Біологічна роль жирів реферат

Обновлено: 28.06.2024

Жиры – ценный химический продукт, один из главных компонентов животных и растительных клеток. Этот урок будет посвящен изучению строения и наиболее характерных свойств жиров.

Люди давно научились выделять жир из натуральных объектов и использовать его в повседневной жизни. Жир сгорал в примитивных светильниках, освещая пещеры первобытных людей, жиром смазывали полозья, по которым спускали на воду суда. Жиры – основной источник нашего питания. Но неправильное питание, малоподвижный образ жизни приводит к избыточному весу. Животные пустынь запасают жир как источник энергии и воды. Толстый жировой слой тюленей и китов помогает им плавать в холодных водах Северного Ледовитого океана.

Жиры широко распространены в природе. Наряду с углеводами и белками они входят в состав всех животных и растительных организмов и составляют одну из основных частей нашей пищи. Источниками жиров являются живые организмы. Среди животных это коровы, свиньи, овцы, куры, тюлени, киты, гуси, рыбы (акулы, тресковые, сельди). Из печени трески и акулы получают рыбий жир – лекарственное средство, из сельди – жиры, используемые для подкормки сельскохозяйственных животных. Растительные жиры чаще всего бывают жидкими, их называют маслами. Применяются жиры таких растений, как хлопок, лен, соя, арахис, кунжут, рапс, подсолнечник, горчица, кукуруза, мак, конопля, кокос, облепиха, шиповник, масличная пальма и многих других.

Животные жиры содержатся в живых организмах

Жиры выполняют различные функции: строительную, энергетическую (1 г жира дает 9 ккал энергии), защитную, запасающую. Жиры обеспечивают 50% энергии, требуемой человеку, поэтому человеку необходимо потреблять 70–80 г жиров в день. Жиры составляют 10–20% от массы тела здорового человека. Жиры являются незаменимым источником жирных кислот. Некоторые жиры содержат витамины А, D, Е, К, гормоны.

Многие животные и человек используют жир в качестве теплоизолирующей оболочки, например, у некоторых морских животных толщина жирового слоя достигает метра. Кроме того, в организме жиры являются растворителями вкусовых веществ и красителей. Многие витамины, например витамин А, растворяются только в жирах.

Некоторые животные (чаще водоплавающие птицы) используют жиры для смазки своих собственных мышечных волокон.

Жиры повышают эффект насыщения пищевыми продуктами, т. к. они перевариваются очень медленно и задерживают наступление чувства голода.

II. История открытия жиров

В 1741 французский химик Клод Жозеф Жоффруа (1685–1752) обнаружил, что при разложении кислотой мыла (которое готовили варкой жира со щелочью) образуется жирная на ощупь масса.

То, что в состав жиров и масел входит глицерин, впервые выяснил в 1779 знаменитый шведский химик Карл Вильгельм Шееле.

Впервые химический состав жиров определил в начале прошлого века французский химик Мишель Эжен Шеврёль, основоположник химии жиров, автор многочисленных исследований их природы, обобщенных в шеститомной монографии "Химические исследования тел животного происхождения".

1813 г Э. Шеврёль установил строение жиров, благодаря реакции гидролиза жиров в щелочной среде.Он показал, что жиры состоят из глицерина и жирных кислот, причем это не просто их смесь, а соединение, которое, присоединяя воду, распадается на глицерин и кислоты.

III. Синтез жиров

В 1854 французский химик Марселен Бертло (1827–1907) провел реакцию этерификации, то есть образования сложного эфира между глицерином и жирными кислотами и таким образом впервые синтезировал жир.


Жиры – сложные эфиры глицерина и высших карбоновых кислот. Общее название таких соединений – триглицериды.


Животные жиры содержат главным образом глицериды предельных кислот и являются твердыми веществами.

Растительные жиры, часто называемые маслами, содержат глицериды непредельных карбоновых кислот. Это, например, жидкие подсолнечное, конопляное и льняное масла.

Природные жиры содержат следующие жирные кислоты

Насыщенные:

В составе животных жиров

Ненасыщенные:

олеиновая (C17H33COOH, 1 двойная связь)

линолевая (C17H31COOH, 2 двойные связи)

линоленовая (C17H29COOH, 3 двойные связи)

арахидоновая (C19H31COOH, 4 двойные связи, реже встречается)

В составе растительных жиров

Жиры содержатся во всех растениях и животных. Они представляют собой смеси полных сложных эфиров глицерина и не имеют чётко выраженной температуры плавления.


V. Физические свойства жиров

При комнатной температуре жиры (смеси триглицеридов) – твердые, мазеобразные или жидкие вещества. Как любая смесь веществ, они не имеют четкой температуры плавления (т.е. плавятся в некотором диапазоне температур). Определенной температурой плавления характеризуются лишь индивидуальные триглицериды.

Консистенция жиров зависит от их состава:

  • в твердых жирах преобладают триглицериды с остатками насыщенных кислот, имеющие относительно высокие температуры плавления;
  • для жидких жиров (масел), напротив, характерно высокое содержание триглицеридов ненасыщенных кислот с низкими температурами плавления.

Причиной снижения температуры плавления триглицеридов с остатками ненасыщенных кислот является наличие в них двойных связей с цис-конфигурацией. Это приводит к существенному изгибу углеродной цепи, нарушающему упорядоченную (параллельную) укладку длинноцепных радикалов кислот.

Сравним пространственное строение ненасыщенной и насыщенной и кислот с равным числом углеродных атомов в цепи: олеиновой C17H33COOH и стеариновой C17H35COOH.

На молекулярной модели олеиновой кислоты виден изгиб цепи по связи С=С, препятствующий плотной упаковке молекул.

В углеродной цепи стеариновой кислоты отсутствуют изгибы, поэтому ее молекулы способны к плотной параллельной укладке.

Чем плотнее упаковка молекул вещества, тем выше температуры его фазовых переходов (т.плав., т.кип.). Соответственно, температура плавления тристеарата глицерина (71 o C) существенно больше, чем у триолеата (–17 o C).

Жиры практически не растворимы в воде, но при добавлении мыла или других поверхностно-активных веществ (эмульгаторов), они способны образовывать стойкие водные эмульсии. Жиры ограниченно растворимы в спирте и хорошо растворимы во многих неполярных и малополярных растворителях – эфире, бензоле, хлороформе, бензине.

  • Животные жиры (бараний, свиной, говяжий и т.п.), как правило, являются твердыми веществами с невысокой температурой плавления (исключение – рыбий жир). В твёрдых жирах преобладают остатки насыщенных кислот.
  • Растительные жиры – масла (подсолнечное, соевое, хлопковое и др.) – жидкости (исключение – кокосовое масло, масло какао-бобов). Масла содержат в основном остатки ненасыщенных (непредельных) кислот.

При правильном питании примерно треть потребляемых человеком жиров должны составлять жидкие растительные, содержащие остатки ненасыщенных кислот.
Особенно важны полиненасыщенные кислоты с несколькими двойными связями:

Именно они обладают наибольшей биологической активностью. Организм человека синтезировать такие кислоты не может и должен получать их готовыми с пищей. Поэтому полиненасыщенные жирные кислоты получили название "незаменимых".

VI. Химические свойства жиров

1. Гидролиз, или омыление

Происходит под действием воды, с участием ферментов или кислотных катализаторов (обратимо) , при этом образуются спирт - глицерин и смесь карбоновых кислот:

или щелочей (необратимо). При щелочном гидролизе образуются соли высших жирных кислот, называемые мылами. Мыла получаются при гидролизе жиров в присутствии щелочей:

Мыла — это калиевые и натриевые соли высших карбоновых кислот.

2. Гидрирование жиров

Это превращение жидких растительных масел в твердые жиры – имеет большое значение для пищевых целей. Продукт гидрогенизации масел – твердый жир (искусственное сало, саломас). Маргарин – пищевой жир, состоит из смеси гидрогенизированных масел (подсолнечного, кукурузного, хлопкого и др.), животных жиров, молока и вкусовых добавок (соли, сахара, витаминов и др.).

Так в промышленности получают маргарин:

В условиях процесса гидрогенизации масел (высокая температура, металлический катализатор) происходит изомеризация части кислотных остатков, содержащих цис-связи С=С, в более устойчивые транс-изомеры. Повышенное содержание в маргарине (особенно, в дешевых сортах) остатков транс-ненасыщенных кислот увеличивает опасность атеросклероза, сердечно-сосудистых и других заболеваний.


  • Пищевая промышленность
  • Фармацевтика
  • Производство мыла и косметических изделий
  • Производство смазочных материалов

По мнению диетологов, в сбалансированном рационе должно быть 10% полиненасыщенных кислот, 60% мононенасыщенных (в основном это олеиновая кислота) и 30% насыщенных. Именно такое соотношение обеспечивается, если треть жиров человек получает в виде жидких растительных масел – в количестве 30–35 г в сутки. Эти масла входят также в состав маргарина, который содержит от 15 до 22% насыщенных жирных кислот, от 27 до 49% ненасыщенных и от 30 до 54% полиненасыщенных. Для сравнения: в сливочном масле содержится 45–50% насыщенных жирных кислот, 22–27% ненасыщенных и менее 1% полиненасыщенных. В этом отношении высококачественный маргарин полезнее сливочного масла.

Необходимо помнить

Насыщенные жирные кислоты отрицательно влияют на жировой обмен, работу печени и способствуют развитию атеросклероза. Ненасыщенные (особенно линолевая и арахидоновая кислоты) регулируют жировой обмен и участвуют в выведении холестерина из организма. Чем выше содержание ненасыщенных жирных кислот, тем ниже температура плавления жира. Калорийность твердых животных и жидких растительных жиров примерно одинакова, однако физиологическая ценность растительных жиров намного выше. Более ценными качествами обладает жир молока. Он содержит одну треть ненасыщенных жирных кислот и, сохраняясь в виде эмульсии, легко усваивается организмом. Несмотря на эти положительные качества, нельзя употреблять только молочный жир, так как никакой жир не содержит идеального состава жирных кислот. Лучше всего употреблять жиры как животного, так и растительного происхождения. Соотношение их должно быть 1:2,3 (70% животного и 30% растительного) для молодых людей и лиц среднего возраста. В рационе питания пожилых людей должны преобладать растительные жиры.

Жиры не только участвуют в обменных процессах, но и откладываются про запас (преимущественно в брюшной стенке и вокруг почек). Запасы жира обеспечивают обменные процессы, сохраняя для жизни белки. Этот жир обеспечивает энергию при физической нагрузке, если с пищей жира поступило мало, а также при тяжелых заболеваниях, когда из-за пониженного аппетита его недостаточно поступает с пищей.

Обильное потребление с пищей жира вредно для здоровья: он в большом количестве откладывается про запас, что увеличивает массу тела, приводя порой к обезображиванию фигуры. Увеличивается его концентрация в крови, что, как фактор риска, способствует развитию атеросклероза, ишемической болезни сердца, гипертонической болезни и др.

Введение
1. Простые липиды
2. Воски
3. Фосфолипиды
4. Липопротеиды
5. Гликолипиды
6. Стерины и стероиды
7. Методы исследования липидов
8. Основные источники жиров и масел
9. Жиры как пищевые продукты
Заключение
Список литературы

Введение

1. Простые липиды

Простые липиды не содержат азота, фосфора и серы. К ним в первую очередь относятся нейтральные липиды, являющиеся производными высших жирных кислот и одно- или многоатомных спиртов (ацилглицерины, эфиры диолов, воски, некоторые гликолипиды).
Ацилглицерины (глицериды) - сложные эфиры глицерина и высокомолекулярных карбоновых (жирных) кислот. Они составляют основную массу липидов (в отдельных случаях до 95-97 %). В состав жиров в основном входят триацилглицерины, но присутствуют ди- и моноацилглицерины.
В жирах обнаружено свыше двухсот жирных кислот, однако большинство из них присутствуют в незначительном количестве. В состав многих жиров входят в небольшом количестве низкомолекулярные кислоты (С210). Кислоты с числом атомов углерода выше 24 присутствуют в восках. Наиболее распространенные в жирах кислоты (основные жирные кислоты жиров) содержат от 12 до 16 атомов углерода. Большинство ненасыщенных кислот, участвующих в построении молекул природных ацилглицеринов, являются цис-изомерами.
Природные жиры и масла представляют собой смесь глицеридов, отличающихся, как правило, сочетанием относительно небольшого числа жирных кислот. Учитывая, что одним из структурных компонентов всегда является глицерин, свойства масел обуславливаются составом и положением жирных кислот в ацилглицерине. Несмотря на относительно небольшое число основных кислот (5-8), участвующих в образовании глицеридов, количество возможных триглицеридов может быть значительным:

- число разных жирных кислот в жире: 5, 6, 7, 8, 9, 10;
- число возможных триглицеридов: 75, 126, 196, 285, 405, 550.

Как видим, состав жиров достаточно сложный.
По насыщенности ацилглицерины делят на: GSH2 - мононасыщенные, GS2H - динасыщенные, GS3 - насыщенные и CH3 - ненасыщенные (G - остаток глицерина, S - остаток насыщенной, H - ненасыщенной кислот).

Насыщенные кислоты (в скобках указано число углеродных атомов):

- лауриновая (12);
- миристиновая (14);
- пальмитиновая (16);
- стеариновая (18);
- арахиновая (20);
- бегеновая (22);
- церотиновая (26);
- монтановая (28);
- мелиссиновая (30).

Ненасыщенные кислоты (в скобках указано число углеродных атомов):

- олеиновая (18);
- эруковая (22);
- линолевая (18);
- арахидоновая (20);
- чаулмугровая (18).

Природные жиры содержат главным образом смешанные ацилглицерины, содержащие остатки различных кислот. В ацилглицеринах растительных масел положение 2 занято предпочтительно ненасыщенными ацилами. Структурная изомерия ацилглицеринов связана с различным (1, 2 или 3) положением ацилов и их строением; стереоизомерия обусловлена наличием асимметрического атома углерода в положении 2, если в положениях 1 и 3 находятся разные ацилы (оптическая изомерия), и наличием двойных связей в кислотных остатках (геометрическая изомерия).
Ацилглицерины вступают во все химические реакции, характерные для сложных эфиров, однако в их химическом поведении имеется ряд особенностей, связанных со строением жирных кислот и глицерина.
Гидролиз триацилглицеринов. Под влиянием фермента липазы, кислот, щелочей или специальных смесей (контакт Петрова - продукт взаимодействия дымящей серной кислоты с высококипящими фракциями нефти) триацилглицерины гидролизуются с образованием сначала ди-, а затем моноацилглицеринов и, в конечном итоге, - жирных кислот и глицерина.

2. Воски

3. Фосфолипиды

4. Липопротеиды

Липопротеиды - это комплексные соединения различных белков с жирами, сложные шаровидные образования, содержащие триацилглицеролы, холестерин и белки, причем последние не имеют ковалентных связей с липидами.
Из липопротеинов состоят мембраны. В форме липопротеинов переносятся с кровью и лимфой липиды, т. е. липопротеины - это транспортная форма липидов.

5. Гликолипиды

Гликолипиды - это группа липидов, построенных на основе сфингозина и содержащих, помимо остатка жирной кислоты, одну или несколько молекул сахаров (в основном глюкозу или галактозу). Гликолипиды являются компонентами клеточных мембран, особенно в миелиновой оболочке нервных волокон и на поверхности нервных клеток, а также компоненты мембран хлоропластов.

6. Стерины и стероиды

Стерины (от греческого слова stereos - твердый) представляют собой кристаллические спирты, каждая молекула которых содержит три сконденсированных шестичленных кольца, как в фенантрене, и одно пятиколечное кольцо.
Кольца не бензольные, а насыщенные, за исключением одной или двух двойных связей. Гидроксильная группа присоединена к стволу углерода в положении 3 (С3), метильные группы - к атомам С10 и С13, а цепь атомов, обычно С8H17, - к атому С17.
Стероиды - вещества, родственные стеринам. Стерины присутствуют во всех тканях растений и животных. Важнейший стерин животных - холестерин С27Н46О. Холестерин и его эфиры жирных кислот, попадая в клетки кишечника, соединяются с белками и образуют липопротеиды, которые переносятся кровью во все ткани организма, в частности в мозг. Кроме того, человеческий организм ежесуточно синтезирует из ацетат-иона примерно 1000 мг холестерина. С пищей же человек получает ежесуточно 500 - 1000 мг (куриные яйца - высокохолестериновый продукт, одно яйцо содержит около 250 мг этого вещества). Холестерин разрушается в организме в тех же количествах, в которых и поступает: выводится он из организма с желчью в виде желчных кислот. Желчные кислоты имеют карбоксильную группу на конце боковой цепи. Так, холевая кислота С24Н40O5 отличается от холестерина тем, что при атоме С17 имеет боковую цепь - СН (СН3) СН2 СН2 СООН, а при атомах С7 и С13 - гидроксильные группы. Желчные кислоты - стероиды.
Скорость превращения холестерина в желчные кислоты пропорциональна его концентрации в крови, причем состояние равновесия достигается при определенной концентрации, зависящей от количества холестерина, поступающего в организм, и от генотипа человека (от присущей ему активности ферментов, контролирующих синтез и распад холестерина). Для большинства людей эта концентрация лежит в пределах 150-250 мг на децилитр (дл) крови.
Существует зависимость между распространенностью коронарных сердечных болезней и концентрацией холестерина в сыворотке крови. Результаты одного из исследований показали, что у мужчин в возрасте 50-60 лет коронарные сердечные заболевания случаются чаще в 1,5 раза при содержании холестерина 200-240 мг на дл-1, по сравнению с лицами, у которых это содержание не превышает 200 мг на дл-1; число заболеваний увеличивается в 3 раза при содержании холестерина 240-260 мг на дл-1 и в 4,2 раза - при содержании свыше 260 мг на дл-1. Аналогичное соотношение установлено и для содержания триглицеридов в сыворотке крови.
Ограниченное потребление жиров, особенно жиров животного происхождения (насыщенных жиров), несколько снижает уровень содержания холестерина в крови. Яичный холестерин, однако, не представляет опасности. У большинства людей даже десять яиц в сутки не повышают содержания холестерина в крови более чем на несколько процентов. Регулированию содержания холестерина в крови могут способствовать некоторые другие питательные вещества, входящие в состав яиц, весьма ценного пищевого продукта, например лецитины.
Для предотвращения сердечных заболеваний путем поддержания низкого уровня содержания холестерина в крови, по-видимому, наиболее важно ограничить потребление сахарозы - обычного сахара. В настоящее время среднесуточное потребление углеводов в Соединенных Штатах и других развитых странах составляет примерно 175 г крахмала, 140 г сахарозы, 20 г лактозы, 10 г фруктозы и 5 г других сахаров. (150 лет назад потребление сахарозы составляет 1/6 этого количества).
Экспериментально доказано, что у человека, получающего 100 г сахарозы в день, содержание холестерина в сыворотке крови на 50 мг дл-1 выше, чем у человека, который получает с пищей только полисахариды глюкозы (крахмал). Объясняется этот эффект тем, что фруктозная половина сахарозы подвергается превращениям, приводящим к синтезу дополнительных количеств холестерина.
Английский биохимик и специалист в области питания Джон Юдкин показал, что распространенность коронарных болезней возрастает с увеличением потребления сахара (сахарозы). У людей, суточное потребление сахара которых составляет 150 г и более, подобные заболевания встречаются в 6 раз чаще, чем у людей, употребляющих по 75 г сахара в сутки. С высоким потреблением сахарозы также связана более высокая распространенность и других болезней. Надежный способ сохранения здоровья основан на уменьшении потребления сахарозы, а этого нетрудно достигнуть путем отказа от сахара, сладких десертных блюд и сладких напитков.
Важную группу стероидов составляют гормоны. К важнейшим женским половым гормонам - эстрогенам - относятся эстрадиол, эстрон, эстриол.
Эстрадиол - гормон, вырабатываемый клетками фолликул в яичниках, содержащих созревшие яйца. Интерстициальные клетки семенников вырабатывают один из мужских половых гормонов в андростерон. Их образование вызывает появление вторичных мужских половых признаков.
Кортизон - важный стероидный гормон, синтезируемый корой надпочечников. Кортизон используют в медицине как мощное противовоспалительное и противоаллергическое средство, однако при длительном приеме он оказывает сильное побочное действие. В медицине применяются и многие другие, родственные ему соединения (кортикостероиды). Адренокортикотронный гормон (АКТГ) - белковый гормон, стимулирующий выработку кортикостероидов корой надпочечников. Молекулярная масса этого гормона 3500; АКТГ крупного рогатого скота содержит 39 аминокислотных остатков. И этот гормон используется в медицине.

- Витамин Д

7. Методы исследования липидов

RСООН + КОН - RСООК + Н2О

8. Основные источники жиров и масел

Главным источником растительных масел являются плоды и семена растений: сои, арахиса, хлопка, подсолнечника, рапса, оливкового дерева, пальмы (например, копра), льна, какао. Масла извлекают также из маслосодержащих отходов некоторых производств: кукурузных зародышей, рисовой мучки, семян косточковых плодов, виноградных косточек. Основное количество масла в мире вырабатывается из сои, арахиса, хлопка, пальмы.
Животные жиры в большом количестве содержатся в тканях крупного и мелкого рогатого скота (говяжий и бараний жиры), свиней (смалец), китов и кашалотов, а также в коровьем молоке.
Строгая научная классификация жиров и масел отсутствует. В зависимости от источников получения жиры делятся на растительные, животные и жиры микроорганизмов. В зависимости от температуры плавления они могут быть разделены на жиры жидкие при нормальной температуре (20 град.) и твердые.
Твердые жиры растительного происхождения (масло какао, пальмовые масла) отличаются относительно высоким содержанием насыщенных жирных кислот (лауриновой, миристиновой, пальмитиновой, стеариновой), жидкие - ненасыщенных (олеиновой, линолевой).
По отношению к окисляющему действию кислорода жидкие растительные масла условно делят на высыхающие, полувысыхающие, невысыхающие. Животные жиры делят на жиры наземных животных, молочные жиры и жиры морских млекопитающих и рыб. Жиры наземных животных (сало говяжье, баранье, свиное) содержат значительное количество насыщенных жирных кислот, имеют твердую консистенцию и относительно невысокие йодные числа.
Жиры морских млекопитающих и рыб, в зависимости от источника получения, сильно отличаются друг от друга по физико-химическим свойствам. Многие из них содержат значительное количество ненасыщенных жирных кислот с несколькими (до шести) двойными связями. Жиры микроорганизмов относятся к той области химии липидов, изучение которой только начинается.
Производство растительных масел растет быстрее, чем животных жиров. Это связано с их большей физиологической ценностью и экономической целесообразностью: производство растительных масел требует меньших затрат.

9. Жиры как пищевые продукты

Жиры перевариваются в кишечнике, при этом процессе катализаторами служат ферменты, называемые липазами. Для большинства людей жиры составляют важную часть пищевого рациона: среднесуточная норма для здорового молодого человека может включать 80 г белков, 385 г углеводов и 100 г жиров.
Пищевые продукты играют важную роль, поскольку служат источником энергии, позволяющей производить работу, и источником теплоты, поддерживающей необходимую температуру тела. Пищевые продукты выполняют эту роль благодаря тому, что в организме окисляются кислородом, поступающим из воздуха в легкие и переносимым в ткани гемоглобином крови. Конечные продукты окисления большей части водорода и углерода, входящих в состав пищевых продуктов, представляют собой воду и двуокись углерода.
Калорийность пищевых продуктов тщательно изучали в связи с необходимостью разработки режима правильного питания. Пища, ежедневно потребляемая здоровым человеком среднего роста, работающим с умеренными физическими нагрузками, должна в сумме давать калорийность, равную примерно 12000 кДж. Приблизительно 90 % этого количества превращается в работу и теплоту в процессе пищеварения и обмена веществ.
Содержащиеся в пищевых продуктах жиры и углеводы служат основными источниками энергии. Чистые жиры обладают калорийностью (теплотой сгорания) 37,6 кДж х 2-1, чистые углеводы (сахар) имеют калорийность около 17 кДж х г-1 (крахмал - 17,5, сахароза - 16,5 и глюкоза - 15,6). Калорийность пищевых продуктов определяют при помощи калориметрической бомбы.
Третьей, основной составной частью пищевых продуктов являются белки, необходимые, главным образом, для обеспечения роста и восстановления тканей. Взрослому человеку среднего роста необходимо получать ежедневно около 50 г белков. Обычно же человек потребляет несколько больше - 80 г; калорийность этого количества составляет примерно 1400 кДж, поскольку теплота сгорания белка равна около 18 кДж х г-1. Таким образом, за счет жиров и углеводов человек должен получать около 10600 кДж из 12000 кДж, необходимых ему ежедневно. Обычно же человек за счет жиров получает около одной трети от общего количества необходимой энергии (100 г дает 3760 кДж), а за счет углеводов, около 60 %. Люди, выполняющие очень тяжелую физическую работу, например лесорубы или исследователи Арктики, нуждающиеся в усиленном питании, могут повысить суточное потребление жиров до 250 г; жиры - более концентрированный источник энергии, чем углеводы.
Окисление жиров в организме (их диссимиляция) происходит путем отщепления двух атомов углерода (в виде уксусной кислоты) и образования молекулы с более короткой цепью, например:

Если отношение количества жиров к количеству углеводов слишком велико, то они окисляются не полностью, и в крови и моче наблюдается повышенное содержание ацетона, ацетоуксусной кислоты и бета-оксимасляной кислоты.

Н3СОСН2СООН - Ацетоуксусная кислота

Н3ССНОНСН2СООН - Бета-оксимасляная кислота

Такое состояние называется кетозом, или ацидозом. Ацидоз, понижение рН крови, обусловливается выведением с мочой двух указанных кислот в виде их аммонийных или натриевых солей. Кетоз, или ацидоз наблюдается при диабете, заболеваниях печени, голодании, алкоголизме, потреблении кетогенной пищи (в которой жиры значительно преобладают над углеводами.)

Заключение

В отличие от углеводов с их довольно определенным химическим составом и такой же молекулярной структурой, липиды разнообразны и по структуре, и по соотношению входящих в них элементов. Всем липидам присуще, однако, одно общее свойство: все они неполярны. Поэтому они растворяются в таких неполярных жидкостях, как хлороформ и эфир, но практически нерастворимы в воде.
Именно растворимость в воде делает липиды важнейшими компонентами мембран, разделяющих в живых организмах отсеки, или компартменты, заполненные водным содержанием. Кроме того, липиды - это главная форма хранения энергии в животном организме, поскольку липиды, в отличие от углеводов, могут храниться в концентрированном виде (без воды). Любое избыточное количество сахара, съеденное животным и не израсходованное сразу же на энергетические нужды, быстро превращается в жир.
Для липидов характерны функции: строительная (состав биологических мембран), гормональная (половые гормоны), энергетическая (расщепление липидов дает вдвое больше энергии, чем расщепление углеводов), запасающая (в виде липидов хранится значительная часть энергетических запасов организма), защитная (накапливаясь в виде подкожного жира, липиды выступают в качестве термоизолятора; жироподобные вещества покрывают эпидермис растений и шерсть животных), участие в метаболизме (витамин Д играет ключевую роль в обмене кальция и фосфора).

Список литературы

1. Полинг Л., Полинг П. Химия. М., Мир, 1978.
2. Грин Н., Стаут У., Тейлор Д. Биология: в 3 т. Т. 1. Пер. с англ. // под ред. Р. Сопера М.: Мир, 1990. 368 с.
3. Нечаев А. П. Органическая химия: Учеб. для учащихся пищевых техникумов. М.: Высш. школа, 1988. 319 с.
4. Павлов И. Ю., Вахненко Д. В., Москвичев Д. В. Биология: Пособие-репетитор для поступающих в вузы. Ростов-на-Дону: Феникс, 1999. 576 с.
5. Мамонтов С. Г. Основы биологии: Курс для самообразования. М.: Просвещение, 1992. 416 с.
6. Биология для поступающих в вузы./ под ред. В. Н. Ярыгина. М.: Высш. школа, 1995. 478 с.
7. Кемп П., Армс К. Введение в биологию. Пер. с англ. М.: Мир, 1988. 671 с.

В проекте рассматриваются такие аспекты: история использования жиров, свойства, применение, переработка жиров и функции жиров в организме человека.

ВложениеРазмер
afanaseva_l._proekt_zhiry.docx 38.26 КБ

Предварительный просмотр:

Министерство образования и науки

Государственное бюджетное профессиональное

образовательное учреждение Архангельской области

Проект защищен с оценкой:

Учебная дисциплина:
естествознание

Основная профессиональная образовательная программа подготовки

Форма обучения – ОЧНАЯ

Афанасьева Лиана Владимировна

Лужинская Ирина Анатольевна

Министерство образования и науки

Государственное бюджетное профессиональное

образовательное учреждение Архангельской области

НА ИНДИВИДУАЛЬНЫЙ ПРОЕКТ

Студенту: Афанасьевой Лиане Владимировне

Специальности: 43.01.06 проводник на железнодорожном транспорте

Тема индивидуального проекта: Жиры

История использования жиров. Классификация жиров по разным признакам.

Функции жиров в живых организмах и организме человека. Холестерин. Маргарин. Продукты переработки жиров и их применение.

Срок исполнения индивидуального проекта: 01 апреля 2017г.

Руководитель индивидуального проекта

История использования жиров

Функции жиров в организме

Продукты переработки жиров и их применение

Список использованных источников

Актуальность темы: В настоящее время огромное количество людей страдают от ожирения. Это приводит к развитию очень тяжелых заболеваний. Меня заинтересовал вопрос: зачем жиры нужны в организме человека, какое количество жира необходимо организму в день. Кроме того, мне стало интересно, что такое холестерин, для чего он нужен и какой уровень в крови должен быть по норме.

Цель проекта: Изучить жиры с точки зрения пользы и вреда для организма человека.

1.Ознакомиться с классификацией жиров, их строением и свойствами.

2. В чем отличия растительных масел от животных жиров?

3.Показать функции жиров в организме.

4.Разобраться из чего получают маргарин и в чем пищевая опасность синтетических жиров?

5.Что такое холестерин, зачем он необходим организму человека. Какой уровень холестерина в крови считается нормой.

В 1741 французский химик Клод Жозеф Жоффруа (1685–1752) обнаружил, что при разложении кислотой мыла (которое готовили варкой жира со щелочью) образуется жирная на ощупь масса.

То, что в состав жиров и масел входит глицерин, впервые выяснил в 1779 знаменитый шведский химик Карл Вильгельм Шееле.

Впервые химический состав жиров определил в начале прошлого века французский химик Мишель Эжен Шеврёль, основоположник химии жиров, автор многочисленных исследований их природы, обобщенных в шеститомной монографии "Химические исследования тел животного происхождения".

1813 г Э. Шеврёль установил строение жиров, благодаря реакции гидролиза жиров в щелочной среде.Он показал, что жиры состоят из глицерина и жирных кислот, причем это не просто их смесь, а соединение, которое, присоединяя воду, распадается на глицерин и кислоты.

Животные жиры содержат главным образом глицериды предельных кислот и являются твердыми веществами. Растительные жиры, часто называемые маслами, содержат глицериды непредельных карбоновых кислот. Это, например, жидкие подсолнечное, конопляное и льняное масла .

Содержание жиров в различных продуктах в %

Доля калорий, получаемых

Цельное коровье молоко

Молоко с пониженным содержанием жира

Обезжиренное (снятое) молоко

Картофель, отваренный целиком

Все жиры (твердые и жидкие) легче воды и нерастворимы в ней. Хорошо растворяются в бензине, эфире, тетрахлориде углерода, сероуглероде, дихлорэтане и других растворителях. Жиры хорошо впитываются бумагой и кожей.

Природные жиры содержат следующие жирные кислоты

стеариновая (C 17 H 35 COOH)

пальмитиновая (C 15 H 31 COOH)

Масляная (C 3 H 7 COOH)

олеиновая (C 17 H 33 COOH, 1 двойная связь)

линолевая (C 17 H 31 COOH, 2 двойные связи)

линоленовая (C 17 H 29 COOH, 3 двойные связи)

арахидоновая (C 19 H 31 COOH, 4 двойные связи, реже встречается)

Жиры содержатся во всех растениях и животных. Они представляют собой смеси полных сложных эфиров глицерина и не имеют чётко выраженной температуры плавления.

Большинство современных людей, которые находятся в вечной погоне за внешней привлекательностью, воспринимают жир, как злейшего врага. Однако многие из них даже не подозревают, что роль жиров в организме человека чрезвычайно важна и наряду с иными веществами (белки, углеводы) они выступают залогом нормального функционирования всех систем организма

Роль жиров в организме человека невероятно разноплановая. Можно с полной уверенностью говорить о том, что липиды (жиры) участвуют практически во всех важных процессах организма. Тем не менее можно выделить несколько их основных функций, к которым относят:

Практически каждый человек знает, что тело использует жир для создания резервного запаса. Такое утверждение верно лишь частично. Безусловно, тело человека для своего нормального функционирования, нуждается в том или ином количестве энергии, которую человек обычно получает из пищи. Основными энергетическими источниками являются углеводы и белки, которые сравнительно быстро расщепляются, выделяя при этом немало энергии.

Тем не менее при умеренном, сбалансированном рационе процент жировых отложений невелик и легко поддаётся корректировке. Однако на сегодняшний день всё чаще встречаются проблемы с метаболизмом, что приводит не только к существенным жировым отложениям и избыточному весу, но и нарушается биологическая функция липидов. Более того от подобных запасов не так уж легко избавится.

Ещё одна немаловажная биологическая роль, что они выполняют – это образование защитных оболочек. Органы располагаются в организме не в произвольном хаотическом порядке, а в конкретных местах. А закрепляют их жировые оболочки, невероятно напоминающие подушечки с жиром. Какова функция этих мешочков? Они не просто фиксируют органы на положенных местах, а защищают их. В случае если в теле наблюдается острая нехватка жировых отложений, то какие возможны осложнения?

Основной проблемой можно назвать истончение жировых оболочек, что приводит к опущению органов. Так, довольно распространённой проблемой быстро похудевших людей является опущение почек. Проблема действительно серьёзная, ведь блуждающие почки становятся не только причиной дискомфорта, но они могут мешать работе иных органов, тем самым снижая эффективность их функционирования. Отсутствие у органа защитной жировой оболочки делает его куда более подверженным давлению, лишает защиты, способной смягчить и амортизировать внешние воздействия, что увеличивает вероятность его переохлаждения и травмы.

Теплоизоляция

Эта роль, которую также выполняют жиры, основывается на невероятно низкой теплопроводности липидов. Жиры являются чудесным изолятором, помогающим сохранять тепло тела, а также защищают его от воздействия низких температур. Если глянуть на фауну крайнего Севера, то очевидным является тот факт, что каждое животное защищено толстым слоем своего жира, и это обеспечивает их выживание при столь низких температурах. Так что приобретённые за зиму несколько лишних килограмм – это всегда защитная реакция организма на понижение температуры. Беспокоиться не стоит.

Структурная функция

Отдельная категория жиров, так называемые структурные липиды, способны образовывать непростые комплексы, включая в свою структуру белки и углеводы. Далее, из этих комплексов производится построение мембран клеток и других структур.

Жир — состав, свойства и роль в диете

Разработчик сайтов, журналист, редактор, дизайнер, программист, копирайтер. Стаж работы — 25 лет. Область интересов: новейшие технологии в медицине, медицинский web-контент, профессиональное фото, видео, web-дизайн. Цели: максимально амбициозные.

  • Запись опубликована: 19.08.2020
  • Время чтения: 1 mins read

Жиры содержат три типа жирных кислот: насыщенные, мононенасыщенные и полиненасыщенные. Именно их соотношение определяет диетическую ценность.

Что такое липиды

Липиды — это различные классы соединений, таких как стероиды, жиры, сфинголипиды и т.п. Липиды включены в биологические мембраны и, следовательно, от них зависит проводимость мембраны, передача нервных импульсов и образование межклеточных связей.

Они образуют основные запасы энергии клеток. Также липиды — источник эндогенной воды. Они делятся на гидролизуемые и негидролизуемые. К последним относятся терпены и стероиды.

Классификация гидролизуемых липидов намного сложнее. Они делятся на:

  • обычные , включающие триглицериды (сложные эфиры глицерина и жирных кислот);
  • воски — сложные эфиры длинноцепочечных жирных кислот и длинноцепочечных одноатомных спиртов.

К сложным липидам относятся соединения, которые помимо жирных кислот и спирта содержат молекулы других веществ.

Функции жира в организме

Липиды являются концентрированными источниками энергии. В сутки при нормальном питании потребляется около 100 г липидов. Основные пищевые липиды — триглицериды. С пищей организму необходимо получать липиды животного и растительного происхождения — полиненасыщенные жирные кислоты.

  • источник энергии – 1 грамм жира выделяет 9 ккал;
  • источник незаменимых жирных кислот;
  • переносчик жирорастворимых витаминов A, D, E и K;
  • улучшитель вкуса и внешнего вида пищи.

Некоторые типы жиров важны для производства стероидных гормонов, интерлейкинов, тромбоксанов и простагландинов.

Холестерин необходим для производства желчных кислот, которые переваривают жиры.

Триглицериды

Триглецириды — это нейтральные жиры — сложные эфиры глицерина и жирных кислот. Это резервные жиры, которые являются основным источником эндогенной энергии. В жировой ткани триглицериды составляют 60-85% ее массы.

Триглицерид — это сложный эфир, состоящий из глицерина, связанного с тремя жирными кислотами, которые могут быть насыщенными или ненасыщенными. В организме человека преобладают насыщенные пальмитиновая и олеиновая (омега-9) кислоты.

Триглицериды

Триглицериды

Триглицериды попадают с пищей или синтезируются в самом организме (печень, жировая ткань, слизистая тонкого кишечника, мышцы). Триглицериды, поступающие с пищей, гидролизуются в желудочно-кишечном тракте ферментом липазой. Скорость синтеза зависит от количества жирных кислот, полученных с пищей.

Триглицериды попадают в кровь в виде хиломикронов (липопротеин, несущий триглицериды). Произведенные жирные кислоты потребляются в тканях или повторно синтезируются из них, а триглицериды сохраняются.

Фосфолипиды

Состоят из двух групп соединений. Это глицерофосфолипиды (спирт-глицерин) и сфингомиелины (спиртовой сфингозин). Фосфолипиды имеют повышенную гидрофильную часть по сравнению с триглицеридами, состоящую из фосфатной группы и определенного аминоспирта, такого как холин. Из-за этой повышенной гидрофильной части фосфолипиды характеризуются полярностью и поэтому также называются полярными липидами.

Фосфолипиды являются основными липидами мембран. Их очень много в нервных клетках. Фосфолипиды образуют миелиновую оболочку нервных волокон и активно участвуют в энергетическом обмене.

Фосфолипиды

Фосфолипиды

Жирные кислоты

  • Насыщенные жирные кислоты . Они имеют высокую температуру плавления и поэтому сохраняют твердую консистенцию при комнатной температуре. Насыщенные жирные кислоты получают из животных источников. В растительных маслах (жирах) преобладают ненасыщенные жирные кислоты, за исключением кокосового и пальмового масел. Некоторые промышленные маргарины и спреды содержат много насыщенных жирных кислот.
  • Мононенасыщенные жирные кислоты . Эти жирные кислоты находятся в жидкой форме при комнатной температуре. Оливковое и рапсовое масла — лучший источник мононенасыщенных жирных кислот.
  • Полиненасыщенные жирные кислоты (PNRR) . PNRR находятся в жидкой форме при комнатной температуре. Они легко окисляются в пище и в организме. PNRR участвуют в процессе метаболизма холестерина и входят в состав фосфолипидов клеточных мембран. Кроме того, они являются предшественниками таких активных биологических веществ, как простагландины, интерлейкины, тромбоксаны, играющих решающую роль в формировании иммунного ответа, регулировании свертывания крови и уменьшении воспаления.

Полиненасыщенные RR делятся на:

  • Омега-3 (альфа-линоленовые) – содержатся в льняном, тыквенном, грецком, рапсовом и соевом маслах и зеленых листовых овощах;
  • Эйкозапантан, докозагексаен — содержатся в масле морских рыб, масле морских водорослей.

Линоленовые жиры, арахидон — их производные. Они присутствуют в молочном жире, особенно летом, потому что в организме животных они состоят из линолевой кислоты, полученной с кормом.

Более длинные цепи RR: арахидон (AA), докозагексаеновая кислота (DHR), эйкозапентаеновая кислота (EPR) не считаются незаменимыми, но при отсутствии RR омега-3 и омега-6 в пище их выработка в организме может достигать критических уровней. Прямое поступление АК, ЭПК и ДГК с пищей позволяет избежать метаболизма линолевой и альфа линоленовой кислоты.

DHR и EPR очень важны для неврологического развития плода и ребенка. Дефицит DHR связан с болезнью Альцгеймера, синдромом дефицита внимания, фенилкетонурией, муковисцидозом и другими заболеваниями. Растительный α-линоленовый RR омега-3 может быть преобразован ферментами в физиологически важные EPR и DHR или соединения класса гормоноподобных эйкозаноидов.

Жирные кислоты омега-3 активно участвуют в клеточном метаболизме, в регуляции холестерина в организме человека: они снижают количество холестерина липопротеидов низкой плотности (так называемый плохой холестерин) в организме, а также вероятность сердечных заболеваний. Они также очень важны для функционирования клеток мозга, нейронных синапсов, сетчатки глаза, а также для выработки половых гормонов.

Метаболизм жирных кислот

Метаболизм жирных кислот

Оптимальное соотношение жирных кислот омега-6 к омега-3 составляет 5:1. В современном рационе это соотношение превышает 15 раз и более. Неправильное соотношение Омега-3 и Омега-6 опасно для здоровья.

Трансизомерные кислоты

Трансизомерные кислоты в небольших количествах содержатся в натуральных жирах, в желудках коров и овец, баранине, говядине, молоке и сыре. Важнейшим источником транс-изомерных кислот являются гидрогенизированные спреды PNRR, маргарины.

Маргарин - источник транс-изомерных кислот

Маргарин – источник транс-изомерных кислот

В процессе нагревания растительного масла ненасыщенные кислоты становятся насыщенными, а жидкие жиры становятся твердыми. Гидратированные диетические жиры имеют ряд преимуществ. Они дешевле, портятся медленнее, чем животные жиры, более устойчивы к окислению и высоким температурам.

Транс-изомерные кислоты, образующиеся во время гидрогенизации, связаны с увеличением холестерина ЛПНП и снижением холестерина ЛПВП, что увеличивает риск сердечно-сосудистых заболеваний, ожирения, диабета, а высокие уровни которых могут быть канцерогенными.

Стерины

Производные стероидов — это стероидные спирты, состоящие из четырех конденсированных колец атомов углерода, которые отличаются друг от друга функциональными группами (например, тестостерон, холестерин). Содержится в растениях, мясе и вырабатывается в организме.

В организме человека могут содержаться свободные стерины или сложные эфиры (стериды), образованные с жирными кислотами. Существует множество стеринов и стероидов, включая желчные кислоты, половые гормоны и гормоны коры надпочечников, витамины группы D, сердечные гликозиды, растительные фитостерины и некоторые алкалоиды.

В растениях есть стерины (эргостерин, стигмастерин и т. д.), но эти стерины не очень хорошо усваиваются организмом и, как считается, блокируют всасывание холестерина.

Самый распространенный стерол — это воскоподобный холестерин, который содержится только в продуктах животного происхождения. Фитостерины содержатся в растительной пище.

Холестерин является предшественником желчных кислот, стероидных гормонов и витамина D и представляет собой пергидрофенантреновое производное циклопентана. Это циклический ненасыщенный одноатомный спирт, имеющий полярную гидроксигруппу. Из холестерина в организме синтезируются другие стероиды: гормоны надпочечников, кортикостероиды, половые гормоны, желчные кислоты. Он синтезируется во многих клетках организма, но наиболее интенсивно в эндоплазматическом ретикулуме и цитоплазме эпителиальных клеток печени и кишечника. Холестерин синтезируется из ацетил-КоА. Выводится из организма с желчью или в виде солей желчных кислот.

Пищевой холестерин слабо влияет на уровень холестерина в плазме крови, поскольку большая его часть имеет эндогенное происхождение. Однако уменьшение количества насыщенных жиров в пище также резко снижает уровень холестерина в крови.

Животные и растительные жиры в диете

Животные жиры содержат много насыщенных жирных кислот. Они повышают уровень холестерина в крови и, следовательно, способствуют развитию атеросклероза, сердечно-сосудистых заболеваний и рака. Чрезмерное потребление насыщенных жирных кислот может привести к раку легких, кишечника, прямой кишки, груди и простаты.

Единственное исключение составляет один вид животного жира — жир морской рыбы , такой как скумбрия, сельдь, лосось, треска. Рекомендуется есть их как можно чаще из-за наличия полиненасыщенных жирных кислот омега-3.

Жиры в морской рыбе

Жиры в морской рыбе

Пищевая ценность масла определяется соотношением содержащихся в нем жирных кислот и количества жирорастворимых витаминов. В растительных маслах ненасыщенные жирные кислоты, то есть олеиновая, линолевая и α-линоленовая кислоты, составляют значительную часть всех жирных кислот. Особенно важны группы PNRR омега-6 и омега-3.

  • Считается, что дефицит производных омега-6 RR может быть одним из факторов риска, связанных с развитием рака.
  • Омега-3 PNRR снижает агрегацию тромбоцитов, а также риск образования тромбов, влияет на электрическую активность сердечной мышцы, тормозит возникновение аритмий. Они снижают уровень триглицеридов в крови, а также частоту ишемической болезни сердца.

Соотношение RR омега-6 и омега-3 в пищевых продуктах, рекомендованных Всемирной организацией здравоохранения (ВОЗ), должно составлять от 1:1 до 5:1. В последние десятилетия стала очевидной искаженная тенденция в этой рекомендации: растет потребление масел с высоким содержанием омега-6 и слишком низким содержанием омега-3 RR. Например, подсолнечное масло.

Соотношение этих кислот в различных продуктах питания колеблется от 10:1 до 20:1. Превышение омега-6 снижает уровень холестерина ЛПВП и увеличивает холестерин ЛПНП. Арахидон, производимый из кислот омега-6 и его метаболиты вызывают сужение сосудов и агрегацию тромбоцитов.

Более насыщенных транс-изомерных кислот, образующихся при гидрогенизации растительных масел, то есть при их затвердевании, увеличивают риск дислипидемии, CD типа II, а также попадания канцерогенов в клетки.

Качество растительного масла определяется его химическим составом, способом экстракции, технологией рафинирования и сохраняемыми при нем естественными физиологически активными веществами. Рекомендуется употреблять не менее 2-3 столовых ложек ненагретого масла в день с различными блюдами или салатами.

Читайте также: