить о них в данном реферате будет нецелесообразно. В качестве примера одной из манипуляций на рисунке 13 показана АИМ – аналогово-импульсная модуляция промоделированная в среде Mathcad.

Рисунок 14 – пример АИМ.

Заключение

В данном реферате были рассмотрены различные способы аналоговой и цифровой передачи информации, показаны преимущества и недостатки каждого, наглядно разобраны и промоделированы различные виды модуляций, также озвучены преимущества и недостатки каждого. Рассмотрены структуры системы передачи информации и её организация в виде сети.

Поэтому выбор способа передачи информации должен основываться на задаче, для решения которой этот способ рассматривается.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Передача, преобразование, хранение и использование информации в технике.

2. Преобразование информации ……………………………………………. 8

4. Использование информации ………………………………………………14

Жизнедеятельность любого организма или нормальное функционирование технического устройства связано с процессами управления, благодаря которым поддерживаются в необходимых пределах значения его параметров. Информатизация - это п роизводное от слова информация. Информатизация - это процесс получения, использования, хранения, передачи информации.

На протяжении ХХ века сменялось множество способов обмена информацией. Если в XIX веке носителем информации была бумага, а средством передачи была почтовая служба, то в ХХ веке информация стала передаваться гораздо быстрее с помощью телеграфа, в голосовой форме обмениваться информацией можно по телефону, радио и телевидение призваны только для получения человеком информации. В наши дни есть огромное количество способов передачи информации, причем в любой форме. Телефонные линии до сих пор остаются самым удобным средством передачи информации, но теперь ими обслуживаются не только телефоны, но и самое большое достижение процесса информатизации - Internet, содержащий большую часть информации со всей планеты.

Сейчас информатизация не мыслима без компьютера, так как он изначально создавался как средство обработки информации и только теперь он стал выполнять множество других функций: хранение, преобразование, создание и обмен информацией. Но прежде чем принять привычную сейчас форму компьютер претерпел три революции. Первая компьютерная революция свершилась в конце 50-х годов; ее суть можно описать двумя словами: компьютеры появились. Изобретены они были не менее чем за десять лет до этого, но именно в то время начали выпускаться серийные машины, эти машины перестали быть объектом исследований для ученых и диковинкой для всех остальных. Через полтора десятилетия после этого ни одна крупная организация не могла себе позволить обходиться без вычислительного центра. Если тогда заходила речь о компьютере, сразу же представлялись заполненные стойками машинные залы, в которых напряженно думают люди в белых халатах. И тут свершилась вторая революция. Практически одновременно несколько фирм обнаружили, что развитие техники достигло такого уровня, когда вокруг компьютера не обязательно воздвигать вычислительный центр, а сам он стал небольшим. Это были первые мини - ЭВМ. Но прошло еще десять с небольшим лет, и наступила третья революция - в конце 70-х возникли персональные компьютеры. За короткое время, пройдя путь от настольного калькулятора до полноценной небольшой машины, ПК заняли свои места на рабочих столах индивидуальных пользователей.

1. Передача информации

Развитие человека не было бы возможно без обмена информацией. С давних времен люди из поколения в поколение передавали свои знания, извещали об опасности или передавали важную и срочную информацию, обменивались сведениями. В процессе передачи информации обязательно участвуют источник и приемник информации: первый передает информацию, второй ее получает. Между ними действует канал передачи информации - канал связи.

Канал связи - совокупность технических устройств, обеспечивающих передачу сигнала от источника к получателю.

Деятельность людей всегда связана с передачей информации.

В процессе передачи информация может теряться и искажаться: искажение звука в телефоне, атмосферные помехи в радио, искажение или затемнение изображения в телевидении, ошибки при передачи в телеграфе. Эти помехи, или, как их называют специалисты, шумы, искажают информацию. К счастью, существует наука, разрабатывающая способы защиты информации -криптология.

Пропускная способность канала определяется максимальным количеством символов, передаваемых ему в отсутствии помех. Эта характеристика зависит от физических свойств канала.

Компьютер - это самое популярное средство для обработки, хранения и передачи информации и по сей день, но так как в наши дни информации становится все больше, то и компьютеры претерпевают значительные изменения.

Для удобства пользователей стали выпускаться, переносные и карманные компьютеры, подключенные к глобальной информационной сети Internet, чтобы пользователь мог получить необходимую информацию в любом месте, в удобное для него время.

Но так как потоки информации только увеличиваются, то для ее создания, обработки, хранения и передачи необходимо разрабатывать все новые и новые средства и приспособления. Существует множество компаний и корпораций, специализирующихся на разработках программного обеспечения, операционных систем, усовершенствовании и разработке новых более совершенных компьютеров, приспособлений для ввода и вывода информации, аксессуаров для удобства обращения с компьютером и ускорения обработки информации.

Что касается самой информации, то до сих пор одним из наиболее важных способов ее передачи между людьми служит документ. Информация, содержащаяся в документе, может быть предоставлена в различных формах, большая часть из которых отображается на различных носителях. Текст, графика, видео, аудио - все может быть передано, показано, распространено и обработано в виде цифрового файла документа.

Сейчас, когда процесс создания и преобразования документов автоматизирован, можно оценить все преимущества этого метода. Каждый, кто работает с компьютером и имеет принтер, зачастую производит гораздо больше документов, чем его неавтоматизированный коллега. Это объективная реальность - автоматизация повышает производительность труда. Но есть виды весьма важных бумажных документов, у которых может не быть электронного двойника.

Первая группа - это архивная информация. У каждого предприятия, фирмы имеется большое количество разработок в виде схем или чертежей и все они должны храниться в течение всего жизненного цикла изделия или могут использоваться как справочный материал, либо их хранения требует существующее законодательство. Архивная информация составляет львиную долю документов любого предприятия, и она всегда ценна, а иногда незаменима. Но, как правило, она не участвует в основном производственном процессе.

Вторая группа - чертежи выпускаемых изделий, разработанные без применения средств автоматизации. Обновление или редактирование этих чертежей - активная часть рабочего процесса. Увы, чертежи, выполненные на бумаге, приходится перечерчивать заново с использованием средств САПР.

Третья группа - документы ваших партнеров по бизнесу. Более того, зачастую бумажный документ является единственным носителем исходной информации для автоматизированных систем. Например, эскиз дизайнера, результат топографической съемки, рисунок художника, а так же архивные чертежи изделий, которые будут частично или полностью использоваться в новых проектах.

2. Преобразование информации

Фундаментальное свойство информации - преобразуемость. Оно означает, что информация может менять способ и форму своего существования. Копируемость есть разновидность преобразования информации, при котором ее количество не меняется. В общем случае количество информации в процессах преобразования меняется, но возрастать не может.

Каждая наука, занимающаяся вопросами, связанными с информацией, вводит свою систему классификации. Для информатики самым главным вопросом является то, каким образом используются средства вычислительной техники для создания, хранения, обработки и передачи информации, поэтому у информатики особый подход к классификации информации. В информатике отдельно рассматривают аналоговую информацию и цифровую. Это важно, поскольку человек благодаря своим органам чувств, привык иметь дело с аналоговой информацией, а вычислительная техника, наоборот, в основном работает с цифровой информацией.

Человек так устроен, что воспринимает информацию с помощью органов чувств. Свет, звук и тепло -- это энергетические сигналы, а вкус и запах - это результат воздействия химических соединений, в основе которого тоже энергетическая природа. Человек испытывает энергетические воздействия непрерывно и может никогда не встретиться с одной и той же их комбинацией дважды. Мы не найдем двух одинаковых зеленых листьев на одном дереве и не услышим двух абсолютно одинаковых звуков -- это информация аналоговая. Если же разным цветам дать номера, а разным звукам - ноты, то аналоговую информацию можно превратить в цифровую.

Музыка, когда мы ее слышим, несет аналоговую информацию, но стоит только записать ее нотами, как она становится цифровой. Мы легко различим разницу в одной и той же ноте, если исполнить ее на фортепиано и на флейте, хотя на бумаге эти ноты выглядят одинаково.

Разница между аналоговой информацией и цифровой, прежде всего, в том, что аналоговая информация непрерывна, а цифровая -- дискретна. Если у художника в палитре только одна зеленая краска, то непрерывную бесконечность зеленых цветов листьев он передаст очень грубо, и все деревья на картине будут иметь одинаковый цвет. Если у художника три разные зеленые краски, то передача цвета уже будет чуть более точной. Для большей точности передачи аналоговой информации о живой природе художники смешивают разные краски и получают большое количество оттенков.

Преобразование информации из аналоговой формы в цифровую называют аналогово-цифровым преобразованием (АЦП).

Чем ближе цифровая информация приближается по качеству к аналоговой, тем больше вычислений приходится выполнять компьютеру, а значит, тем больше информации ему надо хранить и обрабатывать.

Чем мощнее компьютер, тем больше информации он может обработать в единицу времени. Чем быстрее компьютер обрабатывает информацию, тем выше качество изображения, лучше звук и точнее результаты расчетов, но тем дороже обходится людям прием, передача и обработка информации.

Органы чувств человека так устроены, что он способен принимать, хранить и обрабатывать аналоговую информацию. Многие устройства, созданные человеком, тоже работают с аналоговой информацией.

1. Телевизор - это аналоговое устройство. Внутри телевизора есть кинескоп. Луч кинескопа непрерывно перемещается по экрану. Чем сильнее луч, тем ярче светится точка, в которую он попадает. Изменение свечения точек происходит плавно и непрерывно.

2. Монитор компьютера тоже похож на телевизор, но это устройство цифровое. В нем яркость луча изменяется не плавно, а скачком (дискретно). Луч либо есть, либо его нет. Если он есть, мы видим яркую точку (белую или цветную). Если луча нет, мы видим черную точку. Поэтому изображения на экране монитора получаются более четкими, чем на экране телевизора.

3. Проигрыватель грампластинок - аналоговое устройство. Чем больше высота неровностей на звуковой дорожке, тем громче звучит звук.

4. Телефон - тоже аналоговое устройство. Чем громче мы говорим в трубку, тем выше сила тока, проходящего по проводам, тем громче звук, который слышит наш собеседник.

К цифровым устройствам относятся персональные компьютеры - они работают с информацией, представленной в цифровой форме. Цифровыми также являются музыкальные проигрыватели лазерных компакт-дисков, поэтому музыкальные компакт-диски можно воспроизводить на компьютере.

Недавно началось создание цифровой телефонной связи, а в ближайшие годы ожидается и появление цифрового телевидения. В некоторых городах Украины и России уже работают цифровые телевизионные станции. После того как телевидение станет цифровым, качество изображения на экране телевизора намного улучшится - оно станет ближе к качеству изображения на экране компьютерного монитора.

3. Хранение информации

А как же информация хранится? Для того чтобы информацию сохранить, ее надо закодировать. Любая информация всегда хранится в виде кодов. Когда мы что-то пишем в тетради, мы на самом деле кодируем информацию с помощью специальных символов. Эти символы всем знакомы - они называются буквами. И система такого кодирования тоже хорошо известна - это обыкновенная азбука. Жители других стран те же самые слова запишут по-другому (другими буквами) - у них своя азбука. Можно сказать, что у них другая система кодирования. В некоторых странах вместо букв используют иероглифы - это еще более сложный способ кодирования информации.

Хранить можно не только текстовую и звуковую информацию. В виде кодов хранятся и изображения. Если посмотреть на рисунок с помощью увеличительного стекла, то видно, что он состоит из точек - это так называемый растр. Координаты каждой точки можно запомнить в виде чисел. Цвет каждой точки тоже можно запомнить в виде числа. Эти числа могут храниться в памяти компьютера и передаваться на любые расстояния. По ним компьютерные программы способны изобразить рисунок на экране или напечатать его на принтере. Изображение можно сделать больше или меньше, темнее или светлее, его можно повернуть, наклонить, растянуть. Мы говорим о том, что на компьютере обрабатывается изображение, но на самом деле компьютерные программы изменяют числа, которыми отдельные точки изображения представлены в памяти компьютера.

Компьютеры предпочитают работать с цифровой информацией, а не с аналоговой. Так происходит потому, что цифровую информацию очень удобно кодировать, а значит, ее удобно хранить и обрабатывать.

Читайте также: