Биосинтез нуклеиновых кислот реферат

Обновлено: 28.06.2024

Прежде чем изложить современные представления о механизме биосинтеза ДНК, следует представить сведения о синтезе этого соединения в бесклеточной системе, которыми располагает биохимия. Известно, что для любого синтеза полимерной органической молекулы, осуществляемого in vitro или in vivo, требуется энергия. Источником энергии в реакциях полимеризации мононуклеотидов является энергия, освобождаемая всеми четырьмя типами дезоксирибонуклеозидтрифосфатов, участвующих в синтезе ДНК. Образующийся пирофосфат под действием пирофосфатазы также расщепляется на две молекулы ортофосфата, давая дополнительную энергию для биосинтеза ДНК.

Содержание

Введение.
Общий механиз синтеза ДНК.
Особенности репликации ДНК у эукариот.
Этапы биосинтеза ДНК.
- инициация
- элонгация
- терминация
5. Синтез ДНК на матрице РНК.

Прикрепленные файлы: 1 файл

днк.docx

Прежде чем изложить современные представления о механизме биос интеза ДНК, следует представить сведения о синтезе этого соединения в бесклеточной системе, которыми располагает биохимия. Известно, что для любого синтеза полимерной органической молекулы, осуществляемого in vitro или in vivo, требуется энергия. Источником энергии в реакциях полимеризации монон уклеотидов является энергия, освобождаемая всеми четырьмя типами дезоксирибонуклеозидтрифосфато в, участвующих в синтезе ДНК. Образующийся пирофосфат под действием пирофосфатазы также расщепляется на две молекулы ортофосфата, давая дополнительную энергию для биосинтеза ДНК.

Помимо энергии, биогенез ДНК требует наличия специфических ферментов, катализирующих отдельные этапы синтеза, и множества белковых факторов, абсолютно необходимых для регулирования процесса репликации и проявления каталитической активности ферментов.

Ферментные системы синтеза ДНК у про- и эукариот до конца не выяснены. По имеющимся данным, в репликации ДНК, включающей узнавание точки начала процесса, расплетение родительских цепей ДНК в репликационной вилке, инициацию биосинтеза дочерних цепей и дальнейшую ихэлонгацию и, наконец, окончание (терминация) процесса, участвует более 40 ферментов и белковых факторов, объединенных в единую ДНК-репликазную систему, называемую реплисомой.

После открытия в 1958 г. А. Корнбергом у Е. coli фермента, катализирующего биосинтез ДНК и названного ДНК-полимеразой I, в течение почти 10 лет считалось, что этот фермент является единственной по-лимеразой, принимающей участие в репликации ДНК in vitro . Однако позже был открыт мутант Е.coli, лишенный ДНК-полимеразы I, но способный синтезировать ДНК с нормальной скоростью. Оказалось, что для репликации ДНК Е. coli необходимо участие нескольких ферментов. ДНК-полимераза I не наделена способностью инициировать синтез цепей ДНК de novo. Одним из хорошо изученных ферментов, участвующих в стадии инициации репликации ДНК, является специфическая клеточная РНК-полимераза, названная праймазой, которая катализирует синтез короткого олигорибонуклеотида (от 10 до 60 нуклеотидов), т.е. праймера, с которого затем начинается синтез ДНК. Праймазы различаются как по структуре, так и по специфичности действия. Получены новые данные о существенной роли праймасомы в каталитическом действии фермента. Праймасома представлена ансамблем из 7 различных субъединиц, включающих около 20 полипептидов общей мол. массой 70000. При помощи белка n' праймасома подвергается быстрому перемещению к отстающей цепи ДНК за счет энергии, генерируемой АТФазной активностью белка n'. В состав праймасомы входит также комплекс белков dna В и dna С, который вблизи репликационной вилки периодически участвует в формировании специфической вторичной структуры ДНК, подходящей для узнавания праймазой.

Важную функцию соединения двух цепей ДНК или замыкания двух концов одной цепи ДНК в процессе репликации либо репар ации ДНК выполняет особый фермент – ДНК - лигаза, катализирующая за счет энергии АТФ образование фосфодиэфирной связи между 3'-ОН-группой де-зоксирибозы одной цепи и 5'-фосфатной группой другой цепи ДНК.

Из клеток животных выделено несколько ДНК-полимераз, и в разных лабораториях они получили различные наименования.

К настоящему времени у эукариот, как и у бактерий (см. ранее), открыто несколько ДНК-полимераз. В репликации ДНК эукариот учас твуют два главных типа полимераз – α и δ. Показано, что ДНК-полимераза α состоит из 4 субъединиц и является идентичной по структуре и свойствам во всехклетках млекопитающих, причем одна из субъединиц оказалась наделенной праймазной активностью. Самая крупная субъединица ДНК-полимеразы а (мол. масса 180000) катализирует реакцию полимериз ации, преимущественно синтез отстающей цепи ДНК, являясь составной частью праймасомы. ДНК-полимераза δ состоит из 2 субъединиц и преимущественно катализирует синтез ведущей цепи ДНК (см. далее). Открыта также ДНК-полимераза ε, которая в ряде случаев заменяет δ-фермент, в частности при репарации ДНК (исправление нарушений ДНК, вызванных ошибкамирепликации или повреждающими агентами). Следует отметить, что в эукариотических клетках откр ыты два белковых фактора репликации, обозначаемых RFA и RFC. Фактор репликации А выполняет функцию белка – связывание одноцепочечной ДНК (наподобие белковых факторов связывания разъединенных цепей ДНК при репликации у Е. coli), фактор С – функцию стабилизатора всего реплика-ционного комплекса.

В генетической инженерии с целью получения белков в достаточных количествах и с заданными свойствами (например, для генотерапиинаследственных и соматических болезней) широкое применение получили эндо-нуклеазы рестриктазы, катализирующие расщепление молекулыдвух- цепочечной ДНК по специфическим нуклеотидным последовательностям внутри цепи. Рестриктазы узнают определенные 4–7-членные последовательности, вызывая, таким образом, разрывы в определенных сайтах цепи ДНК. При этом образуются не случайные последовательности, а фрагменты ДНК строго определенной структуры с липкими концами (ре-комбинантные ДНК), используемые далее для конструирования гибридныхмолекул и получения генно-инженерной, биотехнологической продукции (например, инсулина, гормона роста, интерферона, вакцин против вирусагепатита В, СПИДа и др.).

Общий механизм синтеза ДНК.

Химический смысл полимеризации состоит в том, что свободная 3'-гидроксильная группа матрицы атакует α-фосфатную группу соответствующего присоединяемого нуклеозидтрифосфата (определяется природой азотистого основания затравки), при этом происходят отщепление остаткапирофосфата и образование фосфодиэфирной связи. Далее свободный 3'-гидроксил вновь присоединенного нуклеотида ата кует α-фосфатную группу следующего нуклеозидтрифосфата, и таким путем продолжается процесс полимеризации, идущий в направлении 5'–>3', антипараллельноматрице, оканчивающейся 5'-фосфатом:

Реакция требует присутствия одноцепочечной ДНК или в крайнем случае небольшого полидезоксирибонуклеотида. В деталях выяснено значение предобразованной ДНК в механизмах действия ДНК-полимераз:

ДНК служит не только затравкой, но и матрицей, на которой фермент комплементарно и антипараллельно синтезирует дочернюю цепь ДНК. Это можно представить в виде схемы:

Были предприняты другие подходы к выяснению механизма поли-меразной реакции. В лаборатории А. Корнберга был открыт фаг (φХ174, содержащий одноцепочечную кольцевую ДНК. Эту молекулу использовали в качестве матрицы в ДНК-полимеразной реакции и получили биологически активную ДНК фага, использовав фермент ДНК- лигазу, обладающую способностью катализировать соединение (сшивку) концов разрывов в молекуле ДНК. Было показано, что в процессе репликации одноцепоче чная ДНК фага (φХ174 проходит стадию образования двухцепо-чечной кольцевой ДНК. Применив ряд остроумных подходов, А. Корнберг и сотр. в опытах in vitro создали искусственную молекулу фага φХ 174, обладающую способностью поражать (инфицировать) Е. coli, вызывая лизис бактерии. Последовательность событий может быть представлена на схеме, где исходная молекула кольцевой ДН К фага φХ174 обозначена плюсом (+), а вновь синтезируемая молекула – минусом (–) (рис. 13.1). М. Мезельсон и Ф. Сталь показали полуконсервативный механизм репликации ДНК, включающий образование дочерних молекул ДНК, в каждой из которых сохраняется лишь одна родительская цепь (рис. 13.2; 13.3).

Сложность процесса репликации ДНК объясн яется тем, что обе цепи реплицируются одновременно, хотя имеют разное направление (5'–>3' и 3'–>5'); кроме того, рост дочерних цепей также должен происходить в противоположных направлениях. Элонгация каждой дочерней цепи может осуществляться только в направлении 5'–>3'. Р. Оказаки высказал предположение, подтвержденное экспериментальными данными, что синтез одной из дочерних цепей осуществляется непрерывно в одном направлении, в то время как синтез другой дочерней цепи происходит прерывисто, путем соединения коротких фрагментов (в честь автора названы фрагментами Оказаки), в свою очередь синтезирующихся в противоположном направлении (рис. 13.4).

Как видно, синтез ведущей цепи ДНК идет всегда в направлении 5'–>3', соответствующем направлению движения репликационной вилки. Сохраняя правило синтеза дочерних молекул ДНК 5'–>3', синтез на второй цепи родительской ДНК идет в направлении, противоположном движению репликационной вилки. В зависимости от типа клетки фрагменты Оказаки имеют разные размеры – от нескольких сот до нескольких тысяч нуклеотидов (150–200 у эукариот и 1000–2000 у бактерий).

Рис. 13.1. Роль ДНК-полимеразы и ДНК-лигазы в синтезе кольцевой одноцепочеч-ной ДНК фага φХ174 .

Получены доказательства, что образование каждого фрагме нта Оказаки требует наличия короткого затравочного комплементарного праймера – участка РНК, синтез которого катализируется праймазой. Затем при участии ДНК-полимеразы III синтезируются длинные участки ДНК. РНК-затравки далее вырезаются при участии ДНК-полимеразы I, а свободные места их (бреши) замещаются (достраиваются) комплементарными дез-оксирибонуклеотидами под действием той же ДНК-полимеразы I; наконец, сшивание разъединенных участков отстающей цепи осуществляется при помощи ДНК-лигаз.

Особенности репликации ДНК у э укариот.

Рис. 13.2. Полуконсервативная репли кация ДНК in vitro. Каждая из двух цепей родительской ДНК служит матриц ей для синтеза дочерних молекулДНК. 1 - родительская молекула; 2 -дочерние молекулы (первая генерация); 3 - дочерние молекулы (вторая генерация).

Рис. 13.3. Основные этапы репликации ДНК (схема).

Рис. 13.4. Схематическое изображение непрерывного и прерывистого синтеза цепей ДНК при репликации.

Как было указано, инициация биосинтеза дочерних цепей ДНК требует предварительного синтеза на матрице ДНК необычного затравочного олигорибонуклеотида, названного праймером, со свободной гидроксильной группой у С-3' рибозы. Этот короткий олигорибонуклеотид синтезируется комплементарно на матрице ДНК при участии особого фермента – прай-мазы, наделенной РНК-полимеразной активностью.

Предполагают, что именно с этой точки концевого 3'-гидроксила рибозы праймера начинается истинный синтез лидирующей дочерней цепи ДНК, комплементарной родительской. Синтез начинается с реакции между 3'-ОН-группой концевого рибонуклеотида прайм ера и α-фосфатной группой первого дезоксирибонуклеотидтрифосфата в строгом соответствии с комплементарностью родительс кой цепи ДНК, при этом освобождаетсяпирофосфат. В дальнейшем этот фрагмент РНК, комплементарно присоединенный к новообразованной цепи ДНК, разрушается под действием ДНК-полимеразы I, и возникшая брешь застраивается олигодезоксирибо-нуклеотидом при помощи той же ДНК-полимеразы I. Вполне допустимо предположение, что синтез праймера из олигорибонуклеотида имеет глубокий биологический смысл, поскольку в этом случае могут устраняться ошибки, неизбежно возникающие при инициации репликации ДНК.

Этапы биосинтеза ДНК.

Предложен ряд моделей механизма биосинтеза ДНК с участием указанных ранее ферментов и белковых факторов, однако детали некоторых этапов этого синтеза еще не выяснены. Основываясь главным образом на данных, полученных в опытах in vitro, предполагают, что условно механизм синтеза ДНК у Е. coli может быть подразделен на три этапа; инициацию, т.е. начало, элонгацию, т.е. продолжение, и терми-нацию, т.е. завершение (прекращение) синтеза. Каждый из этих этапов требует участия специфических ферментов и белковых факторов.

Этап I – инициация биосинтеза ДНК – является началом синтеза дочерних нуклеотидных цепей; в инициации участвует минимум восемь хорошо изученных и разных ферментов и белков. Первая фаза – это, как указано ранее, ферментативный биосинтез на ма трице ДНК необычного затравочного олигорибонуклеотида (праймера) со свободной гидроксиль-ной группой у С-3' рибозы. При инициации к цепям ДНК последовательно присоединяются ДНК-раскручивающие и ДНК-связывающие белки, а затем комплексы ДНК-полимераз и праймаз (см. рис. 13.3). Инициация представляется единственной стадией репликации ДНК, которая весьма тонко и точно регулируется, однако детальные механизмы ее до сих пор не раскрыты и в настоящее время интенсивно исследуются.

Этап II – элонгация синтеза ДНК – включает два кажущихся одинаковыми, но резко различающихся по механизму синтеза лидирующей и отстающей цепей на обеих материнских цепях ДНК. Синтез лидирующей цепи начинается с синтеза праймера (при участии праймазы) у точки началарепликации, затем к праймеру присоединяются дезоксирибонукл еотиды под действием ДНК-полимеразы III; далее синтез протекает непрерывно, следуя шагу репликационной вилки. Синтез отстающей цепи, напротив, протекает в направлении, обратном движению репликационной вилки и начинается фрагментарно. Фрагменты всякий раз синтезируются раздельно, начиная с синтеза праймера, который может переноситься с готового фрагмента при помощи одного из белковых факторов репликации в точку старта биосинтеза последующего фрагмента противоположно направлению синтеза фрагментов. Элонгация завершае тся отделением олигорибонуклеотидных праймеров, объединением отдельных фрагментовДНК при помощи ДНК-лигаз и формированием дочерней цепи ДНК. Нельзя исключить, однако, возможности сопряженного и согласованного механизма синтеза лидирующей и отстающей цепей ДНК при участии полимераз и всего комплекса праймасом.

Этап III – терминация синтеза ДНК – наступает, скорее всего, когда исчерпана ДНК-матрица и трансферазные реакции прекраща ются. Точностьрепликации ДНК чрезвыч айно высока, возможна одна ошибка на 10 10 трансферазных реакций, однако подобная ошибка обычно легко исправляется за счет процессов репарации.

Синтез ДНК на матрице РНК.

Выдающимся достижением биохими и нуклеиновых кислот является открытие в составе онковирусов (вирус Раушера исаркомы Рауса) фермента обрат ной транскриптазы, или ревертазы (РНК-зависимая ДНК-полимераза), катализирующего биосинтез моле кулы ДНК наматрице РНК. Накоплены данные о том, что многие РНК-содержащие онкогенные вирусы, получившие наименование онкорнавирусов, содержат ревертазу в составе покровных белков. Фермент откр ыт также во многих клетках прокариотов и э укариотов, в частности в лейкозных клетках, пролиферирующих тканях, включая эмбриональные ткани. Ревертаза онкорнавирусов содержит ионы Zn 2+ и активируется катионами Мn 2+ и Mg 2+ . Предполагают, что синтез ДНК на матрице РНК происходит в 3 этапа. На I этапе фермент ревертаза синтез ирует на матрице вирусной РНК комплементарную цепь ДНК, что приводит к формированию гибридной молекулы. Второй этап – разрушение исходной вирусной РНК из комплекса гибридной молекулы под действием РНКазы. Наконец, на III этапе на матрице цепи ДНК комплементарно синтезируются новые цепи ДНК. Ревертазной активностью облада ют и ДНК-полимеразы: например, фермент из Е. coli способен катализировать синтез ДНК на матрице рРНК.

Открытие обратной транскриптазы имеет большое значение не только для выяснения закономерностей процесса малигнизации, но и для всей науки о живом, поскольку указывает на возможность передачи наследственной информ ации от РНК на ДНК, не подчиняясь основному постулату (поток информации идет только в одном направлении):

ДНК –> РНК –> Белок.

В настоящее время можно дополнить эту основную схему передачи генетической информации в живой клетке и представить ее в более полной форме:

На схеме стрелки вокруг ДНК и РНК указывают на возможность молекул копировать самих себя в живых системах при участии соответствующих ферментов.

Содержание работы

Введение 3
1 Структура нуклеиновых кислот
1.1 Первичная структура 4
1.2 Дезоксирибонуклеиновые кислоты 6
1.3 Рибонуклеиновые кислоты 8
2 Биосинтез нуклеиновых кислот
2.1 Репликация 10
2.2 Транскрипция 13
2.3 Трансляция 19
Заключение 21
Список использованной литературы 22
Введение

Содержимое работы - 1 файл

реферат по НК.doc

Министерство по образованию Российской Федерации

Кафедра органической химии

1 Структура нуклеиновых кислот

1.1 Первичная структура 4

1.2 Дезоксирибонуклеиновые кислоты 6

1.3 Рибонуклеиновые кислоты 8

2 Биосинтез нуклеиновых кислот

2.1 Репликация 10

2.2 Транскрипция 13

2.3 Трансляция 19

Список использованной литературы 22
Введение

Нуклеиновые кислоты (полинуклеотиды), биополимеры, осуществляющие хранение и передачу генетической информации во всех живых организмах, а также участвующие в биосинтезе белков.

Макромолекулярную структура ДНК (двойная спираль) установлена в 1953г. Дж. Уотсоном и Ф. Криком на основании данных рентгеноструктурного анализа, полученных Р. Франклин и М. Уилкинсом. Нуклеотидный состав ДНК и РНК из многих объектов изучен Э. Чаргаффом и А. Н. Белозерским в 40-50-х гг.

Изучение первичной структуры нуклеиновых кислот начато с середины 60-х гг. с установления нуклеотидной последовательности тРНК (Р. Холли). Функции большинства РНК установлены к началу 60-х гг. Было показано, что они участвуют в реализации генетической информации, закодированной в ДНК.

Начиная с середины 70-х гг. создавались методы получения рекомбинантных нуклеиновой кислоты (образуются, напр., в результате встраивания участка ДНК, в т.ч. гена, в плазмиду), которые существенно расширили возможности структурно-функционального исследований Нуклеиновой кислоты и создали базу для использования достижений молекулярной биологии и генетики в биотехнологии.

1 Структура нуклеиновых кислот

1.1 Первичная структура

Нуклеиновая кислота представляет собой последовательность остатков нуклеотидов. Последние в молекуле нуклеиновой кислоты образуют неразветвленные цепи. В зависимости от природы углеводного остатка в нуклеотиде (D-дезоксирибозы или D-рибозы) нуклеиновой кислоты подразделяют соответственно на дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК) кислоты.

В молекуле ДНК гетероциклы, входящие в остаток нуклеотида, представлены двумя пуриновыми основаниями – адeнином и гуанином, и двумя пиримидиновыми основаниями – тимином и цитозином; РНК вместо тимина содержит урацил. Кроме того, в нуклеиновой кислоты в небольших количествах обнаруживаются модифицированные (в основном метилированные) остатки нуклеозидов – минорные нуклеозиды, которыми особенно богаты транспортные рибонуклеиновые кислоты (тРНК).

Отдельные нуклеотидные остатки связаны между собой в полинуклеотидных цепях 3′-5′-фосфодиэфирными связями (рисунок 1). Стандартная запись нуклеотидной последовательности осуществляется в направлении от 5′-конца к 3′-концу (каждый нуклеотид обозначают буквой, присвоенной основанию, которое он содержит; например, последовательность приведенного участка ДНК записывается как ACGT).

Свойства ДНК и РНК различны. Так, РНК легко расщепляется щелочами до мононуклеотидов (благодаря наличию группы 2′-ОН), в то время как полинуклеотидные цепи ДНК в тех же условиях стабильны. Это структурное различие определяет и меньшую устойчивость к воздействию кислот N-гликозидных связей (связь между гетероциклом и остатком рибозы) в ДНК по сравнению с РНК.

Рисунок 1 - Структура нуклеиновых кислот

1.2 Дезоксирибонуклеиновые кислоты

Нуклеотидный состав ДНК подчиняется ряду правил (правила Чаргаффа), важнейшее среди которых одинаковое содержание аденина и тимина, цитозина и гуанина у любой клеточной ДНК. Нуклеотидный состав РНК подобным правилам не подчиняется.

Пространственная структура ДНК описывается как комплекс двух полинуклеотидных антипараллельных цепей (рисунок 2), закрученных относительно общей оси, так что углевод-фосфатные цепи составляют периферию молекулы, а азотсодержащие гетероциклы направлены внутрь (двойная спираль Уотсона-Крика). Антипараллельность полинуклеотидных цепей выражается в том, что на одном и том же конце спирали одна полинуклеотидная цепь содержит (незамещенную или замещенную) группу 5′-ОН, а другая 3′-ОН. Фундаментальное свойство двойной спирали ДНК состоит в том, что ее цепи комплементарны друг другу вследствие того, что напротив аденина одной цепи всегда находится тимин другой цепи, а напротив цитозина всегда находится гуанина. Комплементарное спаривание аденина с тимином и цитозина с гуанин осуществляется посредством водородных связей.

Классическая двойная спираль Уотсона-Крика получила название В-формы ДНК. Она правозакрученная, плоскости гетероциклических оснований перпендикулярны оси спирали, а число пар остатков нуклеотидов на один виток спирали равно примерно 10; расстояние между витками 3,4 нм. При изменении ионной силы и состава растворителя двойная спираль изменяет свою форму и даже может превращаться в левозакрученную спираль (Z-форму), которая содержит в одном витке около 12 остатков нуклеотидов. При дегидратации В-формы образуется А-форма ДНК-правозакрученная двойная спираль, содержащая в одном витке около 11 остатков нуклеотидов, плоскости гетероцикличных оснований повернуты примерно на 20° относительно перпендикуляра к оси спирали. Двойная спираль ДНК способна денатурировать (например, при повышении температуры) с полным расхождением комплементарных цепей, которые сохраняют способность к ассоциации с восстановлением (рекатурацией) двойной спирали при возвращении к исходным условиям. Подробно изучены также конформации фрагментов ДНК.

Рисунок 2– Двойная спираль ДНК (стрелками показано направление полинуклеотидной цепи).

Установлено, что молекула ДНК в клетке представляет собой совокупность генов, регуляторных участков (последовательностей, связывающихся с регуляторными белками и управляющих уровнем экспрессии генов), районов, участвующих в организации генов в хромосомах, а также последовательностей, функции которых еще не известны.

У прокариот (бактерии и синезеленые водоросли) ДНК организована в виде компактного образования – нуклеотида, который содержит всю хромосомную ДНК клетки длиной в несколько миллионов пар нуклеотидов (м.п.н.). Кроме того, у многих прокариог и эукариот (все организмы, за исключением прокариот) обнаружены нехромосомные ДНК (плазмиды) размером от несколько тысяч пар нуклеотидов (т.п.н.) до несколько десятков т.п.н. (м.п.н. и т.п.н. – принятые единицы длины двухцепочечной молекулы нуклеиновой кислоты).

Многие ДНК образуют кольцевые структуры. В том случае, если обе полинуклеотидные цепи ДНК ковалентно непрерывны, ДНК может находиться в сверхспирализованной (сверхскрученной) форме. В клетках сверхспирализация осуществляется ферментами ДНК-гиразами.

Хромосомные ДНК эукариот локализованы в клеточном ядре, где вместе с гистонами и негистоновыми белками образуют хроматин-нуклеопротеид, из которого организованы хромосомы. Размеры ДНК в отдельных эукариотических хромосомах колеблются в широких пределах от 10 3 до 10 5 т.п.н.

Геномы многих вирусов бактерий (бактериофагов), животных и в более редких случаях растений представлены ДНК. Такие клеточные органеллы, как митохондрии и хлоропласты, имеют также свою собственную ДНК размером от нескольких десятков до нескольких сотен т.п.н.

1.3 Рибонуклеиновые кислоты

Рисунок 3 – Участок РНК бактериофага

Двуспиральные гибридные комплексы (ДНК и РНК) могут быть искусственно получены из комплементарных однотяжевых ДНК и РНК. Функционально активные РНК имеют размер от 70-150 до несколько тысяч нуклеотидных остатков.

Известно несколько типов РНК. Рибосомные рибонуклеиновые кислоты (рРНК), связываясь с рибосомными белками, образуют рибосомы, в которых осуществляется синтез белка. Матричные рибонуклеиновые кислоты (мРНК) служат матрицами для синтеза белков (трансляции). Транспортные рибонуклеиновые кислоты (тРНК) осуществляют связывание соответствующей аминокислоты и ее перенос к рибосомам. Обнаружены так называемые малые ядерные РНК, участвующие в превращение первичных продуктов транскрипции в функционирующие молекулы; антисмысловые РНК участвуют в регуляции биосинтеза белка и репликации плазмидных ДНК.

В виде РНК представлены геномы многих вирусов (РНК-содержащие вирусы), в которых матрицами для синтеза РНК служат вирусные РНК. Некоторые РНК обладают ферментативной активностью, катализируя расщепление и образование фосфодиэфирных связей в своих собственных или других молекулах РНК.

2 Биосинтез нуклеиновой кислоты

2.1 Репликация

В основе биосинтеза нуклеиновых кислот, как и биосинтеза белков, лежит матричный принцип, т.е. новая молекула строится на ранее существующей как ее отпечаток, или реплика.

В случае ДНК происходит удвоение числа молекул, и образованные молекулы являются точной копией материнских. Этот процесс носит название репликации. При репликации возникает еще одна проблема. ДНК имеет двуспиральную структуру, в которой основания уже образуют комплементарные пары, а нити как бы намотаны одна на другую. Поэтому перед началом синтеза ДНК необходимо разделить нити и сделать основания доступными для образования новых пар. Этот процесс требует довольно больших затрат энергии, поскольку структура двойной спирали ДНК поддерживается большим числом водородных связей.

Расплетание ДНК в клетке осуществляют специальные ферменты, называемые хеликазами (от лат. helix – спираль). Такой фермент движется вдоль молекулы ДНК и разделяет ее нити. Эти процессы осуществляются за счет энергии гидролиза АТФ, т.е. хеликазы являются также АТФазами. Молекулы ДНК имеют большую длину, а хеликазы, передвигаясь вдоль них, расплетают лишь небольшой участок, поэтому две нити ДНК не расходятся полностью.

Возникшие в результате однонитевые участки нестабильны. С одной стороны, они стремятся восстановить двунитевую структуру, а т.к. они комплементарны и связаны друг с другом, это может произойти легко и быстро. С другой стороны, однонитевая ДНК может легко разорваться. Поэтому образовавшиеся однонитевые участки покрываются специальным белком, связывающимся только с однонитевой ДНК, защищающим ее и мешающим ей восстановить двуспиральную структуру. Только после этого начинается синтез новой ДНК.

Его проводит фермент ДНК-полимераза. Особенность этого фермента состоит в том, что он осуществляет присоединение новых нуклеотидов к концу уже существующей цепочки в том случае, если она связана с более длинной комплементарной цепью. Но после расплетания ДНК образовались однонитевые участки, а концов, которые можно было бы удлинять, нет. Поэтому перед началом работы ДНК-полимеразы специальный фермент синтезирует короткие молекулы РНК, служащие затравками, к концам которых ДНК-полимераза присоединяет нуклеотиды.

нуклеиновых кислот может меняться от сотен тысяч до десятков миллиардов.

Они были открыты и выделены из клеточных ядер ещё в 19 в., но их

биологическая роль выяснена только во второй половине 20 в.

Строение нуклеиновых кислот можно установить, анализируя продукты их

гидролиза. При полном гидролизе нуклеиновых кислот образуется смесь

пиримидиновых и пуриновых оснований, моносахарид (β - рибоза или β -

дезоксирибоза) и фосфорная кислота. Это означает, что нуклеиновые

При частичном гидролизе нуклеиновых кислот образуется смесь

нуклеотидов, молекулы которых построены из остатков фосфорной кислоты,

моносахарида (рибозы или дезоксирибозы) и азотистого основания

(пуринового или пиримидинового). Остаток фосфорной кислоты связан с 3-м

или 5-м атомом углерода моносахарида, а остаток основания – с первым

атомом углерода моносахарида. В зависимости от типа азотистого основания

Нуклеотид – основная структурная единица нуклеиновых кислот, их

мономерное звено. Нуклеиновые кислоты, состоящие из рибонуклеидов,

называют рибонуклеиновыми кислотами (РНК). Нуклеиновые кислоты,

состоящие из дезоксирибонуклеотидов, называют дезоксирибонуклеиновыми

кислотами (ДНК). В состав молекул РНК входят нуклеотиды, содержащие

основания аденин, гуанин, цитозин и урацил. В состав молекул ДНК входят

нуклеотиды, содержащие аденин, гуанин, цитозин и тимин. Для обозначения

оснований используют сокращения: аденин – А, гуанин – G, тимин – Т,

Свойства ДНК и РНК определяются последовательностью оснований в

полинуклеотидной цепи и пространственным строением цепи.

Последовательность оснований содержит генетическую информацию, а

остатки моносахаридов и фосфорной кислоты играют структурную роль

В молекулах ДНК и РНК отдельные нуклеотиды связаны в единую

полимерную цепь за счёт образования сложноэфирных связей между

остатками фосфорной кислоты и гидроксильными группами при 3-м и 5-м

Пространственная структура полинуклеотидных цепей ДНК и РНК была

определена методом рентгеноструктурного анализа. Одним из самых

крупных открытий биохимии 20 века оказалась модель двуспиральной

структуры ДНК, которую предложили в 1953 г. Дж. Уотсон и Ф. Крик.

Согласно этой модели, молекула ДНК представляет собой двойную спираль

и состоит из двух полинуклеотидных цепей, закрученных в

противоположные стороны вокруг общей оси. Пуриновые и пиримидиновые

основания расположены внутри спирали, а остатки фосфата и дезоксирибозы

– снаружи. Две спирали удерживаются вместе водородными связями между

парами оснований. Важнейшее свойство ДНК – избирательность в

образовании связей (комплементарность). Размеры оснований и двойной

спирали подобраны в природе таким образом, что тимин образует

водородные связи только с аденином, а цитозин – только с гуанином.

Таким образом, две спирали в молекуле ДНК комплементарны друг другу.

Последовательность нуклеотидов в одной из спиралей однозначно

определяет последовательность нуклеотидов в другой спирали.

В каждой паре оснований, связанных водородными связями, одно из

оснований – пуриновое, другое – пиримидиновое. Отсюда следует, что общее

число остатков пуриновых остатков в молекуле ДНК равно числу остатков

В отличие от ДНК молекулы РНК состоят из одной полинуклеотидной

цепи. Число нуклеотидов в цепи колеблется от 75 до нескольких тысяч, а

молекулярная масса РНК может изменяться в пределах от 2500 до

нескольких миллионов. Полинуклеотидная цепь РНК не имеет строго

ДНК – главная молекула в живом организме. Она хранит генетическую

информацию, которую передаёт от одного поколения к другому. В молекулах

ДНК в закодированном виде записан состав всех белков организма. Каждой

аминокислоте, входящей в состав белков, соответствует свой код в ДНК, т. е.

ДНК содержит всю генетическую информацию, но непосредственно в

синтезе белков не участвует. Роль посредника между ДНК и местом синтеза

белка выполняет РНК. Процесс синтеза белка на основе генетической

информации схематично можно разбить на две основные стадии: считывание

Клетки содержат три типа РНК, которые выполняют различные функции.

1) Информационная или матричная РНК (м-РНК) считывает и переносит

генетическую информацию от ДНК, содержащейся в хромосомах, к

рибосомам, где происходит синтез белка со строго определённой

2) Транспортная РНК (т-РНК) переносит аминокислоты к рибосомам, где

3) Рибосомная РНК (р-РНК) непосредственно участвует в синтезе белков в

рибосомах. Рибосомы – сложные надмолекулярные структуры, которые

состоят из четырёх р-РНК и нескольких десятков белков. Фактически

Последовательность оснований в м-РНК – это генетический код,

управляющий последовательностью аминокислот в белках. Замечательная

особенность генетического кода состоит в том, что он универсален для всех

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Биосинтез белка и нуклеиновых кислот.

Гены, генетический код

В обмене веществ организма ведущая роль принадлежит белкам и нуклеиновым кислотам.

Белковые вещества составляют основу всех жизненно важных структур клетки, обладают необычайно высокой реакционной способностью, наделены каталитическими функциями.

Нуклеиновые кислоты входят в состав важнейшего органа клетки — ядра, а также цитоплазмы, рибосом, митохондрий и т. д. Нуклеиновые кислоты играют важную, первостепенную роль в наследственности, изменчивости организма, в синтезе белка.

План синтеза белка хранится в ядре клетки, а непосредственно синтез происходит вне ядра, поэтому необходима помощь для доставки закодированного плана из ядра к месту синтеза. Такую помощь оказывают молекулы РНК.

После дальнейших изменений этот вид закодированной РНК готов.

Примечателен даже процесс укладки белка: на то, чтобы с помощью компьютера просчитать все возможности укладки белка среднего размера, состоящего из 100 аминокислот, потребовалось бы 1027 лет. А для образования в организме цепочки из 20 аминокислот требуется не более одной секунды — и этот процесс происходит непрерывно во всех клетках тела.

Гены, генетический код и его свойства.

Земле живет около 7 млрд людей. Если не считать 25—30 млн пар однояйцовых близнецов, то генетически все люди разные: каждый уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом.

Такие различия объясняются различиями в генотипах—наборах генов организма; у каждого он уникален. Генетические признаки конкретного организма воплощаются в белках — следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека.

Это не означает, что у людей не встречается совершенно одинаковых белков. Белки, выполняющие одни и те же функции, могут быть одинаковыми или совсем незначительно отличаться одной-двумя аминокислотами друг от друга. Но не существует на Земле людей (за исключением однояйцовых близнецов), у которых все белки были бы одинаковы.

Информация о первичной структуре белка закодирована в виде последовательности нуклеотидов в участке молекулы ДНК – гене – единице наследственной информации организма. Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип.

Кодирование наследственной информации происходит с помощью генетического кода, который универсален для всех организмов и отличается лишь чередованием нуклеотидов, образующих гены, и кодирующих белки конкретных организмов.

Генетический код состоит из троек (триплетов) нуклеотидов ДНК, комбинирующихся в разной последовательности (ААТ, ГЦА, АЦГ, ТГЦ и т.д.), каждый из которых кодирует определенную аминокислоту (которая будет встроена в полипептидную цепь).

Аминокислот 20, а возможностей для комбинаций четырех нуклеотидов в группы по три – 64 четырех нуклеотидов вполне достаточно, чтобы кодировать 20 аминокислот, поэтому одна аминокислота может кодироваться несколькими триплетами.

Часть триплетов вовсе не кодирует аминокислоты, а запускает или останавливает биосинтез белка.

Собственно кодом считается последовательность нуклеотидов в молекуле и-РНК, т.к. она снимает информацию с ДНК (процесс транскрипции) и переводит ее в последовательность аминокислот в молекулах синтезируемых белков (процесс трансляции).

В состав и-РНК входят нуклеотиды АЦГУ, триплеты которых называются кодонами: триплет на ДНК ЦГТ на и-РНК станет триплетом ГЦА, а триплет ДНК ААГ станет триплетом УУЦ.

Именно кодонами и-РНК отражается генетический код в записи.

Таким образом, генетический код — единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов. Генетический код основан на использовании алфавита, состоящего всего из четырех букв-нуклеотидов, отличающихся азотистыми основаниями: А, Т, Г, Ц.

Основные свойства генетического кода:

1. Генетический код триплетен. Триплет (кодон) — последовательность трех нуклеотидов, кодирующая одну аминокислоту. Поскольку в состав белков входит 20 аминокислот, то очевидно, что каждая из них не может кодироваться одним нуклеотидом (поскольку в ДНК всего четыре типа нуклеотидов, то в этом случае 16 аминокислот остаются незакодированными). Двух нуклеотидов для кодирования аминокислот также не хватает, поскольку в этом случае могут быть закодированы только 16 аминокислот. Значит, наименьшее число нуклеотидов, кодирующих одну аминокислоту, оказывается равным трем. (В этом случае число возможных триплетов нуклеотидов составляет 43 = 64).

2. Избыточность (вырожденность) кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими триплетами (поскольку аминокислот 20, а триплетов — 64), за исключением метионина и триптофана, которые кодируются только одним триплетом. Кроме того, некоторые триплеты выполняют специфические функции: в молекуле иРНК триплеты УАА, УАГ, УГА — являются терминирующими кодонами, т. е. стоп-сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК, не кодирует аминокислоту, а выполняет функцию инициирования (возбуждения) считывания.

3. Одновременно с избыточностью коду присуще свойство однозначности: каждому кодону соответствует только одна определенная аминокислота.

4. Код коллинеарен, т.е. последовательность нуклеотидов в гене точно соответствует последовательности аминокислот в белке.

6. Генетический код универсален, т. е. ядерные гены всех организмов одинаковым образом кодируют информацию о белках вне зависимости от уровня организации и систематического положения этих организмов.

Открытие нуклеиновых кислот связано с именем молодого врача из города Базеля (Швейцария) Фридриха Мишера . После окончания медицинского факультета Мишер был послан для усовершенствования и работы над диссертацией в Тюбинген (Германия) в физиолого-химическую лабораторию, возглавляемую Ф. Гоппе-Зейлером . Тюбингенская лаборатория в то время была известна ученому миру. Пройдя практику по органической химии, Мишер приступил к работе в биохимической лаборатории. Ему было поручено заняться изучением химического состава гноя. Молодой ученый не возражал против предложенной темы, так как считал лейкоциты, присутствующие в гное, одними из самых простых клеток.

Путём многочисленных опытов он получил из гнойных клеток вещество ядерного происхождения. Мишер был уверен именно в ядерном его источнике. Поэтому он начал более тщательное выделение ядер. В то время еще никто в биохимических лабораториях не пытался выделить ядра или какие-либо другие субклеточные компоненты, так что и здесь он был пионером.

Продолжив дальше очищать ядро от других клеточных фрагментов, он получил странное вещетво. Оно не разлагалось протеолитическими ферментами, значит, не являлось белком. Отсутствие растворимости в горячем спирте указывало на то, что это вещество не являлось и фосфолипидом. По-видимому, оно относилось к новому классу биохимических соединений.

Но Мишер с большой горячностью настаивал на точности своих результатов и добивался разрешения опубликовать их в печати. Тогда Гоппе-Зейлер решил проверить данные Мишера лично. Он и два его ассистента (одним из них был русский химик Любавин) в течение года шаг за шагом прошли все этапы аналитической работы Мишера и полностью подтвердили его данные, выделив нуклеин из клеток крови и из дрожжей.


В 1871 г. работа Мишера вместе с подтверждающими ее контрольными работами Гоппе-Зейлера и его ассистентов увидела свет. Существование нуклеина как специфического ядерного вещества стало научным фактом . Вскоре методика Мишера была применена для выделения нуклеина из различных тканей.

2. Нахождение нуклеиновых кислот в природе

Нуклеиновые кислоты в природе встречаются во всех живых клетках. Живые клетки, за исключением сперматозоидов, в норме содержат значительно больше рибонуклеиновой, чем дезоксирибонуклеиновой кислоты. На методы выделения дезоксирибонуклеиновых кислот оказало большое влияние то обстоятельство, что, тогда как рибонуклеопротеиды и рибонуклеиновые кислоты растворимы в разбавленном (0,15 М) растворе хлористого натрия, дезоксирибонуклеопротеидные комплексы фактически в нем нерастворимы.

Поэтому гомогенизированный орган или организм тщательно промывают разбавленным солевым раствором, из остатка с помощью крепкого солевого раствора экстрагируют дезоксирибонуклеиновую кислоту, которую осаждают затем добавлением этанола.

В клетках эукариот (например, животных или растений) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеотид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами. Кроме того, одно- или двухцепочечные молекулы ДНК могут образовывать геном ДНК-содержащих вирусов.

3. Получение нуклеиновых кислот

В клетках нуклеиновые кислоты связаны с белками, образуя нуклеопротеиды. Выделение нуклеиновых кислот сводится к очистке их от белков. Для этого препараты, содержащие нуклеиновые кислоты, обрабатывают ПАВ и экстрагируют белки фенолом. Послед, очистка и фракционирование нуклеиновых кислот проводятся с помощью ультрацентрифугирования, различных видов жидкостной хроматографии и гель - электрофореза. Для получения индивидуальных нуклеиновых кислот обычно используют различные варианты последнего метода.

Современные методы химического синтеза нуклеиновых кислот позволяют получать крупные фрагменты ДНК, в том числе целые гены. Методические основы химически - ферментативных методов синтеза ДНК разработаны X. Кораной.

Они включают:

- химический синтез комплементарных, взаимоперекрывающихся олигонуклеотидов, из которых затем в результате комплементационных взаимодействий выстраиваются дуплексы - фрагменты молекулы синтезируемой ДНК с несовпадающими разрывами в обеих цепях;

- соединение (лигирование) таких олигонуклеотидов в составе дуплекса с помощью фермента Т4 ДНК-лигазы. Сборку протяженных ДНК из синтетически однотяжевых олигонуклеотидов проводят в несколько этапов. Сначала собирают небольшие дуплексы с "липкими" концами (однотяжевыми комплементарными участками), из которых затем последовательно формируют более протяженные структуры. Таким образом могут быть получены искусственные фрагменты ДНК большой длины и с любой нуклеотидной последовательностью. С помощью генетической инженерии возможно клонирование (получение в индивидуальном виде и размножение) искусственных ДНК.

Несмотря на малую эффективность этого метода, были синтезированы олигонуклеотиды, содержащие до 16 звеньев, из которых были собраны первые синтетические гены. Фосфодиэфирный метод образования межнуклеотидных связей, использованный Кораной, имеет историческое значение. Однако разработанные им приемы введения и избирательные удаления защитных групп широко используются в других методах синтеза нуклеиновых кислот.

Важным шагом в совершенствовании синтеза олигонуклеотидов явилась разработка так называемого фосфотриэфирного метода . Образующийся динуклеотид после частичного деблокирования фосфата конденсируют аналогичным образом с другими динуклеотидом и т.д. Применение этого способа, в котором используют защиту фосфатной группы, позволило значительно сократить время синтеза и повысить выходы олигонуклеотидов.

Параллельно этим методам, которые осуществляют в растворах, разрабатывались твердофазные способы синтеза нуклеиновых кислот. В последнем случае процесс проводят в двухфазной системе; нуклеозидный компонент связан ковалентно с нерастворимым полимером, а нуклеотидный компонент и необходимые реагенты находятся в растворе.

Обычно в этом случае на первой стадии нуклеозид присоединяют с помощью "якорной" группы к нерастворимому полимеру. Затем его 5'-гидроксильную группу деблокируют и конденсируют с нуклеотидным компонентом. У образующегося полностью защищенного динуклеозидмонофосфата деблокируют защитную группу в положении 5' и присоединяют следующему нуклеотид и т.д.

Наиболее распространенные методы твердофазного синтеза олигонуклеотидов основаны на использовании нуклеотидного компонента, содержащего Р( III ). В так называемом амидофосфитном способе нуклеотидным компонентом является эфир 3'-амидофосфита дезоксинуклеозида. Достаточно устойчивые амидофосфиты при протонировании в присутствии тетразола превращаются в сильные фосфорилирующие агенты. После завершения синтеза удаляют защитные группы с межнуклеотидных фосфатов, отделяют олигонуклеотид от носителя, деблокируют группы NH2 гетероциклов. Липофильную группу (МеО)2Тr удаляют после первого хроматографического разделения.

Стандартность операций в твердофазном синтезе олигонуклеотидов явилась основой для автоматизации процесса . Принцип работы автомата-синтезатора основан на подаче в реактор с помощью насоса (под контролем микропроцессора) защищенных нуклеотидных компонентов реагентов и растворителей по заданной программе в колонку, содержащую полимерный носитель с закрепленным на нем первым нуклеозидом. После окончания синтеза и отделения полностью защищенного олигонуклеотида от полимерного носителя проводят деблокирование, очистку и анализ синтезированных фрагментов ДНК. Так, с помощью гидрофосфорильного метода в автомате - синтезаторе за несколько часов получают 30-40-звенные олигонуклеотиды; возможен синтез более чем 100-звенных фрагментов ДНК. Разработаны синтезаторы, позволяющие проводить одновременно синтез несколько олигонуклеотидов.

Синтез олигорибонуклеотидов ферментативным путем осуществляют обычно с использованием рибонуклеаз или полинуклеотидфосфорилаз.

В качестве нуклеотидного и нуклеозидного компонента применяют мономеры или олигонуклеотиды. Эту реакцию используют для синтеза ди-, три- и тетрарибонуклеотидов. При увеличении длины олигорибонуклеотида начинает преобладать обратная реакция (гидролиз олигонуклеотида).

Химический синтез олигорибонуклеотидов проводят в основном с использованием тех же приемов, как и при синтезе ДНК.

4. Химические свойства нуклеиновых кислот

Нуклеиновые кислоты :

- хорошо растворимы в воде

- практически не растворимы в органических растворителях.

- очень чувствительны к действию температуры и критических значений уровня pH.

- молекулы ДНК с высокой молекулярной массой, выделенные из природных источников, способны фрагментироваться под действием механических сил, например при перемешивании раствора.

- нуклеиновые кислоты фрагментируются ферментами — нуклеазами.

Химические свойства РНК.

Напоминают свойства ДНК, однако наличие дополнительных групп ОН в рибозе и меньшее (в сравнении с ДНК) содержание стабилизированных спиральных участков делает молекулы РНК химически более уязвимыми . При действии кислот или щелочей основные фрагменты полимерной цепи Р(О)-О-СН2 легко гидролизуются, группировки А, У, Г и Ц отщепляются легче. Если нужно получить мономерные фрагменты, сохранив при этом химически связанные гетероциклы, используют деликатно действующие ферменты, называемые рибонкулеазами.

Химические свойства ДНК .

В воде ДНК образует вязкие растворы, при нагревании таких растворов до 60°С или при действии щелочей двойная спираль распадается на две составляющие цепи, которые вновь могут объединиться, если вернуться к исходным условиям. В слабокислых условиях происходит гидролиз, в результате частично расщепляются фрагменты – Р-О-СН2- с образованием фрагментов – Р-ОН и НО-СН2 , соответственно результате образуются мономерные, димерные (сдвоенные) или примерные (утроенные) кислоты, представляющие собой звенья, из которых была собрана цепь ДНК.

Участие ДНК и РНК в синтезе белков – одна из основных функций нуклеиновых кислот. Белки – важнейшие компоненты каждого живого организма. Мышцы, внутренние органы, костная ткань, кожный и волосяной покров млекопитающих состоят из белков. Это полимерные соединения, которые собираются в живом организме из различных аминокислот. В такой сборке управляющую роль играют нуклеиновые кислоты, процесс проходит в две стадии, причем на каждой из них определяющий фактор – взаимоориентация азотсодержащих гетероциклов ДНК и РНК.

Основная задача ДНК – хранить записанную информацию и предоставлять в тот момент, когда начинается синтез белков. В связи с этим понятна повышенная химическая устойчивость ДНК в сравнении с РНК.

Природа позаботилась о том, чтобы сохранить по возможности основную информацию неприкосновенной

5. Применение нуклеиновых кислот

Последнее десятилетие характеризуется интенсивным развитием технологий, которые ориентированы на создание устройств, позволяющих получать информацию о свойствах различных сред (объектов) в форме электрического сигнала. В сенсорных технологиях чувствительный элемент способен "узнать" исследуемое вещество среди множества родственных и преобразовать полученную информацию о его присутствии в ответ, фиксируемый в цифровой или аналоговой форме. Наибольшее развитие имеют аналитические устройства, использующие в качестве узнающего элемента биомакромолекулы - биосенсоры .

Принцип действия биодатчиков, использующих частицы жидкокристаллической дисперсии, состоит в следующем: азотистые основания в молекулах ДНК, фиксированных в структуре холестерической жидкокристаллической дисперсии, тем или иным способом "узнают" молекулы биологически активного соединения (БАС) и "адресуют" их в определенные места на поверхности ДНК. Образование комплекса "ДНК-БАС" приводит к появлению первичного (в частности, оптического) сигнала. Пространственная структура холестерика многократно усиливает генерируемый в системе первичный сигнал и делает видимыми результаты действия биологически активного соединения на ДНК: в спектре кругового дихроизма появляется аномальная полоса (полосы) в области поглощения биологически активного соединения. Амплитуда этой полосы пропорциональна концентрации биологически активного соединения, а знак полосы несет информацию о способе ориентации его молекул по отношению к парам оснований ДНК.

В последние годы возрос интерес к иммуностимуляторам. Впервые нуклеиновые кислоты стали применять в 1882 году по инициативе Горбачевского при инфекционных заболеваниях стрепто - и стафилококкового происхождения. В 1911 году Черноруцкий установил, что под влиянием дрожжевой нуклеиновой кислоты увеличивается количество иммунных тел.

Нуклеинат натрия: увеличивает фагоцитарную активность, активирует поли- и мононуклеары, увеличивает эффективность тетрациклинов при смешанной инфекции, вызванной стафилококком и синегнойной палочкой. При профилактическом введении нуклеинат натрия обусловливает и противовирусный эффект, так как обладает интерфероногенной активностью.

Нуклеинат натрия ускоряет формирование прививочного иммунитета, увеличивает его качество, позволяет уменьшить дозу вакцины. Этот препарат оказывает позитивный эффект при лечении больных с хроническим паротитом, язвенной болезнью, различными формами пневмонии, хроническим воспалением легких, бронхиальной астмой. Нуклеинат натрия увеличивает содержание РНК и белка в макрофагах в 1,5 раза и гликогена в 1,6 раза, увеличивает активность лизосомальных ферментов, следовательно, увеличивает завершенность фагоцитоза макрофагами. Препарат увеличивает содержание у человека лизоцима и нормальных антител, если их уровень был снижен.

Особое место среди препаратов нуклеиновых кислот занимает иммунная РНК макрофагов , которая представляет собой информационную РНК, которая вносит в клетку фрагмент антигена. То есть, идет неспецифическая стимуляция иммунокомпетентных клеток нуклеотидами.

Неспецифическими стимуляторами являются синтетические двухцепочечные полинуклеотиды, которые стимулируют антителообразование, увеличивают антигенный эффект неиммуногенных доз антигена, обладающего антивирусными свойствами, связанными с интерфероногенной активностью. Их механизм действия сложен и недостаточно выяснен. Двунитчатая РНК включается в систему регуляции синтеза белка в клетке, активно взаимодействуя с клеточной мембраной.

Но высокая стоимость препаратов, недостаточная их эффективность, наличие побочных явлений (тошнота, рвота, снижение артериального давления, увеличение температуры тела, нарушение функций печени, лимфопения - из-за прямого токсического действия на клетки), отсутствие схем использования делают применение препаратов ограниченным.

6. Занимательные факты

- Почти полвека тому назад был открыт принцип структурной (молекулярной) организации генного вещества – дезоксирибонуклеиновой кислоты (ДНК). Структура ДНК дала ключ к механизму точного воспроизведения генного вещества. Так возникла новая наука – молекулярная биология.

- Накопление знаний о генетическом коде, нуклеиновых кислотах и биосинтезе белков привело к утверждению принципиально новой идеи о том, что все начиналось вовсе не с белков, а с РНК.

- Известно, что рибонуклеиновая кислота является основным переносчиком генетической информации от ДНК к белку. Поэтому многие заболевания связаны именно с неправильной передачей этой информации.

- Достаточно неожиданно обнаружилось, что во внеклеточных жидкостях организма находится весьма заметное количество нуклеиновых кислот. До сих пор не понятно, как они туда попадают. Самым простым было бы предположить, что нуклеиновые кислоты оказываются во внеклеточном пространстве при гибели клеток. Однако, имеются факты, противоречащие этому предположению.

- Расшифровка структуры ДНК (1953 г.) стала одним из поворотных моментов в истории биологии. За выдающийся вклад в это открытие Фрэнсису Крику, Джеймсу Уотсону, Морису Уилкинсу была присуждена Нобелевская премия по физиологии и медицине 1962 г.

Читайте также: