Биотехнология кормовых препаратов реферат

Обновлено: 07.07.2024

К важнейшим отраслям биоиндустрии (рис. 1.1) следует отне­сти некоторые отрасли пищевой промышленности (широкомас­штабное выращивание дрожжей, водорослей и бактерий для по­лучения белков, аминокислот, витаминов, ферментов); сельское хозяйство (клонирование и селекция сортов растений, производ­ство биоинсектицидов, выведение трансгенных животных и рас­тений); фармацевтическую промышленность (разработка вакцин, синтез гормонов, антибиотиков, интерферонов, новых лекарствен­ных препаратов); экологию — защиту окружающей среды и устра­нение загрязнений (очистка сточных вод, переработка хозяйствен­ных отходов, изготовление компоста и др.).

Биотехнология призвана не только совершенствовать традицион­ные методы, широко используемые в пищевой промышленности при производстве молочнокислых продуктов, сыра, пищевых кис­лот, алкогольных напитков, но и создавать современные техноло­гии для синтеза полимеров, искусственных приправ, сырья (тек­стильная промышленность), для получения метанола, этанола, биогаза и водорода, для извлечения некоторых металлов из руд.

1.1. ПРОИЗВОДСТВО КОРМОВОГО БЕЛКА

В соответствии с нормами питания человек должен ежедневно получать с пищей 60 — 120 г полноценного белка; в рационе сель­скохозяйственных животных на каждую кормовую единицу нуж­но не менее 110 г полноценного белка. Для поддержания жизнен­ных функций организма, построения клеток и тканей необходим постоянный синтез различных белковых соединений. Если расте­ния и большинство микроорганизмов способны синтезировать все белковые аминокислоты из углекислоты, воды, аммиака и мине­ральных солей, то человек и животные не могут синтезировать некоторые аминокислоты (валин, лейцин, изолейцин, лизин, ме- тионин, треонин, триптофан и фенилаланин), которые называ­ют незаменимыми. Эти аминокислоты должны поступать в орга­низм в готовом виде с пищей; их отсутствие вызывает тяжелые заболевания человека и снижение продуктивности сельскохозяй­ственных животных.

Для человека главные источники незаменимых аминокислот — белки животного и растительного происхождения, входящие в состав пищи, а для животных — в основном растительные белки. Все незаменимые аминокислоты должны содержаться в белках в определенных соотношениях, отвечающих потребностям данного организма.

Если содержание белков в растительном корме ниже нормы, во избежание перерасхода кормов и повышения себестоимости животноводческой продукции количество белка в корме компен­сируют введением белковых добавок в виде препаратов незамени­мых аминокислот либо белковой массы с более высоким содер­жанием ряда аминокислот по сравнению с эталоном. Незамени­мые аминокислоты наиболее сбалансированы в белках семян сои. Относительно высокую биологическую ценность имеют также бел­ки зерна риса и гороха. В белках зерна пшеницы и ячменя очень мало лизина, метионина и изолейцина, а в белках кукурузы еще и триптофана. Для балансирования кормов (в которых основной компонент — зерно злаковых культур) по белку и незаменимым аминокислотам применяют концентрированные белковые добавки — комбикорма. Для их приготовления используют мясокост­ную и рыбную муку, отходы мясной и молочной промышленности, жмыхи масличных растений, отруби, шроты зернобобовых культур.

Особый интерес представляет использование микроорганиз­мов в качестве источника белка и витаминов при производстве пищевых продуктов.

Перспектива и экономическая целесообраз­ность употребления микроорганизмов в технологии производства пищевых продуктов диктуются рядом факторов:

  1. возможностью использования самых разнообразных хими­ческих соединений, в том числе отходов производства, для куль­тивирования микроорганизмов;
  2. высокой интенсивностью синтеза белков;
  3. относительно несложной технологией культивирования мик­роорганизмов, которое можно осуществлять круглосуточно и во все сезоны года;
  4. относительно высоким содержанием белка и витаминов, а также углеводов, липидов и препаратов на основе микробов;
  5. повышенным содержанием незаменимых аминокислот по сравнению с растительными белками (табл. 1.1);
  6. возможностью направленного генетического влияния на хи­мический состав микроорганизмов в целях совершенствования белковой и витаминной ценности продукта.

Использование белка микробного происхождения для изготов­ления пищевых продуктов позволяет экономить высокоценные жи­вотные и растительные белки, а также повышать биологическую ценность готового продукта.

Для промышленного производства пищевых продуктов и их использования на основе микроорганизмов необходимы тщатель­ные медико-биологические исследования. Пищевые продукты, по­лучаемые с добавлением микробных препаратов, должны пройти всестороннюю проверку для выявления канцерогенного, мутаген­ного, эмбриотропного действия на организм человека и живот­ных. Токсикологические исследования, усвояемость продуктов микробного синтеза — основные критерии целесообразности тех­нологии их производства.

В настоящее время мировой дефицит белка составляет около 15 млн т. Наиболее перспективен микробиологический синтез, что следует из представленных ниже данных. Если для крупного рога­того скота требуется 5 лет для удвоения белковой массы, для сви­ней — 4 мес, для цыплят — 1 мес, то для бактерий и дрожжей — 1—6 ч. Мировое производство пищевых белковых продуктов за счет микробного синтеза составляет более 15 тыс. т в год.

В качестве источников кормового белка чаще используют различ­ные виды дрожжей и бактерий, микроскопические грибы, одно­клеточные водоросли, белковые коагуляты травянистых растений.


Рис. 1.1. Перспективные направления биотехнологии в снабжении чело­вечества продовольствием

Таблица 1.1. Содержание незаменимых аминокислот в белках некоторых микроорганизмов (в граммах на 100 г белка)

Аминокислота Микроорганизмы
дрожжи водоросли бактерии грибы актиномицеты
Валин 5-7 5-7 4-6 5-7 5,5
Лейцин 6-9 6-10 5-11 6-9 7,7
Изолейцин 4-6 4-7 5-7 3-6 5,3
Треонин 4-6 3-6 4-5 3-6 4
Метионин 1-3 1,5-2,5 2-3 2,5 1,3
Лизин 6-8 5-10 6-7 3-7 6,4
Фенилаланин 3-5 3-5 3-4 3-6 5
Триптофан 1-1,5 до 2 1,5 1,5-2 1,4

ИСПОЛЬЗОВАНИЕ ДРОЖЖЕЙ И БАКТЕРИЙ

Дрожжевые клетки в качестве источника углерода для роста способны использовать неразветвленные углеводороды с числом от 10 до 30 углеродных атомов в молекуле. В основном они пред­ставлены жидкими фракциями углеводородов нефти с температу­рой кипения 200 — 320 °С. Эти фракции углеводородов нефти могут быть получены низкотемпературной кристаллизацией, карбомидной депарафинизацией и адсорбцией на молекулярных ситах (цеолитах). В России первый завод по производству кормовых дрож­жей из жидких парафинов нефти вступил в действие в 1971 г. В нашей стране и других странах СНГ из н-парафинов нефти произ­водят большое количество кормовых дрожжей (свыше 1 млн т). При выращивании дрожжей на н-парафинах нефти в приготов­ленную из них питательную среду добавляют макро- и микроэле­менты, необходимые витамины и аминокислоты. Высушенная дрожжевая масса гранулируется и используется как белково-витаминный концентрат (БВК), содержащий до 50 — 60% белковых веществ, для кормления сельскохозяйственных животных.

Хорошим субстратом для выращивания кормовых дрожжей яв­ляется молочная сыворотка — производственный отход при пере­работке молока. В 1 т молочной сыворотки содержится около 10 кг белка и 50 кг лактозы. Разработана эффективная технология выде­ления из молочной сыворотки белков методом ультрафильтрации низкомолекулярных веществ через мембраны. Эти белки исполь­зуют для приготовления сухого обезжиренного молока. Жидкие отходы, остающиеся после отделения белков (пермеат), могут быть переработаны путем культивирования дрожжей в обогащенные белками кормовые продукты.

В качестве источников углерода дрожжевые клетки могут ис­пользовать и низшие спирты — метанол и этанол, получаемые в биотехнологии из природного газа или растительных отходов. Дрож­жевая масса, полученная после культивирования дрожжей на спир­тах, содержит больше белков (56 — 62 % от сухой массы) и меньше вредных примесей, чем кормовые дрожжи, выращенные на н-парафинах нефти, такие, как производные бензола, D-аминокислоты, аномальные липиды, токсины и канцерогенные вещества. Кроме того, кормовые дрожжи имеют повышенное содержание нуклеиновых кислот — 3 — 6% от сухой массы, которые в этой концентрации вредно воздействуют на организм животных. В ре­зультате их гидролиза образуется много пуриновых оснований, превращающихся затем в мочевую кислоту и ее соли, которые могут быть причиной мочекаменной болезни, остеохондроза и других заболеваний. Тем не менее кормовые дрожжи хорошо усва­иваются и перевариваются в организме животных, а по содержа­нию таких аминокислот, как лизин, треонин, валин и лейцин, значительно превышают многие растительные белки. Вместе с тем белки дрожжей частично не сбалансированы по метионину, в них мало цистеина и селенцистеина. Оптимальная норма добавления Дрожжевой массы в корм сельскохозяйственных животных обыч­но составляет не более 5 —10 % от сухого вещества.

Наряду с технологией использования дрожжевых белков в ка­честве кормовой добавки в рационы сельскохозяйственных живот­ных разработаны технологии получения из них пищевых белков. В некоторых странах пивные и пищевые дрожжи (Saccharomyces cerevisiae, Candida arborea, С. utilis) широко используют в каче­стве белковых добавок к различным пищевым продуктам. Дрож­жевой белок позволяет повысить питательную и витаминную цен­ность пищевых продуктов, улучшить их вкус и аромат. Так, разрабо­тана рецептура приготовления сосисок из мяса индейки с добавле­нием 25 % белка, дрожжевого хлеба и лапши с частичной заменой муки — до 5 % (США). В результате ферментации дрожжевыми клет­ками глюкозы, получаемой из кукурузного крахмала, синтезиро­ван белковый продукт мукопротеин, используемый при производ­стве колбас в качестве замены основного сырья (Великобритания).

Очень полезными продуктами являются ацидофильно-дрожжевое молоко и творог, сделанный из него. Технология получения творога включает следующие этапы. В цельное молоко с 2 % сахара вносят 3 % суточной культуры дрожжей и выдерживают 14— 17 ч при температуре 32—33 °С. Полученную закваску добавляют в молоко и выдерживают до свертывания при температуре 33 °С еще 5 —6 ч. Такой творог богат витаминами В1, В2, С и др. Представители 14 видов дрожжей рода Candida утилизируют молочную сыворотку для получения биомассы, богатой витаминами и белком. Способность некоторых видов дрожжей (Rhodotorula glutimis) продуцировать каротиноиды нашла применение в производстве пищевых красителей.

Колбасные изделия с добавлением микропротеина рекомендо­ваны больным, страдающим диабетом и другими хроническими заболеваниями.

Сначала разрушают стенки дрожжевых клеток путем механичес­кой, щелочной, кислотной или ферментативной обработки с по­следующей экстракцией гомогенной дрожжевой массы подходя­щим органическим растворителем. После такой очистки от орга­нических и минеральных примесей дрожжевой продукт обрабаты­вают щелочным раствором для растворения белков. Далее белко­вый раствор, отделенный центрифугированием от оставшейся массы дрожжей, подвергают диализу. Очищенные от низкомолекулярных примесей белки осаждают, высушивают и используют в качестве белковых добавок в различные пищевые продукты: со­сиски, паштеты, мясные и кондитерские начинки. Белки дрож­жей применяют также при получении искусственного мяса. Для этого их нагревают с последующим быстрым охлаждением или продавливанием белковой пасты через отверстия малого диаметра. В белковую пасту добавляют полисахариды и другие компоненты.

К числу бактерий с высокой интенсивностью синтеза белков следует отнести и водородокисляющие бактерии, способные на­капливать в клетках до 80% сырого белка (в расчете на сухую массу). Для их культивирования в составе газовой среды обычно содержится 70 — 80 % водорода, 20—30 % кислорода и 3 — 5 % С02. Производство кормового белка на основе использования водоро- докисляющих бактерий может быть организовано вблизи хими­ческих предприятий.

Кормовой белок бактериального происхождения добавляют в ком­бикорма в количестве 2,5 — 7,5% от белка рациона сельскохозяй­ственных животных, а при кормлении взрослых свиней — до 15 %.

ИСПОЛЬЗОВАНИЕ ВОДОРОСЛЕЙ И МИКРОСКОПИЧЕСКИХ ГРИБОВ

Для получения кормового белка используют одноклеточные водоросли Chlorella и Scenedesmus, синезеленые водоросли из рода Spirulina, способные синтезировать белки из диоксида углерода, воды и минеральных веществ за счет энергии солнечного света. Водоросли для своего развития нуждаются в определенных режи­мах освещения и температуры и в больших объемах воды. Обычно их выращивают в естественных условиях южных регионов в бас­сейнах открытого типа. Водоросли хлорелла и сценедесмус нужда­ются в нейтральной среде, их клетки имеют довольно плотную целлюлозную стенку, вследствие чего они хуже перевариваются в организме животных, чем спирулина, которую выращивают в ще­лочных озерах (рН 10 — 11). При выращивании водорослей в куль­тиваторах открытого типа с 1 га водной поверхности можно полу­чать до 70 т сухой биомассы в год, что превышает выход биомассы при возделывании пшеницы, риса, сои, кукурузы.

Содержание белков в клетках Clorella и Scenedesmus составляет около 55 % (в расчете на сухую массу), а в клетках Spirulina — 65 %. Белки водорослей хорошо сбалансированы по содержанию неза­менимых аминокислот, за исключением метионина. В клетках во­дорослей, кроме того, синтезируется довольно много полинена­сыщенных жирных кислот и (3-каротина (до 150 мг%).

Белковая масса из клеток водорослей поступает в производ­ство в виде суспензии, сухого порошка или пастообразного пре­парата. Процесс отделения клеток водорослей от массы воды чрез­вычайно трудоемкий. Суточная норма суспензии хлореллы при кормлении молодняка крупного рогатого скота — 3 — 6 л, взрослых животных — 8—10 л. В связи с тем, что биомасса Spirulina характеризуется высоким содержанием белков (до 70 % сухой мас­сы), хорошо сбалансированных по аминокислотному составу, ее используют для приготовления продуктов питания и кондитерс­ких изделий. Добавление этой водоросли в корм тутового шелко­пряда (листья шелковицы) значительно увеличивает выход шел­ка и его качество.В биомассе многих микроскопических грибов хорошо сбалан­сированы по аминокислотному составу белки; они включают так­же витамины и липиды. По своим питательным свойствам белки грибов приближаются к белкам сои и мяса, что позволяет ис­пользовать их не только для приготовления кормовых концентра­тов, но и как добавку в пищу человека. Источником углерода для промышленного выращивания микроскопических грибов служат растительные отходы, содержащие клетчатку, гемицеллюлозы, лигнин, а также торф и навоз. Образцы колбас, выработанные с применением микроскопических грибов, характеризуются высо­кой степенью перевариваемости белковых веществ in vitro за счет активных пепсина и трипсина. Обычно микробная биомасса до­бавляется в изделия из рубленого мяса в количестве 5 — 15%. Та­кой гриб, как Penicillium roqueforti, широко используется при про­изводстве сыров, в частности сыра рокфор; он применяется свы­ше 100 лет. В Великобритании создан пищевой продукт, основным компонентом которого является белок грибного происхождения (Ftisarium graminearum) — микопротеин на дешевом глюкозном сиропе, полученном путем гидролиза пшеничного или кукуруз­ного крахмала. Микопротеин — это аналог мяса, но по сравнению с белками животного происхождения лучшего качества по содер­жанию белка (44 %), минеральных веществ, витаминов и липидов. Хорошая перевариваемость грибной белковой массы в организме животных, а также низкий уровень содержания нуклеиновых кис­лот позволяют использовать ее в качестве кормовой добавки в большей концентрации, чем кормовые дрожжи. При кормлении взрослых животных возможна замена в корме 50 % растительного белка на грибной.

В зависимости от способа подготовки растительного сырья для культивирования микроскопических грибов применяют и соот­ветствующие технологии их выращивания. Более высокий коэф­фициент использования сырья достигается при выращивании гри­бов на гидролизатах растительных отходов и жидких отходах дере­вообрабатывающей и целлюлозно-бумажной промышленности по сравнению с их культивированием на твердой питательной среде. Содержание белков в грибной массе при использовании метода глубинного культивирования составляет 50 —60 % от сухой массы. Для более полного использования сырья практикуется совмест­ное культивирование грибов и бактерий.

Биотехнология — это наука о методах и технологиях производства различных ценных веществ и продуктов с использованием природных биологических объектов (микроорганизмов, растительных и животных клеток), частей клеток (клеточных мембран, рибосом, митохондрий, хлоропластов) и процессов(Биотехнология…, 2008).

Введение
1. Методы биотехнологии, и ее перспективы
2. Биотехнология сельскохозяйственных растений
3. Естественная защита растений
4. Устойчивость к гербицидам
5. Устойчивость к неблагоприятным факторам среды
Заключение
Список использованных источников

Введение

Биотехнология — это наука о методах и технологиях производства различных ценных веществ и продуктов с использованием природных биологических объектов (микроорганизмов, растительных и животных клеток), частей клеток (клеточных мембран, рибосом, митохондрий, хлоропластов) и процессов(Биотехнология…, 2008).

Корни биотехнологии уходят в далёкое прошлое и связаны с хлебопечением, виноделием и другими способами приготовления пищи, известными человеку еще в древности. Например, такой биотехнологический процесс, как брожение с участием микроорганизмов, был известен и широко применялся еще в древнем Вавилоне, о чем свидетельствует описание приготовления пива, дошедшее до нас виде записи на дощечке, обнаруженной в 1981 г. при раскопках Вавилона.

Наукой биотехнология стала благодаря исследованиям и работам французского ученого, основоположника современной микробиологии и иммунологии Луи Пастера (1822-1895).

В ХХ веке происходило бурное развитие молекулярной биологии и генетики с применением достижений химии и физики. Важнейшим направлением исследований явилась разработка методов культивирования клеток растений и животных. И если еще совсем недавно для промышленных целей выращивали только бактерии и грибы, то сейчас появилась возможность не только выращивать любые клетки для производства биомассы, но и управлять их развитием, особенно у растений. Таким образом, новые научно-технологические подходы воплотились в разработку биотехнологических методов, позволяющих манипулировать непосредственно генами, создавать новые продукты, организмы и изменять свойства уже существующих. Главная цель применения этих методов — более полное использование потенциала живых организмов в интересах хозяйственной деятельности человека (Биотехнология…, 2008).

1. Методы биотехнологии

Генная и клеточная инженерия — являются важнейшими методами (инструментами), лежащими в основе современной биотехнологии. Методы клеточной инженерии направлены на конструирование клеток нового типа.

Они могут быть использованы для воссоздания жизнеспособной клетки из отдельных фрагментов разных клеток, для объединения целых клеток, принадлежавших различным видам с образованием клетки, несущей генетический материал обеих исходных клеток, и других операций.

Генно-инженерные методы направлены на конструирование новых, не существующих в природе сочетаний генов.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Наибольшее применение генная инженерия нашла в сельском хозяйстве и в медицине.

Люди всегда задумывались над тем, как можно научиться управлять природой, и искали способы получения, например, растений с улучшенными качествами: с высокой урожайностью, более крупными и вкусными плодами или с повышенной холодостойкостью. С давних времен основным методом, который использовался в этих целях, была селекция. Она широко применяется до настоящего времени и направлена на создание новых и улучшение уже существующих сортов культурных растений, пород домашних животных и штаммов микроорганизмов с ценными для человека признаками и свойствами.

Селекция строится на отборе растений (животных) с выраженными благоприятными признаками и дальнейшем скрещивании таких организмов, в то время как генная инженерия позволяет непосредственно вмешиваться в генетический аппарат клетки. Важно отметить, что в ходе традиционной селекции получить гибриды с искомой комбинацией полезных признаков весьма сложно, поскольку к потомству передаются очень большие фрагменты геномов каждого из родителей, в то время как генно-инженерные методы позволяют работать чаще всего с одним или несколькими генами, причем их модификации не затрагивают работу других генов.

В результате, не теряя других полезных свойств растения, удается добавить еще один или несколько полезных признаков, что весьма ценно для создания новых сортов и новых форм растений. Стало возможным изменять у растений, например, устойчивость к климату и стрессам, или их чувствительность к насекомым или болезням, распространённым в определённых регионах, к засухе и т. д. Учёные надеются даже получить такие породы деревьев, которые были бы устойчивы к пожарам. Ведутся широкие исследования по улучшению пищевой ценности различных сельскохозяйственных культур, таких как кукуруза, соя, картофель, томаты, горох и др (Биотехнология в с/х…,2009).

Вторая волна — начало 2000-х годов — создание растений с новыми потребительскими свойствами: масличные культуры с повышенным содержанием и измененным составом масел, фрукты и овощи с большим содержанием витаминов, более питательные зерновые и т. д.

Генно-инженерные работы в животноводстве имеют другую задачу. Вполне достижимой целью при современном уровне технологии является создание трансгенных животных с определённым целевым геном. Например, ген какого-нибудь ценного гормона животного (например, гормона роста) искусственно внедряется в бактерию, которая начинает продуцировать его в больших количествах.

Еще один пример: трансгенные козы, в результате введения соответствующего гена, могут вырабатывать специфический белок, фактор VIII, который препятствует кровотечению у больных, страдающих гемофилией, или фермент, тромбокиназу, способствующий рассасыванию тромба в кровеносных сосудах, что актуально для профилактики и терапии тромбофлебита у людей. Трансгенные животные вырабатывают эти белки намного быстрее, а сам способ значительно дешевле традиционного (Биотехнология в с/х…,2009).

2. Биотехнология сельскохозяйственных растений

Начиная с каменного века люди отбирали растения с удовлетворяющими их характеристиками и сохраняли их семена на следующий год. Отбирая лучшие семена, первые агрономы осуществили первичное генетическое модифицирование растений и таким образом одомашнили их задолго до того, как были открыты основные генетические закономерности. Сотни лет фермеры и селекционеры растений пользовались перекрестным скрещиванием, гибридизацией и другими подходами к модификации генома, приводящими к увеличению урожайности, улучшению качества продукции и повышению устойчивости растений к насекомым-вредителям, болезнетворным микроорганизмам и неблагоприятным условиям среды.

По мере углубления знаний о генетике растений человек начал осуществлять целенаправленное перекрестное скрещивание (кроссбридинг) обладающих желаемыми характеристиками или не имеющих нежелательных признаков сортов растений и межвидовую гибридизацию с целью получения новых сортов, сохранивших лучшие качества обеих родительских линий. В настоящее время практически любая сельскохозяйственная культура является результатом кроссбридинга, гибридизации или применения обоих подходов. К сожалению, эти методы нередко дороги, требуют больших затрат времени, неэффективны и имеют существенные практические ограничения. Например, для создания с помощью традиционного кроссбридинга сорта кукурузы, устойчивого к определенным насекомым, потребовался бы не один десяток лет, причем без гарантированного результата (Биотехнологические проблемы…,1982).

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Биотехнологические подходы — позволяют современным селекционерам выделять отдельные гены, отвечающие за желаемые признаки, и перемещать их из генома одного растения в геном другого.

Этот процесс гораздо более точен и избирателен, чем традиционное скрещивание, в ходе которого тысячи генов, обладающих неизвестными функциями, перемещаются из одного сорта или вида растений в другой.

Биотехнология позволяет и то, что не под силу природе — перемещение генов между растениями, животными и микроорганизмами. Это открывает огромные возможности для улучшения качества урожая. Например, мы можем взять бактериальный ген, токсичный для болезнетворного грибка, и встроить его в геном растения. Растение при этом начинает синтезировать фунгицидный белок и в борьбе с грибком не нуждается в помощи извне.

Современные селекционеры-биотехнологи ставят перед собой те же задачи, что и при традиционном кроссбридинге и других методах модификации генома: повышение урожайности; устойчивость к болезнетворным бактериям, грибкам и вирусам; способность выживать в неблагоприятных условиях среды (при заморозках и засухах); устойчивость к вредителям, таким как насекомые, сорняки и круглые черви (нематоды) (С/х биотехнология…,2003).

3. Естественная защита растений

Растения, как и животные, обладают врожденными механизмами защиты от различных насекомых и заболеваний. В настоящее время ученые ведут активный поиск соединений, которые активизировали бы эти естественные механизмы, не нанося при этом вреда окружающей среде.

Биотехнология также открывает большие перспективы в работе над созданием новых биопестицидов, таких как белки микроорганизмов и жирные кислоты, токсичные для определенных сельскохозяйственных вредителей, но безвредные для человека, животных, рыб, птиц и полезных насекомых. Уникальность механизмов действия биопестицидов обеспечивает защиту от вредителей, устойчивых к традиционным средствам.

Уже в 30-х годах прошлого века фермеры начали использовать в качестве биопестицида микроорганизм Bacillusthuringiensis (Bt), естественной средой обитания которого является почва. Некоторые белки, синтезируемые B. thuringiensis, смертельны для определенных насекомых, в том числе для кукурузного мотылька (Ostrinianubilalis), ежегодно наносящего сельскому хозяйству США урон в 1,2 миллиарда долларов. Использование аэрозолей, содержащих бактерии Bt, позволяет уничтожить насекомых-вредителей, не прибегая к химическим средствам (С/х биотехнология…,2003).

Возможности биотехнологии позволяют нам переносить гены белков, ядовитых для определенных вредителей (но не для людей, животных и полезных насекомых), в геном растений, которыми эти вредители питаются. Растение, которое раньше было источником пищи, становится смертельным для вредителя, что отменяет необходимость опрыскивания плантаций химическими пестицидами.

4. Устойчивость к гербицидам

Продуктивность сельскохозяйственной культуры зависит от присутствия в среде обитания сорняков, вступающих с основной культурой в конкуренцию за питательные вещества и влагу. Для уничтожения нежелательных растений сельскохозяйственные плантации, как правило, опрыскиваются гербицидами, которые в большей или меньшей степени токсичны не только для сорняков.

С помощью биотехнологических приемов можно повысить устойчивость культурных растений к гербицидам и таким образом в несколько раз уменьшить поступление токсичных веществ в окружающую среду.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

5. Устойчивость к неблагоприятным факторам среды

Кроме описанных выше биологических факторов, препятствующих росту и развитию растений, существует еще целый ряд абиотических стрессорных воздействий, регулярно оказываемых природой на сельскохозяйственные культуры — это засухи, холод, жара, повышенная кислотность или засоленность почв. Селекционерам с помощью кроссбридинга удалось создать достаточное количество сортов растений, устойчивых к биологическим факторам окружающей среды, однако в отношении устойчивости к абиотическим стрессам все не так просто. Основным лимитирующим моментом в данном случае является отсутствие у многих видов культурных растений диких родственников, обладающих устойчивостью к тому или иному фактору среды.

Репродуктивная несовместимость, ограничивающая возможности традиционного кроссбридинга, совершенно не влияет на возможности биотехнологии растений, т. к. гены практически любого организма могут использоваться для улучшения существующих сортов сельскохозяйственных культур. В настоящее время ученые делают большие достижения в разработке сортов, способных расти и давать урожай в различных природных условиях. В качестве примера можно привести генетически модифицированные сорта помидоров и канолы (разновидность рапса), которые могут переносить в 100 раз более высокий уровень солености почвы, чем традиционные сорта.

Исследователи также идентифицировали большое количество генов, ответственных за естественную устойчивость некоторых растений и бактерий к холоду, жаре и засухе. Мексиканские ученые создали сорта кукурузы и папайи, устойчивые к повышенному содержанию в почве алюминия, оказывающему негативное влияние на продуктивность сельского хозяйства многих развивающихся стран.

Кроме увеличения продуктивности сортов за счет придания им устойчивости к заболеваниям, вредителям, сорнякам и воздействиям окружающей среды, сельскохозяйственные биотехнологи работают над непосредственным повышением урожайности культур. Японские ученые встроили гены, обеспечивающие фотосинтез растений кукурузы, в геном риса.

Это повысило эффективность усвоения энергии солнечного света и накопления в зерне крахмала, и урожайность нового сорта риса оказалась на 30 % выше по сравнению с исходным уровнем. Другим подходом, но с той же конечной целью, является блокирование определенных генов растения, что приводит к перераспределению питательных веществ между различными частями растения. Урожайность значительно возрастает при преимущественном накоплении крахмала или жирных кислот не в листьях растения, а, например, в клубнях картофеля или семенах рапса (Биотехнология в с/х…,2009).

Биотехнологические методы также позволяют повышать эффективность усвоения растениями необходимых им микроэлементов. Например, мексиканские ученые создали генетически модифицированные растения, корни которых секретируют в окружающую среду лимонную кислоту. В результате происходит небольшое подкисление почвы и переход содержащихся в ней минералов, в том числе кальция, фосфора и калия, в растворимую форму, что делает их доступными для растений.

Азот — является важнейшим элементом, лимитирующим рост растений.

Ученые, работающие в разных областях, шаг за шагом приближаются к разгадке секретов симбиотических отношений, позволяющих азотфиксирующим бактериям поглощать атмосферный азот и отдавать его растениям, предоставляющим им убежище в корневых клубеньках:

1. Генетики-ботаники из Венгрии и Англии идентифицировали растительный ген и соответствующий белок, позволяющий растениям вступать во взаимодействие с почвенными азотфиксирующими бактериями.

2. Генетики-микробиологи из университета Квинсленда (Австралия) идентифицировали бактериальный ген, стимулирующий формирование корневых клубеньков.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

3. В результате совместной работы молекулярных биологов Европейского Союза, США и Канады был полностью расшифрован геном одного из видов азотфиксирующих бактерий.

4. Ученые, занимающиеся химией белков, расшифровали точную структуру фермента, превращающего атмосферный азот в приемлемую для растений форму (Биотехнологические проблемы…,1982).

Заключение

Центральная проблема биотехнологии — интенсификация биопроцессов как за счет повышения потенциала биологических агентов и их систем, так и за счет усовершенствования оборудования, применения биокатализаторов (иммобилизованных ферментов и клеток) в промышленности, аналитической химии, медицине.

В основе промышленного использования достижений биологии лежит техника создания рекомбинантных молекул ДНК. Конструирование нужных генов позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми свойствами.

В частности, возможно управление процессом фиксации атмосферного азота и перенос соответствующих генов из клеток микроорганизмов в геном растительной клетки.

Биотехнология открывает новые горизонты перед человеческим разумом. Проблемы биотехнологии чрезвычайно много образны, начиная от чисто технических (например, снижение каталитической активности ферментов при их иммобилизации) и кончая тонкими интеллектуальными проблемами, связанными с обеднением фундаментальной науки в связи с доминированием чисто проблемно-прикладных разработок (Биотехнологические проблемы…,1982).

Список использованных источников

Биотехнологические кормовые добавки. Этапы развития и задачи

12.12.2017

Биотехнологические кормовые добавки. Этапы развития и задачи

Значимость для общества промышленного производства биопродуктов можно оценить по денежному выражению: ежегодный прирост рынка биотехнологической промышленности в мире составляет около семи процентов, а его объем превышает 200 млрд USD.

Биотехнология является приоритетным направлением для ускоренного подъема экономики в успешно развивающихся странах, таких как Бразилия, Малайзия, Вьетнам, Индия, Китай и другие, а инвестиции в биотехнологическую промышленность считаются наиболее эффективными. В технически развитых странах (Япония, США, Франция, Израиль и др.) за последние десятилетия были научно разработаны и освоены в промышленном масштабе новые биотехнологические процессы получения белка, аминокислот, витаминов, ферментов, органических кислот, спирта, пищевых добавок, антибиотиков и лекарственных препаратов. Значительная часть промышленно выпускаемых биопродуктов (кормовой белок, аминокислоты, витамины, ферменты, антибиотики) идет на удовлетворение нужд сельскохозяйственного животноводства и птицеводства.

Рассматривая с этой точки зрения интересную и актуальную публикацию в октябрьском номере журнала [1], суть которой сводится к очевидным экономическим трудностям страны, зависящей от импорта (в основном из Китая) таких важных кормовых компонентов, как аминокислоты и витамины. Следует отметить, что сложившиеся в последние годы условия производства в России кормов и премиксов в значительной степени диктуются зарубежными поставками этих ингредиентов, при этом рост цен на них является, как правило, неизбежным. Несомненно, обеспечение рационов сельскохозяйственных животных и птицы этими биодобавками крайне необходимо для полноценного развития и прироста живой массы. Однако достижение этой важной для сельхозпроизводства задачи путем наращивания импорта необходимых компонентов питания приводит, с одной стороны, к повышению цен для потребителей этой продукции в стране, а с другой стороны — к потере отечественного биотехнологического производства. Это наглядно было продемонстрировано на примере биотехнологии лимонной кислоты, успешно развиваемой ранее в нашей стране в научном и техническом плане и сведенной за несколько лет практически к нулю в связи с импортом ее из КНР.

Важно отметить, что развитие промышленной биотехнологии было в свое время приоритетным направлением, в том числе успешно развивалась биотехнология белка, аминокислот и витаминов, обеспечивая нужды сельского хозяйства. В этой связи интересно совершить экскурс в недавнее прошлое и рассмотреть ряд аспектов развития биотехнологической промышленности в стране.

Потребности комбикормовой промышленности, тонн

Аминокислота

В настоящее время современное производство лизина в РФ планируется развивать на базе глубокой переработки зерна с получением ряда сопутствующих продуктов — глютена и крахмала, и первые такие биопроизводства уже реализуются, при этом используется частично зарубежная биотехнология.

На метионин приходится треть всего объема потребления аминокислот в РФ. Практически 80% спроса удовлетворяется за счет внутреннего производства DL-метионина химическим методом. Импортный метионин занимает около 20–25% рынка. Технология производства DL-метионина микробиологическим синтезом в промышленном масштабе пока не реализована, однако такие разработки осуществлялись в РФ.

Поставки треонина в Россию, составляют порядка 5 тыс. тонн в год (примерно половина потребности), а поставки триптофана — около 30 тонны. В России данные аминокислоты в настоящее время в промышленном масштабе не производятся. Следует отметить, что заводы по производству лизина вполне могут выпускать на своем оборудовании и треонин путем замены штамма.

Промышленная биотехнология получения важного компонента питания животных — кормового концентрата витамина В12, выделяемого из биомассы пропионовокислых бактерий, была реализована в 1960–1967 гг. в процессе термофильного метанового брожения отходов ацетонобутиловых и спиртовых заводов.

С организацией в 1966 г. Главного управления микробиологической промышленности при СМ СССР успешно развивалось биотехнологическое производство ферментных препаратов, L-лизина и других аминокислот, витаминов, кормового белка, биологических средств защиты растений, биоудобрений, биостимуляторов роста растений, кормовых антибиотиков, полисахаридов [2]. Затем на базе Главмикробиопрома было создано Министерство медицинской и микробиологической промышленности, которое в период 1985–1990 гг. (до его ликвидации) возглавлял академик В.А. Быков.

Производство основных видов продукции предприятиями Главмикробиопрома

Кормовой белок микробиологический, тыс. т

Кормовые антибиотики в пересчете на бацитрацин, т

Ферментные препараты, у. т

Кормовой витамин B12, кг

В эти годы одним из приоритетных направлений развития промышленной биотехнологии для решения задач сельского хозяйства было создание и освоение крупнотоннажного производства кормового белково-витаминного продукта (БВК). Этим решались основные проблемы обеспечения кормовой базы, учитывая, что биомасса микроорганизмов богата полноценным белком, включает все необходимые для полноценного питания животных аминокислоты и витамины и не уступает традиционным белковым добавкам на основе рыбной и мясокостной муки, значительно превосходя большинство растительных кормов.

В 1 кг ржаной озимой соломы содержится всего 4 г переваримого белка, в кормовой свекле — 3, в овсяной мякине — 21, в луговом сене — 50, в кукурузном силосе — 6, в зернах овса — 77 г. Потребность же в переваримом белке для коровы недойной составляет 500–800 г/сут., коровы дойной — до 1500, молодой свиноматки — до 500 г/сут.

В таблице приведено сравнение основных (усредненных) показателей аминокислотного состава для микробиологических и традиционных кормовых добавок, используемых в рационах сельскохозяйственных животных.

Содержание сырого протеина и аминокислот в различных кормовых добавках, %

Биомасса дрожжей из н-парафинов (БВК)

Бактериальная биомасса из природного газа (гаприн)

Мясокостная мука

Рыбная мука

Лейцин и изолейцин

В уникально короткие сроки были выполнены научно-технические разработки и введены в строй крупные производственные мощности по производству микробиологического белка (БВК) из очищенных парафинов нефти общей мощностью более 1 млн тонн в год [2]. При этом в кормовую базу с БВК поступало около 50 тыс. тонн в год лизина и около 20 тонн витаминов группы В.

Были построены и пущены в эксплуатацию крупнейшие биозаводы:

– Кстовский завод БВК мощностью 70 тыс. тонн в год (введен в эксплуатацию с 1973 г.),

– Киришский БХЗ мощностью 70 тыс. тонн в год (введен в эксплуатацию в 1975 г.),

– Светлоярский завод БВК мощностью 240 тыс. тонн в год (введен в эксплуатацию в 1975 г.),

– Башкирский биохимкомбинат мощностью 180 тыс. тонн в год (введен в эксплуатацию в 1976 г.),

– Новополоцкий завод БВК мощностью 60 тыс. тонн в год (введен в эксплуатацию в 1977 г.),

– Ангарский завод БВК мощностью 60 тыс. тонн в год (введен в эксплуатацию в 1979 г.)

– Кременчугский завод БВК мощностью 120 тыс. тонн в год (введен в эксплуатацию в 1980 г.),

– Мозырский завод кормовых дрожжей мощностью 300 тыс. тонн в год (введен в эксплуатацию в1980 г.).

Разработки по созданию и последующей модернизации уникальных промышленных ферментационных аппаратов емкостью 900 м 3 , где осуществлялся непрерывный процесс микробиологического синтеза, проводили ведущие учёные института ВНИИСинтезбелок. Была достигнута высокая производительность ферментеров — до 50 тонн дрожжей в сутки при получении качественного белкового продукта, содержащего более 60% сырого протеина. Экстракционно очищенная биомасса с Кстовского и Мозырского заводов поступала на экспорт в Польшу, Румынию и другие страны. Одновременно выполнялись исследования по обеспечению экологической безопасности биопроизводств и была реализована безотходная технология с замкнутым циклом водоиспользования и очистки газо-воздушных выбросов, позволившая исключить сброс в водоёмы промышленных сточных вод и загрязнение атмосферы вредными веществами.

К большому сожалению, крупнотоннажные заводы БВК, выпускавшие кормовой белок из н-парафинов нефти, а затем перешедшие на новую разработанную в РФ биотехнологию переработки низкосортного зерносырья с получением кормовой белковой добавки, в настоящее время практически НЕ СУЩЕСТВУЮТ: оборудование демонтировано и продано как металл.

Такая же участь постигла и первое опытно-промышленное производство кормового белка из природного газа (гаприна), освоенное на Светлоярском биозаводе [3]. Продукт содержал до 80% сырого протеина, полноценного по аминокислотному составу. Гаприн богат витаминами, в том числе группы В (тиамин (В1) — 14,1 мг/кг, цианкобаламин (В12) — 5,6 мг/кг), а также макро- и микроэлементами. Высокое качество и биологическая ценность гаприна определяли повышенный спрос на него во многих странах Европы. Однако в мае 1994 г. производство гаприна из-за резкого повышения цен в России на энергоносители и электроэнергию было остановлено и оборудование демонтировано. Аналогичная по задаче пилотная установка создавалась в Норвегии, а в настоящее время датской фирмой Unibio разработан проект оригинальной установки производства биопротеина, с перспективой создания на этой основе биозаводов получения белка из природного газа в США.

Таким образом, накопленный в стране научно-технический потенциал и выполненные в промышленном масштабе биотехнологические проекты, направленные на обеспечение животноводства и птицеводства необходимыми кормовыми компонентами, позволяют создать в ближайшие годы высокотехнологичные и энергоэкономные биопроизводства. Несомненно, на новом этапе следует большое внимание уделить современным подходам к разработке и оптимальному проектированию биохимических предприятий [4]. Особое значение приобретают новые технологии создания промышленных биореакторов со сниженными энергозатратами [5]. Так, при производстве гаприна из природного газа уменьшение удельных энегозатрат на стадии ферментации позволит значительно увеличить конкурентоспособность получаемого кормового белкового продукта.

Развитие отечественной промышленной биотехнологии позволит в ближайшие годы значительно уменьшить импортозависимость кормовой базы сельского хозяйства, предотвратить возможный рост цен на основные компоненты кормов и снизить себестоимость получаемой продукции.

1. Бурдаева, К. Китайская лихорадка // Ценовик. — 2017. — № 5. — С. 7–9.

2. Быков, В.А. Микробиологическая промышленность / В.А. Быков, А.Ю. Винаров, Н.Б. Градова, Ю.В. Ковальский // Химический комплекс (Антология: Строители России. XX–XXI век). — М.: Мастер, 2008. — С. 406–424.

3. Винаров А.Ю. Кормовой белок из природного газа // Ценовик. — 2017. — № 5. — С. 32–33.

4. Кафаров, В.В. Моделирование и системный анализ биохимических производств / В.В. Кафаров, А.Ю. Винаров, Л.С. Гордеев. — М.: Лесная промышленность, 1985. — 280 с.

5. Винаров, А.Ю. Ферментационные аппараты для процессов микробиологического синтеза / А.Ю. Винаров, Л.С. Гордеев, А.А. Кухаренко, В.И. Панфилов. — М.: ДеЛи принт, 2005. — 277 с.

Биотехнология – это наука об использовании биологических процессов в технике и промышленном производстве.
Пищевая биотехнология является одним из важнейших разделов биотехнологии. В течение тысячелетий люди успешно получали сыр, уксус, спиртные напитки и другие продукты, не зная о том, что в основе лежит метод микробиологической ферментации.
Пищевая биотехнология является новым и перспективным направлением в перерабатывающей промышленности (мясная, молочная, рыбная и др.).

Прикрепленные файлы: 1 файл

реферат пищевая биотехнологие.docx

ФГБОУ ВПО ВЯТСКАЯ ГОСУДАРСТВЕННАЯ

ФАКУЛЬТЕТ ВЕТЕРИНАРНОЙ МЕДИЦИНЫ

Кафедра диагностики, терапии и фармакологии

СОДЕРЖАНИЕ

Введение

Биотехнология – это наука об использовании биологических процессов в технике и промышленном производстве.

Пищевая биотехнология является одним из важнейших разделов биотехнологии. В течение тысячелетий люди успешно получали сыр, уксус, спиртные напитки и другие продукты, не зная о том, что в основе лежит метод микробиологической ферментации.

Пищевая биотехнология является новым и перспективным направлением в перерабатывающей промышленности (мясная, молочная, рыбная и др.). Пищевая биотехнология изучает биотехнологический потенциал сырья животного происхождения и пищевых добавок, в качестве которых используются ферментные препараты, продукты микробиологического синтеза, новые виды биологически активных веществ и многокомпонентные добавки.

С помощью пищевой биотехнологии в настоящее время получают такие пищевые продукты, как пиво, вино, спирт, хлеб, уксус, кисломолочные продукты, сырокопченые и сыровяленые мясные продукты и многие другие. Кроме того, пищевая биотехнология используется для получения веществ и соединений, используемых в пищевой промышленности: это лимонная, молочная и другие органические кислоты; ферментные препараты различного действия – протеолитические, амилолитические, целлюлолитические; аминокислоты и другие пищевые и биологически активные добавки.

Биотехнология позволяет улучшить качество, питательную ценность и безопасность как сельскохозяйственных культур, так и продуктов животного происхождения, составляющих основу используемого пищевой промышленностью сырья.

Кроме того, биотехнология предоставляет массу возможностей усовершенствования методов переработки сырья в конечные продукты: натуральные ароматизаторы и красители; новые технологические добавки, в том числе ферменты и эмульгаторы; заквасочные культуры; новые средства для утилизации отходов.

Этапы развития биотехнологии

В начале XIX в. русский академик К.С. Киргоф впервые получил жидкий ферментный препарат амилазы из проросшего ячменя и описал ферментный процесс.

В 1857 г. Луи Пастер установил, что микробы играют ключевую роль в процессах брожения, и показал, что в образовании отдельных продуктов участвуют разные виды микроорганизмов.

1875 г. Разработан метод получения чистых культур микроорганизмов, гарантирующий содержание в посевном материале клеток только определенного вида (Р. Кох).

В 1893 г. установлена способность плесневых грибов синтезировать лимонную кислоту (К. Вемер).

1894 г. Создан первый ферментный препарат, полученный из плесневого гриба, выращенного на влажном рисе (И. Такамине).

В 1923 г. было организовано первое микробиологическое промышленное производство лимонной кислоты, а затем молочной, глюконовой и других органических кислот.

В 30-е годы в СССР было организовано производство микробиологическим способом технических препаратов ферментов и витаминов (рибофлавина, эргостерина).

Следующий важный этап – организация промышленного производства антибиотиков, основанного на открытии химиотерапевтической активности пенициллина в 1940 г. (Флемминг, Флори и Чейни).

В военные годы (1941-1945 гг.) возросла потребность в дрожжах как источнике белковых веществ. Изучалась способность дрожжей накапливать белоксодержащую биомассу на непищевом сырье (древесные опилки, гороховая, овсяная шелуха). В блокадном Ленинграде, Москве были созданы установки, на которых производили пищевые дрожжи. В военной Германии биомассу дрожжей добавляли в колбасу и супы.

В 1948 г. советским ученым Букиным с помощью микроорганизмов был получен витамин В12, который не способны синтезировать ни растения, ни животные.

В 1961 г. установлена способность мутантов бактерий к сверхсинтезу аминокислот (С. Киносита, К. Накаяма, С. Китада). В 1961-1975 гг. было налажено промышленное производство микробиологическим путем аминокислот: глутаминовой, лизина и др.

Еще в 60-х годах ряд нефтяных и химических компаний начали исследования и разработки по созданию биотехнологических процессов получения белка одноклеточных организмов, предназначенного для добавления в пищу животным и людям. Одной из причин этого был недостаток белковой пищи в мире. Наиболее конкурентоспособными оказались процессы на основе метанола и крахмала. На основе углеводородного сырья (жидких и газообразных углеводородов) в 70-х годах в СССР впервые было создано многотоннажное производство кормовых дрожжей.

В конце 60-х годов начали применяться иммобилизованные формы микробных ферментов, которые нашли широкое применение в пищевой промышленности.

В 1972 г. разработана технология клонирования ДНК (П. Берг).

В 1975 г. с возникновением генной инженерии появилась возможность направленно создавать для промышленности микроорганизмы с заданными свойствами.

В 1981 г. проведена микрохирургическая трансплантация эмбрионов животных с целью быстрого размножения высокопродуктивных экземпляров (Вилландсон).

Основные направления в биотехнологии

В некоторых отраслях биотехнология способна заменить традиционную технологию (например, при длительном хранении продуктов, в производстве пищевых приправ, полимеров, при извлечении некоторых металлов из бедных руд). В некоторых отраслях промышленности биотехнология играет ведущую роль (таблица 1).

Таблица 1- Основные направления биотехнологии в различных отраслях

промышленности и практической деятельности человека

Получение новых штаммов микроорганизмов-продуцентов биомассы, используемой в качестве белковых и белково-витаминных концентратов.

Новые методы селекции растений и животных, получение генетически модифицированного сырья, клонирование.

Использование антибиотиков (в том числе полученных биотехнологическим путем) для профилактики и лечения заболеваний сельскохозяйственных животных и птиц; получение вакцин.

Применение гормонов и других стимуляторов роста.

Производство химических веществ и соединений

Производство органических кислот (лимонной, итаконовой).

Получение витаминов, антибиотиков и других веществ.

Использование ферментов в составе отбеливателей и моющих средств.

Контроль за состоянием окружающей среды

Улучшение методов тестирования и мониторинга загрязнения окружающей среды.

Прогнозирование превращений ксенобиотиков благодаря более глубокому пониманию биохимии микроорганизмов.

Усовершенствование методов переработки отходов, бытовых и промышленных, с использованием микроорганизмов, разлагающих пластмассу и другие соединения.

Применение ферментов для усовершенствования диагностики, создание датчиков на основе ферментов.

Использование микроорганизмов и ферментов при создании сложных лекарств (например, стероидов).

Синтез новых антибиотиков.

Применение ферментов (пищеварительных ферментов: фестала, мезима, энзистала) и препаратов микроорганизмов (лактобактерий, бифидобактерий) в терапии.

Продолжение таблицы 1

Увеличение потребления биогаза – продукта жизнедеятельности микроорганизмов.

Крупномасштабное производство этанола как жидкого топлива.

Дальнейшее изучение и контроль биоразложения.

Создание новых методов переработки и хранения пищевых продуктов.

Применение пищевых добавок (продуцируемых микроорганизмами аминокислот, органических кислот, полимеров и др.).

Использование белка, синтезируемого одноклеточными микроорганизмами.

Применение ферментов при переработке пищевого сырья.

Использование микроорганизмов в бродильных производствах.

Применение микроорганизмов в качестве заквасок.

Современное состояние пищевой биотехнологии

В современной пищевой биотехнологии можно выделить два направления: применение веществ и соединений, полученных биотехнологическим способом (например, органических кислот, аминокислот, витаминов), и интенсификация биотехнологических процессов в производстве пищевых продуктов.

В настоящее время в пищевой промышленности широко используется продукция, полученная биотехнологическим способом. Расширяется область применения пищевых добавок, в том числе полученных с помощью микробных клеток: органических кислот, ферментных препаратов, подсластителей, ароматизаторов, загустителей и т.д. (таблица 2). На продовольственном рынке растет ассортимент функциональных пищевых продуктов. Для их производства применяют витамины, аминокислоты и другие соединения, полученные биотехнологическим способом.

Таблица 2 - Использование продукции биотехнологии в пищевой промышленности

Использование в пищевой промышленности

Цистеин, метионин, лизин

Повышение пищевой (биологической) ценности белоксодержащих продуктов

Глутаминовая кислота (глутамат натрия)

Усиление аромата мясных, рыбных и других изделий

Придание кондитерским изделиям, безалкогольным напиткам кисло-сладкого вкуса

Производство низкокалорийных сладких продуктов

Производство спирта, вин, пива, хлеба, кон-

дитерских изделий и продуктов детского питания

Получение глюкозы, удаление декстринов из

Производство кондитерских изделий

Выработка мальтазных (в сочетании с β-амилазой) или глюконовых (с глюкоамилазой) фруктовых сиропов из крахмала

Освобождение молочной сыворотки от лактозы, приготовление мороженого и др.

Приготовление растворимого кофе, морковного джема, улучшение консистенции грибов и овощей, обработка плодов цитрусовых

Осветление вин и фруктовых соков, обработка цитрусовых плодов

Сыроварение, ускорение созревания теста, производство крекеров, улучшение качества мяса

Фицин, трипсин, бромелаин

Ускорение процесса маринования рыбы, отделение мяса от костей

Придание специфического аромата сыру, шоколаду, молочным продуктам, улучшение качества взбитых яичных белков

Удаление кислорода из сухого молока, кофе, пива, майонезов, фруктовых соков для их улучшения и продления сроков хранения

Продолжение таблицы 2

А, В1 , В2 , В6 , В12 , С, D, Е, β-каротин

Повышение пищевой ценности продуктов

Красители, усилители цвета

Уксусная, лимонная, бензойная, молочная, глюконовая, яблочная

Консерванты, ароматизаторы, подкислители

Терпены и родственные соединения:

Загустители и стабилизаторы кремов,

Применение пищевых добавок и ингредиентов, полученных биотехнологическим путем

Усилители вкуса. Вещества, усиливающие оттенки вкуса, содержатся в природных пищевых продуктах. Главным усилителем вкуса считается натриевая соль глутаминовой кислоты (глутамат натрия): ее можно получать при помощи Micrococcus glutamicus.

Расщепляя с помощью фермента нуклеазы микроскопического гриба Penicillium citrinum нуклеиновые кислоты, в промышленном масштабе получают 5´-нуклеотиды (содержащие главным образом инозин и гуанин), которые находят применение как усилители вкуса.

Красители. Основные потребности в этих соединениях удовлетворяются за счет природных источников и продуктов химического синтеза, но два из них традиционно получают методами биотехнологии. В качестве красителей и усилителей цвета используются некоторые витамины, такие как В2(рибофлавин), β-каротин, окрашивающие пищевые продукты в оранжево-желтые цвета. b-каротин применяют при изготовлении колбас с целью замены нитрита натрия, кондитерских изделий, сливочного масла, макаронных изделий.

Некоторые аминокислоты при температуре 100-120 °С и сильнощелочной реакции взаимодействуют с сахарами с образованием красителей.

Загустители. Ксантан был первым микробным полисахаридом, который начали производить в промышленном масштабе (1967 г.). Синтезируется микроорганизмами Xanthomonas campestris при выращивании на глюкозе, сахарозе, крахмале, кукурузной декстрозе, барде, творожной сыворотке. Это вещество обладает высокой вязкостью в широком диапазоне рН, не зависящей от температуры и присутствия солей. Ксантаны безопасны для человека, вследствие чего с 1969 г. используются в пищевой промышленности для производства консервированных и замороженных пищевых продуктов, приправ, соусов, продуктов быстрого приготовления, заправок, кремов и фруктовых напитков.

Широко используется в кондитерской промышленности и при производстве мороженого в качестве стабилизатора полисахарид декстран (α-D-глюкан) из Leuconostoc mesenteroides, выращиваемого на сахарозе.

Читайте также: