Численное дифференцирование и интегрирование реферат

Обновлено: 05.07.2024

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

к курсовой работе

В современных науке и технике важную роль играет математическое моделирование, заменяющее эксперименты с реальными объектами экспериментами с их математическими моделями. Но для практических задач довольно редко удается найти аналитическое решение уравнений, составляющих математическую модель явления. Поэтому приходится применять численные методы.

Численное решение прикладных задач всегда интересовало математиков. Резкий скачок в развития вычислительной техники положил начало бурному развитию численных методов.

Численные методы представляют собой набор алгоритмов, позволяющих получать приближенное численное решение поставленных математических задач. Как и любой другой численный метод, эти методы позволяют с заданной точностью получить нужные результаты, используя заданные алгоритмы, не прибегая к выполнению аналитических преобразований над входными данными. Одной из подзадач численных методов, является численное дифференцирование. Численное дифференцирование облегчает работу в случае, если выполнение аналитических преобразований достаточно трудоёмко или же исходные данные, то есть функция, подлежащая дифференцированию, представляет собой результаты проведения экспериментов. Кроме того, численное дифференцирование широко используется при разработке численных методов решения многих задач (решение дифференциальных уравнений, поиск решений не линейных уравнений, поиск точек экстремума функции и др.).

1. Обзор методов численного дифференцирования .1 Вычисление производной, используя простейшие формулы Предположим, что функция f дифференцируема в окрестности точки х достаточное количество раз[1]. Исходя из определения производной: можно получить две простейшие приближенные формулы:

где h - малый параметр (шаг).

Эти формулы часто называют правой и левой разностными производными.

Оценка погрешностей данных формулы производится по следующей формуле:

где- точка, принадлежащая промежутку ).

Таким образом, формулы левых и правых разностных производных имеют первый порядок точности.

Для вычисления второй производной данным методом применяется следующая формула: Данную величину также называют второй разностной производной.

Для вычисления погрешности, воспользуемся соответствующим разложением по формуле Тейлора: отсюда получаем: Тогда для оценки погрешности можно использовать следующее неравенство: Таким образом вторая разностная производная имеет второй порядок точности.

Приведенные формулы численного дифференцирования имеют простую геометрическую интерпретацию. На рисунке 1.1 a) изображен график функции и отмечены точки N-, N0 и N+, с координатами (x-h, f(x-h)), (x,f(x)) и (x+h,f(x+h)) соответственно.

Рисунок 1.1 - Графики функций Производная f’(x) равна tg() относительно оси Ox в точке N0. Тангенс угла наклона прямых N- N0 и N+ N0, близок к значению производной в точке х. Однако можно заметить, что тангенс прямой N- N+, которая изображена на рисунке 1.1 б), более близок к искомому значению.

Логично предположить, что можно использовать тангенс прямой N- N+ для более точного нахождения

Определение первой и второй производных с помощью интерполяционных формул Ньютона, Гаусса, Стирлинга и Бесселя. Вычисление интеграла по формулам левых и правых прямоугольников. Расчет интеграла по формуле с тремя десятичными знаками и формуле Симпсона.

Рубрика Математика
Вид лабораторная работа
Язык русский
Дата добавления 12.06.2015
Размер файла 593,4 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Лабоpатоpная pабота №3,4

Задание: с помощью интерполяционных формул Ньютона, Гаусса, Стирлинга и Бесселя найти значение первой и второй производных при данных значениях аргумента для функции, заданной таблично.

Найти значения первой и второй производной данной функции при х1=3.65; х2=3.87; х3=3; х4=3,04; n=25. Составим диагональную таблицу конечных разностей данной функции.

Выбор полинома осуществляется исходя из требования получения минимальной величины погрешности интерполяции и определяется величиной t.

Если t=(x-x0)/h ? 0.25, то используем формулы

Получающимися из формулы Бесселя.

Таким образом получаем, что 0,25 ? |t| ? 0,75. В этом случае используем формулы

Получающимися из формулы Бесселя.

3) Положим х0=3.0, тогда t =(x-x0)/h=(3,0-3,0)/0,2=0. Воспользуемся для вычислений формулами

Получающимися из первой интерполяционной формулы Ньютона.

Если t=(x-x0)/h ? 0.25, то используем формулы

Получающимися из формулы Бесселя.

Задание: 1) Вычислить интеграл по формулам левых и правых прямоугольников при n=10, оценивая сравнения полученных результатов.

2) Вычислить интеграл по формуле прямоугольников, используя для оценки точности двойной просчет при n1= 8 и n2=10.

1) Для вычисления по формулам левых и правых прямоугольников при n=10 разобьем отрезок интегрирования на 10 частей с шагом h=(b-a)/n=(2.2-1)/10=0.12

Составим таблицу значений подынтегральной функции в точках деления отрезка:

Найдем приближенные значения интеграла. По формуле левых прямоугольников получим

По формуле правых прямоугольников находим

Эти результаты отличаются уже в сотых долях. За окончательное значение примем полусумму найденных значений, округлив результат до тысячных:

I=( I1+ I2)/2= 0.72836659;

2) Для решения воспользуемся формулой средних прямоугольников

Вычисления выполним дважды при n1= 8 и n2=10 и соответственно при h1=(b-a)/n1=(1-0.6)/8=0,05 и h2=(b-a)/n2=(1-0.6)/10=0,04. Результаты вычислений приведены в таблицах.

Значения различаются в тысячных долях, но второе значение точнее второго, потому принимаем I?0.15576821;

Задание: 1) Вычислить интеграл по формуле трапеций с тремя десятичными знаками.

2) Вычислить интеграл по формуле Симпсона при n=8; оценить погрешность результатов, составив таблицу конечных разностей.

интеграл производная формула прямоугольник

1) Для достижения заданной степени точности необходимо определить значение n так, чтобы

((b-a) 3 /12n 2 )*M2 3 *1483)/12n 2 2 >63,27, т.е. n>8, возьмем n=10.

В данной работе будут рассмотрены три метода приближённого интегрирования определённого интеграла: метод прямоугольников, метод трапеций и метод Симпсона. Все эти методы будут подробно выведены с оценкой погрешности каждого из них. Для более полного восприятия материала в работу помещён раздел, в котором подробно расписано решение, всеми тремя методами, определённого интеграла. В материале имеются иллюстрации, с помощью которых, можно более глубоко вникнуть в суть рассматриваемой темы.

-формула прямоугольников………………………………. 6

Цель данной курсовой работы – изучение методов приближённого интегрирования. Для некоторых подынтегральных функций интеграл можно вычислить аналитически или найти в справочниках. Однако в общем случае первообразная может быть не определена: либо первообразные не выражаются через элементарные функции, либо сами подынтегральные функции не являются элементарными. Это приводит к необходимости разработки приближенных методов вычисления определенных интегралов. Наиболее общеупотребительными приближенными методами вычисления одномерных определенных интегралов являются, так называемые, "классические" методы численного интегрирования: метод прямоугольников, метод трапеций, метод парабол (основанные на суммировании элементарных площадей, на которые разбивается вся площадь под функцией ). Хотя эти методы обычно предпочтительней в случае малых размерностей, они практически не годятся для вычисления многомерных интегралов, для их вычисления используются другие методы, однако в этой работе они рассмотрены не будут.

ОСНОВНАЯ ЧАСТЬ

I.Определение интеграла и его геометрический смысл.

В начале узнаем, что такое определённый интеграл. Возможны два различных подхода к определению определённого интеграла.

ОПРЕДЕЛЕНИЕ 1: приращение F(b)-F(a) любой из преобразованных функций F(x)+c при изменении аргумента от x=a до x=b называют определённым интегралом от a до b функции f и обозначается .

Причём функция F является первообразной для функции f на некотором промежутке D, а числа а и b принадлежат этому промежутку. Это можно записать следующим образом:

это формула Ньютона-Лейбница.

Если при любой последовательности разбиений отрезка [a;b] таких, что δ=maxΔxi →0 (n→∞) и при любом выборе точек интегральная сумма σk =f(εi ) Δxi стремится к одному и тому же конечному пределу А, то это число А и есть определённый интеграл, т.е.limn →∞ σk = limδ →0 f (εi ) Δxi =A(2).

Где Δхi =xi -xi -1 (i=1,2,…,n) ε=maxΔxi – начало разбиения произвольная точка из отрезка[xi -1 ;xi ]
сумма всех произведений f(εi )Δxi (i=1,…,n). Простыми словами, определенный интеграл есть предел интегральной суммы, число членов которой неограниченно возрастает, а каждое слагаемое стремится к нулю.

Всякая непрерывная на отрезке [a,b] функция f интегрируема на отрезке [a,b], функция f неотрицательна, но определённый интеграл численно равен S криволинейной трапеции, ограниченной графиком функции f, осью абсцисс и прямыми x=a и x=b, S=f(x)dx.

II.Приближённые методы вычисления.

Как мы уже отметили, если функция f непрерывна на промежутке, то на этом промежутке существует функция F такая, что F’=f, то есть существует первообразная для функции f, но не всякая элементарная функция f имеет элементарную первообразную F. Объясним понятие элементарной функции.

Функции: степенная, показательная, тригонометрическая, логарифмическая, обратные тригонометрическим называются основными элементарными функциями. Элементарной функцией называется функция, которая может быть задана с помощью формулы, содержащей лишь конечное число арифметических операций и суперпозиций основных элементарных.

Бывает, что на практике сталкиваются с вычислением интегралов от функций, которые заданы табличными и графическими способами, или интегралы от функций, первообразные которых выражаются через элементарные функции очень сложно, что не удобно, долго и не рационально. В этих случаях вычисление определённого интеграла по формуле Ньютона-Лейбница (1) сводит вычисление определённого интеграла от какой-либо функции к нахождению её первообразной. Значит, если первообразная не элементарна, надо вычислить определённый интеграл как-то по другому, поэтому прибегают к различным методам приближённого интегрирования.

В основе приближённых методов интегрирования лежит геометрический смысл определённого интеграла, который рассмотрен выше.

Формул приближённого интегрирования существует много. В данной курсовой работе будет рассмотрено три метода приближённого интегрирования: метод трапеций, метод прямоугольников и метод Симпсона.

Теперь рассмотрим первый вид приближённого вычисления:
требуется вычислить определённый интеграл: .

Пусть на отрезке [a,b] задана непрерывная функция y=f(x). Разделим отрезок [a,b], аналогично как в формуле трапеций: точками a=x0 ,x1, x2 ,…,xn =bна nравных частей длины Δх, где Δх=(b-a)/n.

Обозначим через y0 ,y1 ,y2 ,…,yn -1 ,yn значение функции f(x) в точках x0 , x1 , x2 …,xn , то есть, если записать в наглядной формуле:

В данном способе подынтегральную функцию заменяем функцией, которая имеет ступенчатый вид (на рис. выделена).

Каждое слагаемое этих сумм выражает площадь, полученных прямоугольников с основанием Δх, которое является шириной прямоугольника, и длиной выраженной через yi : Sпр =a*b=yi Δx.

Каждая из этих сумм является интегральной суммой для f(x) на отрезке [a,b], и равна площади ступенчатых фигур, а значит приближённо выражает интеграл. Вынесем Δx=(b-a)/n из каждой суммы, получим:

Выразив x, получим окончательно:

Это и есть формулы прямоугольников. Их две, так как можно использовать два способа замены подынтегральной функции. Если f(x)- положительная и возрастающая функция, то формула (3) выражает Sфигуры, расположенной под графиком, составленной из входящих прямоугольников, а формула (3*)- площадь ступенчатой фигуры, расположенной под графиком функции составленной из выходящих треугольников.

Ошибка, совершаемая при вычислении интегралов по формуле прямоугольников, будет тем меньше, чем больше число n (то есть чем меньше шаг деления). Для вычисления погрешности этого метода используется формула:Pnp =, где Результат полученный по формуле (3) заведомо даёт большую площадь прямоугольника, так же по формуле (3*) даёт заведомо меньшую площадь, для получения среднего результата используется формула средних прямоугольников: (3**)

Целью курсовой работы является разработка программ:
Численных методов интегрирования функции;
Численных методов дифференцирования функции;
Численных методов решения дифференциального уравнения;
Для достижения данной цели есть необходимость выделить следующие основные задачи:
Практически закрепить и повторить знания основ языка C++Builder 6, для успешного программирования;
Повторить теоретический материал по численным методам;
Написать программы численных методов соответственно заданию;
Сравнить методы и сделать выводы по проделанной работе.

Содержание

Введение 3
Теоретическая часть 4
1. Численные методы интегрирования функций 4
1.2 Формула Ньютона – Котеса: метод трапеций. 5
1.3 Формула Ньютона – Котеса: метод Симпсона. 6
1.4 Метод Лежандра – Гаусса. 7
1.5 Метод Монте-Карло. 8
2. Численные методы дифференцирования функций 9
2.1 Интерполяционная формула Ньютона 10
3. Численные методы решения дифференциальных уравнений 11
3.1 Метод Эйлера 11
3.2 Методы Рунге-Кутты 12
Практическая часть 14
Заключение 21
Список использованных источников 22

Вложенные файлы: 1 файл

теория.docx

Федеральное агентство связи

Государственного образовательного бюджетного учреждения

высшего профессионального образования

«СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра информатики и вычислительной техники

Допустить к защите

Зав. кафедрой ___________

Численное интегрирование и

Решение дифференциальных уравнений

БФ ФГОБУ СибГУТИ 230100.000 ПЗ

Руководитель /Белоусова М.В./

Студент /Плотников Г.П./

Факультет информационных технологий и экономики

Теоретическая часть 4

1. Численные методы интегрирования функций 4

1.2 Формула Ньютона – Котеса: метод трапеций. 5

1.3 Формула Ньютона – Котеса: метод Симпсона. 6

1.4 Метод Лежандра – Гаусса. 7

1.5 Метод Монте-Карло. 8

2. Численные методы дифференцирования функций 9

2.1 Интерполяционная формула Ньютона 10

3. Численные методы решения дифференциальных уравнений 11

3.1 Метод Эйлера 11

3.2 Методы Рунге-Кутты 12

Практическая часть 14

Список использованных источников 22

Приложение А 23

Приложение Б 27

Введение

Появление и непрерывное совершенствование быстродействующих электронных вычислительных машин привело к подлинно революционному преобразованию науки вообще и математики в особенности. Изменилась технология научных исследований, колоссально увеличились возможности теоретического изучения, прогноза сложных процессов, проектирования инженерных конструкций. Решение крупных научно-технических проблем, примерами которых могут служить проблемы овладения ядерной энергией и освоения космоса, стало возможным лишь благодаря применению математического моделирования и новых численных методов, предназначенных для ЭВМ.

В настоящее время можно говорить, что появился новый способ теоретического исследования сложных процессов, допускающих математическое описание, - вычислительный эксперимент, т.е. исследование естественнонаучных проблем средствами вычислительной математики. Разработка и исследование вычислительных алгоритмов, и их применение к решению конкретных задач составляет содержание огромного раздела современной математики - вычислительной математики.

Численные методы дают приближенное решение задачи. Это значит, что вместо точного решения некоторой задачи мы находим решение у другой задачи, близкое к искомому. Основная идея всех методов - дискретизация или аппроксимация исходной задачи другой задачей, более удобной для решения на ЭВМ, причем решение аппроксимирующей задачи зависит от некоторых параметров, управляя которыми, можно определить решение с требуемой точностью.

Целью курсовой работы является разработка программ:

    1. Численных методов интегрирования функции;
    2. Численных методов дифференцирования функции;
    3. Численных методов решения дифференциального уравнения;

Для достижения данной цели есть необходимость выделить следующие основные задачи:

    1. Практически закрепить и повторить знания основ языка C++Builder 6, для успешного программирования;
    2. Повторить теоретический материал по численным методам;
    3. Написать программы численных методов соответственно заданию;
    4. Сравнить методы и сделать выводы по проделанной работе.

Теоретическая часть

Погрешность – это разность между истинной величиной и величиной, найденной при вычислении. Изм.

При численном решении математических и прикладных задач почти неизбежно появление на том или ином этапе погрешностей. Погрешностью называют отклонение приближенного решения от истинного решения. Различают следующие типы погрешностей.

1. Неустранимая погрешность. Она связана с приближенным характером исходной содержательной модели (в частности, с невозможностью учесть все факторы в процессе изучения моделируемого явления), а также ее математического описания, параметрами которого служат обычно приближенные величины (например, из-за принципиальной невозможности выполнения абсолютно точных измерений). Для вычислителя погрешность математической модели следует считать неустранимой (безусловной), хотя постановщик задачи иногда может ее изменить.

2. Погрешность метода. Это погрешность, связанная со способом решения поставленной математической задачи и появляющаяся в результате подмены исходной математической модели другой или конечной последовательностью других, например линейных, моделей. При создании численных методов закладывается возможность отслеживания таких погрешностей и доведения их до сколь угодно малого уровня.

3. Вычислительная погрешность (погрешность действий). Этот тип погрешности обусловлен необходимостью выполнять арифметические операции над числами, усеченными до количества разрядов, зависящего от применяемой вычислительной техники (если, разумеется, не используются специальные программные средства, реализующие, например, арифметику рациональных чисел), т.е. вычислительная погрешность обусловлена округлениями.

Численные методы интегрирования функций

Интервал интегрирования (a, b) разбивается на n равных отрезков длиной

В качестве приближенного значения площади каждой полоски принимается площадь прямоугольника, ширина которого равна h, а высота — значению функции y(x) на левом краю интервала. Локальная формула метода левых прямоугольников:

Если функция f(x) заданна аналитически ее первообразная F(x) является элементарной функцией, то вычисляется по формуле Ньютона-Лейбница: В тех случаях, когда функция f(x) задана аналитически, но ее первообразная не является элементарной функцией или отыскать ее сложно, а также в случае, когда функция f(x) задана графически или таблично, для вычисления применяются приближенные методы.

Постановка задачи численного интегрирования

Задача численного интегрирования функции заключается в вычислении определенного интеграла на основании ряда значений подынтегральной функции. Численное вычисление однократного интеграла называется механической квадратурой. Обычный прием механической квадратуры состоит в том, что данную функцию f(x) на рассматриваемом отрезке [a, b] заменяют интерполирующей или аппроксимирующей функцией φ(x) простого вида, а затем приближенно полагают: Функция φ(x) должна быть такова, чтобы интеграл вычислялся непосредственно. Если функция f(x) заданна аналитически, то ставится вопрос об оценке погрешности. Пусть для функции y=f(x) известны в n+1 точках x0, x1, x2, …, xn отрезка [a, b] соответствующие значения f(xi)=yi (i=0, 1, 2, …, n). Требуется приближенно найти По заданным значениям yi построим полином Лагранжа , где

Пn+1(x)=(x-x0)(x-x1)…(x-xn), причем Ln(xi)=yi (i=0, 1, 2, …, n). Заменяя функцию f(x) полиномом Ln(x), получим равенство где Rn[f] – ошибка квадратурной формулы. Отсюда получаем приближенную квадратурную формулу

где (i=0, 1, 2, …, n). Для вычисления Ai заметим, что

1) коэффициенты Ai при данном расположении узлов не зависят от выбора функции f(x);

2) для полинома степени n полученная формула – точная, так как тогда Ln(x)=f(x); следовательно, формула - точная при y=x k (k=0, 1, 2, …, n), т.е. Rn[x k ]=0 при k=0, 1, …, n. Полагая y=x k (k=0, 1, 2, …, n), получим линейную систему из n+1 уравнений - где (k=0, 1, …, n), из которой можно определить коэффициенты A0, A1, …, An.

Составные квадратурные формулы

Приведем ряд простейших квадратурных формул, используемых в практике численного интегрирования функции f(x) на некотором интервале [a, b], разбитого на n равных отрезков точками a0=a, a1=a+h, a2=a+2h, …, an=a+nh+b, где n=0,1, …, k и Положим f(xn)=yn=f(a+nh).

Погрешность формулы определяется выражением

Погрешность формулы определяется выражением

Формула Симпсона: где

Погрешность формулы определяется выражением

Если длина интервала [a, b] велика для применения простейших квадратурных формул, то поступают следующим образом:

1) интервал [a, b] разбивают точками xi, на n интервалов по некоторому правилу;

2) на каждом частичном интервале [xi, xi+1] применяют простейшую квадратурную формулу, находят приближенное значение интеграла

3) из полученных выражений Qi составляют (отсюда и название составная формула) квадратурную формулу для всего интервала [a, b];

4) абсолютную погрешность R составной формулы находят суммированием погрешностей Ri на каждом частичном интервале.

Раздел: Математика
Количество знаков с пробелами: 39796
Количество таблиц: 9
Количество изображений: 22

Читайте также: