Биологические процессы в почве реферат

Обновлено: 05.07.2024

В процессе развития почва приобретает характерное для нее строение, которое выражается в чередовании различных по составу, свойствам и внешним признакам генетических горизонтов, отличных от слоев подстилающих пород. Совокупность подстилающих горизонтов образует генетический профиль почвы.
Одновременно с развитием почвы растет ее плодородие, т. е. способность обеспечивать растения пищей, водой и другими условиями.

Содержание
Прикрепленные файлы: 1 файл

почвообразование.doc

Процесс почвообразования…………………………………… …………..6

Факторы почвообразования…………………………………… ………….9

Наука о происхождении и развитии почв, закономерности их распространения, путях рационального использования и повышения плодородия называется почвоведением. Эта наука является отраслью естествознания и тесно связана с физико- математическими, химическими, биологическими, геологическими и географическими науками, опирается на разработанные ими фундаментальные законы и методы исследования. Вместе с тем, как любая другая теоретическая наука, почвоведение развивается на основе непосредственного взаимодействия с практикой, которая проверяет и использует выявленные закономерности и, в свою очередь, стимулирует новые поиски в области теоретических знаний. К настоящему времени сформировались крупные прикладные разделы почвоведения для сельского и лесного хозяйств, ирригации, строительства, транспорта, поиска полезных ископаемых, здравоохранения и охраны окружающей среды.

К середине 19 в. накопился обширный материал по изучению почв, однако данные эти были разрознены, не приведены в систему и не обобщены. Не было и единого для всех исследователей определения термина почва.

Основоположником науки о почве как самостоятельной ес тественноисторической науки стал выдающийся русский ученый Василий Васильевич Докучаев (1846–1903). Докучаев впервые сформулировал научное определение почвы, назвав почву самостоятельным естественноисторическим телом, которое является продуктом совокупной деятельности материнской горной породы, климата, растительных и животных организмов, возраста почвы и отчасти рельефа местности. Все факторы почвообразования, о которых говорил Докучаев, были известны и до него, их последовательно выдвигали разные ученые, но всегда в качестве единственного определяющего условия. Докучаев первый сказал, что возникновение почвы происходит в результате совместного действия всех факторов почвообразования. Он установил взгляд на почву как на самостоятельное особое природное тело, равнозначное понятиям растение, животное, минерал и т.д., которое возникает, развивается, непрерывно изменяется во времени и пространстве, и этим он заложил прочный фундамент новой науки.

Почва.

Почва – самый поверхностный слой суши земного шара, возникший в результате изменения горных пород под воздействием живых и мертвых организмов (растительности, животных, микроорганизмов), солнечного тепла и атмосферных осадков. Почва представляет собой совершенно особое природное образование, обладающее только ей присущим строением, составом и свойствами. Важнейшим свойством почвы является ее плодородие, т.е. способность обеспечивать рост и развитие растений. Чтобы быть плодородной, почва должна обладать достаточным количеством питательных веществ и запасом воды, необходимым для питания растений, именно своим плодородием почва, как природное тело, отличается от всех других природных тел (например, бесплодного камня), которые не способны обеспечить потребность растений в одновременном и совместном наличии двух факторов их существования – воды и минеральных веществ.

В состав почвы входят четыре важнейших компонента:

  • минеральная основа (50–60 % от общего объёма);
  • органическое вещество (до 10 %);
  • воздух (15–25 %);
  • вода (25–35 %).

Почва – важнейший компонент всех наземных биоценозов и биосферы Земли в целом, через почвенный покров Земли идут многочисленные экологические связи всех живущих на земле и в земле организмов (в том числе и человека) с литосферой, гидросферой и атмосферой.

Процесс почвообразования.

Процесс почвообразования – превращение горной породы в почву. Он осуществляется в результате длительного взаимодействия массы материнской горной породы с живыми организмами, продуктами их жизнедеятельности и элементами гидро- и атмосферы. В основе процесса почвообразования лежит малый биологический круговорот веществ, развивающийся на фоне большого геологического круговорота веществ.

Почвообразовательный процесс относится к категории био-физико-химических процессов. Агентами почвообразования являются живые организмы и продукты их жизнедеятельности, вода, кислород воздуха и углекислота. Основные процессы, способствующие превращению горной породы в почву, следующие:

  1. Выветривание горной породы и минералов, приводящее к образованию новых минералов и освобождению в доступной форме элементов зольного питания растений;
  2. Извлечение из материнской горной породы, а в дальнейшем из почвы элементов питания;
  3. Синтез и накопление в верхних слоях породы остатков растений и животных, минерализация и превращение их в гумусовые вещества (гумификация), сопровождающиеся освобождением и аккумуляцией элементов зольного и азотного питания;
  4. Взаимодействие минеральных и органических веществ, образование органоминеральных соединений разной степени подвижности;
  5. Перемещение и осаждение минеральных, органических и органоминеральных продуктов почвообразования в почвенной толще.

Все горные породы, покрывающие поверхность земного шара, с первых же моментов их образования под влиянием различных процессов начинали немедленно разрушаться. Сумма процессов преобразования горных пород на поверхности Земли называется выветриванием или гипергенезом. Совокупность продуктов выветривания называется корой выветривания. Процесс преобразования исходных пород в кору выветривания чрезвычайно сложен и включает в себя многочисленные процессы и явления. В зависимости от характера и причин разрушения горных пород различают физическое, химическое и биологическое выветривание, которое сводится обычно к физическому и химическому воздействию организмов на горные породы.

Процессы выветривания (гипергенеза) распространяются на некоторую глубину, образуя зону гипергенеза. Нижняя граница этой зоны условно проводится по кровле верхнего горизонта подземных (пластовых) вод. Нижнюю (и большую) часть зоны гипергенеза занимают горные породы, в той или иной степени измененные процессами выветривания. Здесь выделяют новейшую и древнюю коры выветривания, сформированные в более древние геологические периоды. Поверхностный слой зоны гипергенеза является тем субстратом, на котором происходит образование почвы. Как же происходит процесс почвообразования?

В процессе выветривания (гипергенеза) изменялся первоначальный облик горных пород, как и их элементный и минеральный состав. Первоначально массивные (т.е. плотные и твердые) горные породы постепенно переходили в раздробленное состояние. Примерами раздробленных в результате выветривания горных пород могут служить дресва, песок, глина. Становясь раздробленными, горные породы приобретали ряд новых свойств и особенностей: они становились более проницаемыми для воды и воздуха, в них увеличивалась общая поверхность их частиц, усиливавшая химическое выветривание, образовывались новые, в том числе и легко растворимые в воде соединения и, наконец, горные породы приобретали способность удерживать в себе влагу, имеющую большое значение для обеспечения растений водой.

Однако сами по себе процессы выветривании не могли привести к накоплению в горной породе элементов пищи растений, а следовательно, и не могли превратить горную породу в почву. Образующиеся в результате выветривания легко растворимые соединения могут только вымываться из горных пород под влиянием атмосферных осадков; а такой биологический важный элемент, как азот, потребляемый растениями в больших количествах, совершенно не содержится в изверженных горных породах.

Рыхлые и способные впитывать воду горные породы становились благоприятной средой для жизнедеятельности бактерий и различных растительных организмов. Постепенно происходило обогащение верхнего слоя коры выветривания продуктами жизнедеятельности организмов и их отмирающими остатками. Разложение органических веществ и присутствие кислорода приводило к сложным химическим процессам, в результате которых происходило накопление в горной породе элементов зольной и азотной пищи. Таким образом, горные породы поверхностного слоя коры выветривания (их еще называют почвообразующими, коренными или материнскими породами) стали почвой. В состав почвы, таким образом, входит минеральная компонента, соответствующая составу коренных пород, и органическая компонента.

Поэтому началом процесса почвообразования нужно считать тот момент, когда на продуктах выветривания горных пород поселились растительность и микроорганизмы. С этого момента раздробленная горная порода стала почвой, т.е. качественно новым телом, обладающим рядом качеств и свойств, самым существенным из которых является плодородие. В этом отношении все существующие почвы на земном шаре представляют собой естественноисторическое тело, образование и развитие которого связано с развитием всей органической жизни на земной поверхности. Один раз зародившись, почвообразовательный процесс никогда не прекращался.

Факторы почвообразования.

На развитие почвообразовательного процесса самое непосредственное влияние оказывают те природные условия, в которых он протекает, от того или иного их сочетания зависят его особенности и то направление, в котором этот процесс будет развиваться.

Важнейшими из этих природных условий, называемых факторами почвообразования, являются следующие: материнские (почвообразующие) породы, растительность, животный мир и микроорганизмы, климат, рельеф местности и возраст почв. К этим пяти основным факторам почвообразования (которые назвал еще Докучаев) сейчас добавляют действие вод (почвенных и грунтовых) и деятельность человека. Ведущее значение всегда имеет биологический фактор, остальные же факторы представляют собой лишь фон, на котором происходит развитие почв в природе, однако они оказывают большое влияние на характер и направление почвообразовательного процесса.

Почвообразующие породы.

Все существующие почвы на Земле произошли из горных пород, поэтому очевидно, что в процессе почвообразования они принимают самое непосредственное участие. Наибольшее значение имеет химический состав горной породы, поскольку минеральная часть любой почвы содержит в себе, в основном, те элементы, которые входили в состав материнской породы. Большое значение имеют и физические свойства материнской породы, поскольку такие факторы как гранулометрический состав породы, ее плотность, пористость, теплопроводность самым непосредственным образом оказывают влияние не только на интенсивность, но и на характер протекающих почвообразовательных процессов.

Климат.

Климат играет огромную роль в процессах почвообразования, его влияние очень многообразно. Основными метеорологическими элементами, определяющими характер и особенности климатических условий, являются температура и осадки. Годовое количество поступающего тепла и влаги, особенности их суточного и сезонного распределения обуславливают совершенно определенные процессы почвообразования. Климат влияет на характер выветривания горных пород, воздействует на тепловой и водный режимы почвы. Движение воздушных масс (ветер) влияет на газообмен почвы и захватывает мелкие частички почвы в виде пыли. Но климат оказывает влияние на почву не только непосредственно, но и косвенно, поскольку существование той или иной растительности, обитание тех или иных животных, а также интенсивность микробиологической деятельности обусловлена именно климатическими условиями.

Растительность, животные и микроорганизмы.

Значение растительности в почвообразовании чрезвычайно велико и многообразно. Пронизывая корнями верхний слой почвообразующей породы, растения извлекают из ее нижних горизонтов питательные вещества и закрепляют их в синтезированном органическом веществе. После минерализации отмерших частей растений заключенные в них зольные элементы отлагаются в верхнем горизонте почвообразующей породы, создавая этим благоприятные условия для питания следующих поколений растений. Так, в результате постоянного создания и разрушения органического вещества в верхних горизонтах почвы, приобретается наиболее важное для нее свойство – накопление, или концентрация элементов зольной и азотной пищи для растений. Это явление называется биологической поглотительной способностью почвы.

Вследствие разложения растительных остатков в почве накапливается перегной, имеющий огромное значение в плодородии почвы. Растительные остатки в почве являются необходимым питательным субстратом и важнейшим условием развития многих почвенных микроорганизмов.

В процессе распада органического вещества почвы выделяются кислоты, которые, воздействуя на материнскую горную породу, усиливают ее выветривание.

Сами растения в процессе своей жизнедеятельности выделяют своими корнями различные слабые кислоты, под влиянием которых труднорастворимые минеральные соединения частично переходят в растворимую, а, следовательно, в усвояемую растениями форму.

Кроме того, растительный покров существенно изменяет микроклиматические условия. Например, в лесу, по сравнению с безлесными территориями, понижена летняя температура, увеличена влажность воздуха и почв, уменьшена сила ветра и испарение воды над почвой, накапливается больше снега, талых и дождевых вод – все это неизбежно отражается на почвообразовательном процессе.

Благодаря деятельности населяющих почву микроорганизмов происходит разложение органических остатков и синтез содержащихся в них элементов в соединения, поглощаемые растениями.

Высшие растения и микроорганизмы образуют определенные комплексы, под воздействием которых формируются различные типы почв. Каждой растительной формации соответствует определенный тип почв. Например, под растительной формацией хвойных лесов никогда не сформируется чернозем, который образуется под воздействием лугово-степной растительной формацией.

Важное значение для почвообразования имеют животные организмы, которых в почве очень много. Наибольшее значение имеют беспозвоночные животные, живущие в верхних почвенных горизонтах и в растительных остатках на поверхности. В процессе своей жизнедеятельности они значительно ускоряют разложение органических веществ и часто производят весьма глубокие изменения в химических и физических свойствах почвы. Большую роль играют и норные животные, такие как кроты, мыши, суслики, сурки, и пр. Многократно перерывая почву они способствуют смешиванию органических веществ с минеральными, а также повышению водо- и воздухопроницаемости почвы, что усиливает и ускоряет процессы разложения в почве органических остатков. Также они обогащают почвенную массу продуктами своей жизнедеятельности.

Выдающийся русский ученый В.В.Докучаев впервые дал следующее определение почвы: “Почвой следует называть ”дневные”, или наружные, горизонты горных пород (все равно каких ), естественно измененные совместным воздействием воды, воздуха и различного рода организмов, живых и мертвых.”

Почва – элемент географического ландшафта. Первопричиной образования почв явились живые организмы (главным образом растения и микробы ), поселяющиеся в разрушенной выветриванием горной породе.

Происхождение почвы и ее свойства неразрывно связаны с условиями окружающей среды. Она отражает в своих свойствах исторический ход влияющих на нее природных условий, производительных сил и производственных отношений.

Почва таит в себе огромные резервы плодородия. Задача заключается в умелом использовании их, что возможно на основе углубленного познания процессов почвообразования и мелиоративного воздействия на почву.

Плодородие любой почвы может быть повышено при правильном ее использовании. Почвы разных участков могут обладать одинаковым химическим составом, но различным эффективным плодородием на данном отрезке времени из-за различия в водно-физических свойствах, биологических и производственных особенностях.

Различия в естественном, или природном, плодородие обуславливаются всем ходом почвообразования, а также составом (химический состав, органическое вещество, коллоиды, газы ), свойствами (физико-химические, биологические ) и строением почвы.

Современное почвоведение достигло такого уровня, при котором можно приступить не только к коренному улучшению почв, но и созданию новых вариантов почв с максимально высоким плодородием.

До начала Х1Х века почву изучали крайне недостаточно и науки о ней не было. Только в конце Х1Х учение о почве стало четкой, ясно очертанной дисциплиной, имеющей свои методику, теорию, задачи и перспективы. Почвоведение было впервые основано в нашей стране. Приоритет русской науки о почве признается во всех странах мира. Он обусловлен следующими причинами:

a) огромными пространствами нашей страны с разнообразными природными условиями почвообразования от полярных областей до субтропиков и возможностями улучшения природных почв от тундровых до красноземов включительно;

б) элементами диалективно- материалистической методологии, на базе которой

стихийно развивалось русское почвоведение с первых моментов его формирования.

Освоение ныне не используемых земель пустынь, болот и улучшение качества почв мало продуктивных сенокосов значительно увеличит площадь сельскохозяйственных угодий и пахотных земель.

Факторы и условия почвообразования.

Почвообразующие породы.

“Почвообразующей (материнской ) породой называется всякая горная порода, на минеральной основе которой возникает и развивается почва. Между почвой и почвообразующей породой происходит постоянный обмен энергией (особенно тепловой ), газами парами воды и растворами.

Почвообразующими породами могут быть продукты выветривания массивнокристаллических и осадочных пород. Этими породами чаще всего являются продукты выветривания осадочных пород. Однако наиболее древние осадочные горные породы обычно прикрыты новейшими четвертичными отложениями. Залегая непосредственно на поверхности земли, они служат основными материнскими породами.

В древних озерных котловинах и впадинах распространены ледниково-озерные отложения, образовавшиеся на дне ледниковых озер из взмученного материала ледниковых вод. Эти отложения представляют супеси и ленточные глины с выраженной слоистостью, обусловленной чередованием тонких темных глинистых прослоек с более светлыми песчаными слоями.

Все названные древние четвертичные отложения не везде являются непосредственными материнскими породами, так как они чаще лежат под современными генетическими типами геологических отложений, как элювий, делювий и аллювий.

Элювий (от латинского eluo- вымываю ). Элювием называют континентальные геологические образования, возникшие в результате сильного изменения и разрушения горных пород на месте их первичного залегания. К элювию относят продукты выветривания горных пород, сохраняющие реликтовые структурные и петрографические признаки, генетическую связь и непрерывность последовательности перехода к исходным породам.

На поверхности Земли нет горных пород, так или иначе не измененных и не затронутых элювиальным процессом – совокупностью многообразных явлений денудации, выветривания и почвообразования. Однако малозаметные изменения горной породы не делают ее элювием. Элювиальный процесс протекает, и элювий в основном формируется непосредственно в поверхностных горизонтах Земли. Наибольшее значение в распространении имеет наземный элювий, в формировании которого участвует почвообразование.

При резкой смене физико-географических условий элювий часто перекрывается сверху позднейшими наносами, т.е. оказывается погребенным (ископаемым ), сохраняя свои генетические признаки. Погребенный элювий наземного происхождения легко распознается по ископаемым почвам или по сохранившимся прямым и косвенным признакам почвообразования (генетические горизонты почвы, включения, новообразования и т.д. ). Однако в элювии древнейших эпох признаки почвообразования сглаживаются и даже исчезают.

Характер элювия сильно зависит от той природы, на которой он возникает. Так элювий равнин, образовавшийся на плотных массивно-кристаллических породах, резко отличается от элювия, сформированного на рыхлых осадочных породах. Верхний слой элювия на плотных породах состоит из рыхлых продуктов разрушения плотной породы, часто измененной выветриванием и почвообразованием до неузнаваемости, представляет собой землистую массу без малейших признаков массивно-кристаллических пород. На глубине нескольких метров эта массивно-кристаллическая масса залегает в мало измененном, а еще ниже практически в неизменном виде.

Иной характер имеет элювий, возникший на рыхлой, осадочной породе. Вследствие большой воздухо- и водопроницаемости эта порода разрушается значительно быстрее и на большую глубину. Водные растворы проникают в нее вплоть до первого водоносного горизонта, залегающего иногда на глубине десятков метров. В связи с этим формируется наиболее мощный элювий, притом чем рыхлее осадочная горная порода, тем большей мощности он достигает. Наиболее интенсивное образование элювия приурочено к корнеобитаемой зоне.

Элювий так многообразен, как разнообразны горные породы, на которых он образован.

Элювий имеет ясно выраженные черты зональности. В засушливых условиях он щелочной, а в относительно влажных кислый. В кислой среде протекает глееобразование или же латеритообразование. В щелочной среде возникает карбонатный элювий типа мергелей, лесса, лессовидных пород, засоленных грунтов и т. д. Нередко в верхних горизонтах элювий кислый, так как вода здесь обогащена углекислым газом, а книзу происходит нейтрализация углекислоты и нарастает щелочная реакция. В холодном климате наблюдается выраженное оглеение и ожелезнение – формирование мощных сизо-серых, вязких, глиноподобных масс и болотных охристо-желтых образований. В умеренном климате накапливаются красно- и желто-бурые глины и суглинки, а в условиях континентально-умеренного пояса при некоторой засушливости образуется карбонатный палево-желтый лессовидный элювий, иногда гипсоносный и обогащенный легкорастворимыми солями. Соли местами имеют тенденцию к накоплению в поверхностных горизонтах элювиальных толщ. Во влажном климате, наоборот, растворимые соли выщелачиваются и накапливается кремнезем.

В субтропиках с теплым и влажным климатом наблюдается сильное выщелачивание элювиальных толщ. Возникший в подобных условиях , близких к современным, элювий содержит очень много полуторных окислов. Окиси железа в таком элювии в несколько раз больше, чем в исходной породе. Во влажных тропиках элювий лишается щелочных и щелочноземельных оснований, а также SiO2 . Здесь накапливается Al2 O3 c Fe2 O3 и формируются красноцветные латерито- и бокситоподобные породы.

Элювиальный процесс протекает на всех элементах рельефа и захватывает все геологические отложения, не исключая новейших делювиальных, аллювиальных, эоловых, ледниковых и морских. В последних случаях образование элювия сводится к минимуму, так как оно подавляется другими преобладающими геологическими процессами и маскируется, исчезая подобно постоянно и повсеместно оседающей эоловой пыли, тонущей, как правило, в массе других отложений.

Делювий (от латинского deluo – смываю ) – генетический тип континентальных отложений, образующихся на склонах в результате смыва и отложения разрушенных выветриванием горных пород.

Делювиальные отложения – это разнообразные по цвету и механическому составу, обычно пористые, образования, обязанные происхождением деятельности переменных по силе, мощности времени действия струйчатых водных потоков, которые не имеют определенных русл, а развиваются на склонах и производят смыв и отложение осадков на склонной поверхности.

Делювий надо рассматривать как производное от ряда факторов: а) климатических (зональных ) условий; б) горных пород; в) формы и величины склона; г) водосборной площадки склона; д) почвообразования и развития растительности.

Вниз по склону механический состав делювия последовательно меняется от более крупнозернистого к мелкозернистому; то же наблюдается и в вертикальном направлении – внизу делювиального чехла залегают более крупные осадки, вверху – более тонкие. Последнее связано с выравниванием ( выполаживанием ) склона и затуханием потоков.

Часто в разрезе делювиальной толщи наблюдаются ископаемые почвы, в большинстве случаев к перерывам в интенсивности отложения делювия. Ископаемые почвы делят всю толщу делювия на горизонты различного возраста. При этом делювий таких горизонтов часто различен по механическому и литологическому составу в зависимости от изменения факторов делювиообразования.

Делювий выпуклых склонов в отличии от вогнутых и прямых характеризуется несколько более легким механическим составом. Делювий длинных пологих склонов имеет более тяжелый механический состав, нежели делювий крутых коротких склонов. Различия в экспозиции склонов сказываются на химическом составе делювия: делювий южных склонов относительно менее промыт, более богат солями, особенно карбонатами. По разрезам делювиальной толщи восстанавливаются древний ископаемый рельеф и бывшее положение базисов эрозии и денудации.

В связи с выполаживанием склона и по мере приближения наклонной поверхности его горизонтальной постепенно затухает делювиальный процесс и преобладает элювиальный.

По механическому составу делювий в основной массе представлен в большинстве случаев средними суглинками. Мощный песчаный делювий на широких склонах при относительно малом стоке воды не возникает, так как выпадающие осадки успевают фильтроваться в песчаные породы, не стекая по поверхности склона. Там, где идет разрушение твердых пород, в делювий поступает крупнообмолочный материал в виде брекчии и щебня, часто слагающего целые горизонты в основании делювиальных толщ.

Исследование делювиальных отложений склонов показало, что главная масса делювия возникла со времени образования глубоких долин древней гидрографической сети. Верхние горизонты делювиальных толщ местами завершаются новейшим делювием, достигающим иногда мощности в несколько метров, сильно окрашенным перегноем. Возникновение окрашенных перегноем толщ новейшего делювия, как и образование аллювиально – делювиальных темно – серых осадков молодых речных террас, по времени необходимо связывать с началом земледельческой культуры.

С биологической активностью почвы тесно взаимосвязаны ее физические и химические свойства, такие как гумусовое состояние, структура, щелочно-кислотные условия, окислительно-восстановительный потенциал и др. Следует отметить, что физические и химические свойства характеризуют относительно консервативные накопившиеся признаки и свойства почв, биология почв располагает показателями, которые… Читать ещё >

Биологическая активность почвы ( реферат , курсовая , диплом , контрольная )

При проведении биомониторинга и биодиагностики почв ведущими являются показатели биологической активности. Под биологической активностью следует понимать напряженность (интенсивность) всех биологических процессов в почве. Ее следует отличать от биогенности почвы — заселенности почвы различными организмами. Биологическая активность и биогенность почвы часто не совпадают друг с другом.

Биологическая активность почвы обусловлена суммарным содержанием в почве определенного запаса ферментов, как выделенных в процессе жизнедеятельности растений и микроорганизмов, так и аккумулированных почвой после разрушения отмерших клеток. Биологическая активность почв характеризует размеры и направление процессов превращения веществ и энергии в экосистемах суши, интенсивность переработки органических веществ и разрушения минералов.

В качестве показателей биологической активности почв используются численность и биомасса разных групп почвенной биоты, их продуктивность, ферментативная активность почв, активность основных процессов, связанных с круговоротом элементов, некоторые энергетические данные, количество и скорость накопления некоторых продуктов жизнедеятельности почвенных организмов.

Из-за того что важные и всеобщие процессы, осуществляемые в почве всеми организмами или большинством из них (например, термогенез), практически невозможно исследовать, определяют интенсивность более частных процессов, таких как выделение С02, накопление аминокислот и др.

Показатели биологической активности определяют, используя различные методы: микробиологические, биохимические, физиологические и химические.

Биологическая активность почв (и соответственно методов ее определения) подразделяется на потенциальную и актуальную. Потенциальная биологическая активность измеряется в искусственных условиях, оптимальных для протекания конкретного биологического процесса. Актуальная (действительная, естественная, полевая) биологическая активность характеризует реальную активность почвы в естественных (полевых) условиях. Измерить ее можно только непосредственно в поле (16, "https://referat.bookap.info").

Методы определения потенциальной биологической активности почв могут служить хорошими диагностическими показателями потенциального плодородия почв, степени удобренное™, окультуренности, эродированное™, а также загрязненности какими-либо химическими веществами. Однако при характеристике интенсивности биологических процессов, протекающих в естественных условиях, следует пользоваться методами для определения актуальной биологической активности, так как в реальной обстановке лимитирующие факторы (pH среды, температура, влажность и т. д. ) могут резко ограничивать интенсивность процесса и несмотря на большие потенциальные возможности процесс может идти очень медленно.

Важной особенностью показателей биологической активности почв является их значительное пространственное и временное варьирование, что требует при их определении большого числа повторных наблюдений и тщательной вариационно-статистической обработки.

С биологической активностью почвы тесно взаимосвязаны ее физические и химические свойства, такие как гумусовое состояние, структура, щелочно-кислотные условия, окислительно-восстановительный потенциал и др. Следует отметить, что физические и химические свойства характеризуют относительно консервативные накопившиеся признаки и свойства почв, биология почв располагает показателями, которые характеризуют динамические свойства, являющиеся индикаторами современного режима жизни почв.

Для выявления негативных последствий антропогенного воздействия используют мониторинг почвенного покрова. Деградационные явления прежде всего затрагивают биологические объекты, снижая биологическую активность и, в конечном счете, плодородие. Поэтому использование методов биологической диагностики позволяет определить негативные последствия антропогенного воздействия на ранних стадиях. Особенно это касается диагностики разных загрязнений.

Биологические индикаторы обладают рядом преимуществ по сравнению с другими. Во-первых, это высокая чувствительность и отзывчивость на внешние воздействия; во-вторых, они позволяют проследить за негативными процессами на ранних стадиях процесса; в третьих, только по ним можно судить о воздействиях, не подвергающих существенному изменению вещественный состав почв (радиоактивное и биоцидное загрязнение). К существенным недостаткам можно отнести большую пространственную и временную вариабельность.

В настоящее время разработан большой набор биологических показателей, определяющих способность почвы обеспечивать растения факторами жизни, т. е. потенциальное плодородие почв, и коррелирующих с урожайностью.

Биологический фактор очень важен в почвообразовании. Ведь сам процесс формирования почвы начинается с поселения на горной породе живых организмов. Благодаря их жизнедеятельности образуется гумус, накапливаются органические вещества , и грунт обретает плодородие.

Основную роль в почвообразовании играют следующие группы организмов:

  • Растения
  • Микроорганизмы и грибы
  • Животные

О них мы расскажем в этой статье.

Группы организмов, активно влияющие на процесс формирования почвы

Роль растений в почвообразовании

Растения самостоятельно создают органические вещества путем фотосинтеза и являются их основным источником в почве. От особенностей флоры во многом зависит состав почвенного покрова, его характеристики и плодородие.

По своему строению растения условно разделяются на:

  • Низшие (не имеют четкой дифференциации тканей)
  • Высшие (ткани дифференцированы)

В ботанике эти понятия считаются немного устаревшими. Но для понимания особенностей почвообразования они до сих пор используются.

Низшие растения

К низшим растениям относятся:

Роль водорослей в почвообразовании

Водоросли – это первые растения, которые поселяются на разрушенной горной породе и формируют тонкий плодородный слой. Они содержат хлорофилл и путем фотосинтеза образуют органические вещества. Водоросли выделяют щелочи , снижающие кислотность горной породы и почвы.

Эти растения бывают:

Сначала на породе поселяются одноклеточные организмы. В зрелой почве встречаются и многоклеточные водоросли, нити которых покрывают поверхность покрова, проникают в горную породу и разрушают ее.

Сине-зеленые и некоторые другие виды водорослей способны фиксировать азот. Благодаря этим растениям в почве накапливается фосфор. Они становятся источником питания бактерий, грибов и некоторых мелких беспозвоночных. Диатомовые водоросли принимают активное участие в превращении кремния и кальция.

Масса водорослей в 1 га сформировавшейся почвы – от 0,5 до 1,5 т. Чаще всего они покрывают тонкой пленкой верхний слой покрова. Особенно ярко это проявляется на поливных землях в тропической и субтропической зонах. Иногда слой водорослей там может достигать 2-8 мм. Их слизистые оболочки и нити скрепляют частицы грунта , предотвращают ветровую и водную эрозию. На скудных пустынных грунтах они играют едва ли не главную роль в накоплении органического вещества.

С микроорганизмами водоросли могут создавать симбиозы – бактерии поставляют растениям углекислый газ и питаются продуктами их жизнедеятельности. Это стимулирует развитие микрофлоры в почве, ускоряет распад органических веществ и образование гумуса.

В зрелой почве встречаются многоклеточные водоросли, нити которых покрывают поверхность

Роль лишайников в почвообразовании

Лишайники – это специфические организмы, образованные симбиозом гриба и водоросли. Они способствуют разрушению породы и первичному накоплению мелкозема (примитивной почвы, обладающей плодородием). Днем лишайники ведут аутотрофный образ жизни благодаря фотосинтезу водоросли. Ночью эти растения гетеротрофны, используют для питания минералы и органику из субстрата.

Когда водоросль активна, лишайники выделяют в окружающую среду щелочные продукты жизнедеятельности, в период активности гриба – кислые. В результате рН за сутки меняется от 2,5 до 8,5. Это разрушающе действует на горную породу, нарушаются кристаллические связи, высвобождаются минералы, в камнях появляются трещины. Биологическому выветриванию способствуют и органические кислоты, которые выделяют растения. Гифы (нитевидные образования) гриба , входящего в состав лишайника, проникают в мелкие трещины и механически разрушают породу.

Первыми на грунте поселяются накипные (корковые) лишайники. Они плотно связаны с субстратом, отделить их от камня можно только ножом или скальпелем. После их разложения на накопившемся мелкоземе появляются листовые и кустистые лишайники, которые почти полностью покрывают породу. Под ними создаются благоприятные условия для роста водорослей, мха, сохранения тонкого слоя плодородного грунта.

После разложения лишайников образуется почва, в которой содержится до 40% гумуса. Он представлен в основном фульвокислотами, обладает кислой реакцией и низким плодородием. Лишайниковые примитивные почвы встречаются в северной тундре, на лавовых вулканических полях.

Лишайники поселяются прямо на камнях

Лишайники постепенно разрушают прочную горную породу

Высшие растения

Группа высших растений включает:

  • Деревья и кустарники
  • Травы
  • Мох

После отмирания органов высших растений образуется опад. Он поступает в грунт и разлагается до простых органических и минеральных соединений. Из опада формируется гумус, обеспечивающий плодородие почвы.

Роль деревьев и кустарников в почвообразовании

Лесная растительность составляет основную массу флоры на земле. Она представлена многолетними деревьями и кустарниками. В почвообразовании принимают участие не все части растений. Основную роль играют опавшая листва и хвоя, мелкие ветки. Из них образуется лесная подстилка, которая постепенно разлагается и превращается в гумус. Из разложившегося опада в почву возвращается около 100 кг минеральных веществ на 1 га.

Органические вещества в лесах поступают в верхние слои грунта. Испарение воды здесь замедленное. При высокой влажности и большом количестве осадков питательные вещества вымываются в нижние слои п р офиля. Поэтому лесные почвы обладают низким или средним плодородием.

Тип почвы во многом зависит от вида деревьев, которые преобладают в конкретной климатической зоне.

В северных таежных лесах растут в основном хвойные. Их опад богат восками, дубильными веществами и органическими кислотами, в нем мало азота, кальция и магния. Он разлагается медленно при участии грибов, выделяющих кислые продукты жизнедеятельности. В хвойных лесах образуются подзолистые почвы. В их гумусе преобладают фульвокислоты, его слой тонкий, с примесями кремнезема. рН подзолистых почв 4-6, плодородие у них низкое.

В смешанных лесах кроме хвои в грунт попадают листья деревьев. Они богаты основаниями, азотом, кальцием, магнием. Это способствует снижению кислотности и ощелачиванию почвы. В гумусе, наряду с фульвокислотами, содержится много гуминовых кислот, улучшающих плодородие. В смешанных лесах формируются дерново-подзолистые почвы.

Опад широколиственных лесов богаче, чем хвойных и смешанных. Он содержит много азота, кальция, фосфора. Листья разлагаются при помощи бактерий, питательные вещества лучше фиксируются в подстилке и меньше вымываются в нижние слои профиля. Слой гумуса тут толстый, состоит в основном из гуминовых кислот. В таких лесах формируются серые и бурые лесные почвы со средним и высоким плодородием.

Лесная подстилка разлагается, со временем превращаясь в гумус

Хвойный опад

Роль травянистых растений в почвообразовании

Травянистые растения покрывают обширные территории степей, лесостепей, саванн. В основном это однолетние или двухлетние виды, которые полностью отмирают в течение 1-3 сезонов. Источником гумуса являются корни, масса которых значительно превосходит надземную часть. Органические вещества попадают непосредственно в почву, что способствует об р азованию мощного плодородного слоя. В грунт после разложения растений возвращается около 1000 кг/га минеральных веществ.

Травяной опад быстро разлагается. В нем содержится много минералов, азота, кальция, калия и других питательных элементов. Корни трав образуют плотный дерновой слой, в котором задерживается влага. Поэтому полезные вещества не вымываются в нижние слои профиля. Основную часть гумуса составляют гуматы и гуминовые кислоты. Почва обладает нейтральной или слабощелочной реакцией, высоким плодородием. В местах с травянистой растительностью формируются черноземы.

Травянистые растения

Корни травянистых растений уходят глубоко в почву

Роль мха в почвообразовании

Мох появляется на горной породе уже на начальных этапах почвообразования, после водорослей и лишайников. Он растет на мелкоземе, созданном этими низшими растениями. После его появления на рухляке начинают интенсивно развиваться бактерии, появляются первые беспозвоночные (мелкие черви и насекомые), создаются условия для заселения трав, кустов и деревьев.

Нижняя часть стебля мха образует примитивную дернину. Она задерживает влагу и питательные вещества, формирует слой гумуса (иногда мощностью до 15-20 см). В примитивной мохово-лишайниковой почве содержится до 10-40% перегноя.

Мох хорошо впитывает воду и аккумулирует питательные вещества, прежде всего калий, кальций и серу. На втором месте среди химических элементов находятся фосфор и магний, на третьем – натрий и марганец. Немного меньше в почве закрепляются алюминий и кремний. Поскольку разложение мхов идет с участием бактерий, в гумусе много гуминовых кислот , высокое содержание азота – до 0,45-0,95% (в лесной подстилке – 0,20-0,25%).

Мох – это влаголюбивое растение. Его стебли способны впитывать воду. Поэтому мох часто растет в переувлажненных долинах и способствует их заболачиванию. Он играет одну из основных ролей в образовании торфа.

мох

Роль микроорганизмов и грибов в почвообразовании

Микроорганизмы заселяют верхние 20 см плодородного слоя грунта. В 1 г насчитывается от 200 млн (в глинистой почве) до 1-3 млрд (в черноземах) клеток. В 1 га масса микроорганизмов составляет 1-5 т.

Основную роль в почвообразовании играют бактерии и грибы. Они превращают сложные органические вещества в более простые, способствуют образованию гумуса. Одна из важных функций микрофлоры – фиксация азота в грунте.

Микроорганизмы участвуют в разрушении минеральных веществ и горной породы.

При этом задействуются следующие механизмы:

  • Растворение минералов сильными кислотами, образующимися в процессе нитрификации и окисления серы
  • Действие органических кислот, выделяемых грибами и бактериями в процессе брожения
  • Взаимодействие с аминокислотами, которые выделяют бактерии
  • Разрушение минералов соединениями, образующимися при разложении микроорганизмами растительных остатков (полифенолами, флавоноидами, танинами и другими)
  • Разрушение минералов продуктами микробного синтеза (полисахаридами и другими соединениями)

Бактерии и грибы также синтезируют минеральные вещества. Процесс связан с обменом веществ и химических элементов в микроорганизмах (железа, калия, алюминия, фосфора, серы, кальция). Например, благодаря бактериям, накапливающим алюминий , образуются бокситы. Эти микроорганизмы могут обогащать почвы соединениями кальция, глиноземами, кремнеземами, железом.

Каждый вид микроорганизмов играет свою особую роль в почвообразовании. Дальше мы рассмотрим основные две группы – грибы и бактерии.

Роль грибов в почвообразовании

Грибы – это одноклеточные или многоклеточные организмы с гетеротрофным типом питания. Они разлагают лигнин, клетчатку, дубильные вещества, протеины. Во внешнюю среду грибы выделяют ферменты и кислоты, которые участвуют в разрушении минералов.

Многоклеточные грибы образуют разветвленный мицелий. Его нити пронизывают и укрепляют плодородный грунт, формируют его зернистую структуру. На начальных этапах почвообразования гифы (нитевидные образования) проникают в микротрещины породы и разрушают ее. Многие виды вступают в симбиоз с высшими растениями. От них они получают органические вещества, отдавая взамен азот и минералы. Ряд грибов паразитирует на вредителях корней (насекомых, нематодах).

Больше всего грибов в лесной подстилке. Они хорошо чувствуют себя в кислой среде. Продукты их жизнедеятельности способствуют формированию подзолистых почв.

Роль бактерий в почвообразовании

Бактерии играют едва ли не главную роль в разложении органических и минеральных веществ, синтезе вторичных минералов, образовании гумуса. Они бывают автотрофными и гетеротрофными, аэробными (нуждаются в свободном кислороде) и анаэробными (получают кислород из продуктов окисления).

Аэробное разложение проходит в верхних слоях грунта и на хорошо разрыхленной земле. Оно приводит к полному распаду органики, выделению энергии. Образуются минеральные вещества , доступные для растений.

Анаэробный распад характерен для затопленных участков, глубинных слоев грунта. Проходят брожение и неполный распад остатков растений с образованием сложных органических и минеральных соединений. Если такие процессы преобладают, образуются болотистые или глеевые почвы с кислой реакцией.

Основные функции бактерий в почве:

  • Фиксация азота
    Этот элемент поступает в почву из воздуха и образуется после разложения белка. Главные фиксаторы азота – фотобактерии, клубневые бактерии (живут у корней бобовых растений), азотобактерии.
  • Нитрификация и денитрификация
    Бактерии превращают аммиак в азотистую и азотную кислоту. После этого азот становится доступным для усвоения растениями. Эту функцию выполняют псевдомонады, почкующиеся бактерии.
  • Разложение сложных углеводов (лигнина, целлюлозы, полисахаридов)
    В процессе участвуют цитофаги, спорообразующие бациллы и сахаролитические бактерии.
  • Разложение белков
    В аэробных условиях распад белков обеспечивают энтеробактерии, в анаэробных – клостридии.
  • Сбраживание пуринов и пиримидинов
    Этот процесс в анаэробных условиях обеспечивают пуринолитические бактерии.
  • Окисление органических кислот
    Окисление происходит сульфатредуцирующими бактериями.
  • Минерализация органических веществ
    Она обеспечивается артробактериями.
  • Распад гуминовых веществ
    Сложные гуминовые вещества распадаются благодаря нокардиям.

Вся деятельность микроорганизмов сводится к тому, чтобы превратить сложные органические вещества в простые элементы, доступные для растений. Без их участия отмершие остатки не разлагались бы , образование почвы стало бы невозможным.

Роль животных в почвообразовании

Почва – это место обитания сотен видов животных, от одноклеточных амеб и инфузорий до млекопитающих. Их роль в почвообразовании хоть и не основная, но очень важная.

Всех почвенных животных условно можно разделить на 4 группы:

  • Микрофауна (размеры до 0,2 мм)
    Группа включает одноклеточные организмы, миниатюрных насекомых, нематод, эхинококки, личинки.
  • Мезофауна (от 0,2 мм до 4 мм)
    Сюда входят мелкие насекомые, их личинки, некоторые виды червей.
  • Макрофауна (от 4 мм до 80 мм)
    Группа включает дождевых и других крупных червей, муравьев, жуков, термитов, моллюсков.
  • Мегафауна (больше 80 мм)
    Сюда входят очень крупные насекомые и черви, земляные крабы, земноводные, пресмыкающиеся (змеи, ящерицы, земляные черепахи), млекопитающие (роющие норы кроты, мыши, кролики, барсуки, лисы, тушканчики, травоядные животные).

Одну из важнейших функций в почвообразовании играют дождевые черви. Эти животные питаются полуразложившейся органикой, пропуская через себя огромные массы грунта (от 50 до 400 т/га). По мнению ученых, практически весь чернозем проходит через организм дождевых червей. За год на гектаре образуется около 25 т копролитов (выделений червей).

Черви в почве

Вместе с копролитами в почву попадают продукты жизнедеятельности червей, богатые полисахаридами, аминокислотами. Они становятся средой для обитания грибков и бактерий. Микроорганизмы разлагают органические вещества до простых химических элементов, доступных для растений.

Кроме переработки грунта, дождевые черви улучшают его структуру. Они роют многочисленные ходы, обеспечивая хорошую аэрацию. Частицы, пропущенные через кишечник, становятся липкими. Вокруг них формируются специфичные комки почвы , хорошо сохраняющие питательные вещества.

Простейшие регулируют численность бактерий, принимают участие в переработке простых органических соединений. Мелкие и крупные беспозвоночные животные, как и дождевые черви, перерабатывают сложные органические соединения, пушат грунт, обогащают его продуктами своей жизнедеятельности.

Рептилии, земноводные и млекопитающие играют меньшую роль в почвообразовании. Главную функцию выполняют грызуны, которые роют норы, перемешивают разные слои профиля, включая их в почвообразование. Животные обогащают грунт экскрементами. После смерти их тушки становятся источником протеинов, аминокислот и азотистых соединений. Травоядные не живут непосредственно в грунте, но они удобряют землю своими экскрементами, стимулируют рост корневой системы трав, съедая их верхнюю часть.

норка крота

корова ест траву

Все живые организмы в почве участвуют в непрерывном обороте органических и минеральных веществ. Это обеспечивает стабильное плодородие покрова – все находится в равновесии. Но оно нарушается при обработке почвы. Ведь с полей убирается зеленая масса растений , гербициды и пестициды уничтожают сорняки, почвенных насекомых, червей, некоторые микроорганизмы. Поэтому сельскохозяйственные земли нуждаются в постоянном внесении удобрений. Подробнее об этом вы можете узнать на нашей странице Деятельность человека как фактор почвообразования.


Почвообразование или почвообразовательный процесс – совокупность явлений превращения и передвижения веществ и энергии, формирующих самостоятельное биокосное тело – почву.

Первичное почвообразование – развитие почвообразовательного процесса на обнаженной горной породе, сложный комплекс одновременно идущих физических, химических и биологических процессов.

Почвообразовательные процессы объединяют в три группы: общие (тотальные) макропроцессы, элементарные почвенные процессы (ЭПП), микропроцессы.

Общие (тотальные) почвообразовательные макропроцессы – подзолообразование, черноземообразование, буроземообразование, они формируют конкретные почвенные индивидуумы.

Элементарные почвообразовательные процессы (ЭПП, частные, признакообразующие, специфические) – сочетание взаимосвязанных биологических, химических, физических явлений, приводящих к образованию конкретного признака почвы, простые элементы общего процесса и типовых микропроцессов.

Элементарные почвообразовательные процессы

Биогенно-аккумулятивные процессы – накопление в верхней части профиля веществ, прежде всего органических.

Биогенный синтез глинных минералов – вторичное глинообразвание, результат взаимодействия освобождающихся при разложении остатков простых соединений или ионов.

Гумусообразование – разложение растительных остатков на месте их отмирания (in situ) и последующего новообразования гумуса без его перемещения по профилю.

Гумусонакопление – аккумуляция гумуса в верхних горизонтах и постепенное пропитывание им почвенного профиля.

Дерновый процесс – интенсивное гумусообразование и гумусонакопление под действием травянистой растительности. Происходит накопление гумуса, биогенная аккумуляция азота и зольных элементов в верхнем слое. Почвы приобретают благоприятные физико-химические свойства, формируется водопрочная зернисто-комковатая структура

Подстилкообразование – формирование на поверхности лесной подстилки или степного войлока.

Торфообразование (оторфовывание, оторфянивание, торфонакопление) – 1) накопление медленно гумифицирующихся и почти не минерализующихся растительных остатков. Процесс протекает в анаэробной среде при избыточном увлажнении; 2) консервация отмерших органических остатков при незначительной гумификации.

Иллювиально-аккумулятивные почвообразовательные процессы – аккумуляция веществ ниже элювиальных горизонтов, отложение, преобразование, закрепление привнесенных сверху веществ.

Глинисто-, железисто-, карбонатноиллювиальные процессы – соответственно накопление глинистых, железистых, карбонатных частиц.

Солонцово-иллювиальный процесс – иллювиальное накопление глинистых частиц и аморфных полуторных окислов, гумуса.

Гидрогенно-аккумулятивные почвообразовательные процессы связаны с влиянием грунтовых вод на формирование почвенного профиля.

Засоление – накопление водорастворимых солей в профиле почвы.

Загипсование – вторичная аккумуляция гипса при его отложении из минерализованных грунтовых вод.

Латеритизация – формирование железистых и железисто-кварцевых каменных конкреций, слоев (панцирей) в мелкоземистой толще почв под действием притока соединений Fe и АI с кислыми водами. Широко проявляется в условиях сезонно-влажных тропиков.

Окарбоначивание – вторичная аккумуляция карбонатов в почвенном профиле при его отложении из минерализованных грунтовых вод.

Элювиальные почвообразовательные процессы связаны с разрушением или преобразованием минеральных и органических компонентов в элювиальном горизонте и выносом образованных продуктов.

Оглинивание (сиаллитизация, оглинение, метаморфизация, внутрипочвенное выветривание, неосинтез глин) – образование вторичных глинистых минералов и других компонентов илистой фракции из первичных, а также из продуктов распада минералов.

Слитогенез. Слитые почвы – плотные образования, в сухом состоянии обладают очень высокой твердостью, во влажном – низкой твердостью и высокой пластичностью. Слитые почвы склонны к сильному растрескиванию при высыхании.

Глееобразование – сложный биохимический восстановительный процесс (маслянокислое брожение), протекающий в анаэробных условиях при обязательном присутствии органического вещества и участии анаэробных микроорганизмов. Сущность процесса – под воздействием неспецифических гетеротрофных анаэробных микроорганизмов Fe свободных окисных соединений восстанавливается до закисного 2-х валентного, вступает в комплексные связи с органическими соединениями и алюмосиликатами.

Аллитизация (ферраллитизация) – совокупность явлений почвообразования и выветривания, результатом которых является накопление в почвах окисных минералов Fe и АI (гетит, гидрогетит, лимонит, гидрогелит, гиббсит), вторичного алюмосиликата каолинита, а также потеря кремнезема и остальных окислов.

Выщелачивание – обеднение горизонта почвы основаниями в результате их выхода из кристаллической решетки минералов или органических соединений, растворения и выноса (вымывания) за пределы почвы и коры выветривания простых солей щелочных и щелочноземельных металлов (Na, К, Са, Mg).

Солончаковый процесс – накопление легкорастворимых солей в верхней части профиля. Проявляется в условиях с КУ менее 1.

Солонцовый процесс (осолонцевание) связан с внедрением обменного Na в почвенно-поглощающий комплекс (ППК). Свойства солонцеватости: пептизация коллоидов, обесструктуривание, появление в почвенном растворе Nа2СО3, NаНСО3, щелочная реакция.

Осолодение (щелочной гидролиз) проявляется в степных депрессиях, западинах в условиях лесостепи, степи, сухой степи при близком залегании слабоминерализованных грунтовых вод или при периодическом передвижении растворов водами поверхностного стока. Ион натрия вытесняется из ППК, затем разрушается кристаллическая решетка минералов и происходит аккумуляция кремнезема. У почв рН слабощелочная

Подзолистый процесс (оподзоливание), кислотный гидролиз – формирование осветленного белесого горизонта. Среди образующихся органических соединений преобладают фульвокислоты, уксусная, муравьиная и другие вещества, агрессивные к большинству минералов почвы. Органические кислоты, фильтрующиеся из лесной подстилки, в условиях кислой рН, разрушают минералы. Промывной режим – важнейшее условие развития процесса.

Лессиваж (иллимеризация, лессивирование) – процесс пептизации, отмывки илистых частиц (перенос) с поверхности зерен грубозернистого (песчаного и крупно пылеватого) материала или из микроагрегатов и выноса в неразрушеннном состоянии из элювиального горизонта без изменения их химического состава, проявления гидролиза, растворения.

Микропроцессы – наиболее простые и многочисленные процессы и явления в почвах, идущие на молекулярном, ионном, атомном уровнях (Апарин и др., 2006). Это различные противоположно направленные явления. Их отличие: микропроцессы не оставляют видимых морфологических следов в почвах.

1. Поглощение живыми организмами из почвы минеральных соединений и синтез органического вещества. Выделение живыми организмами в почву и почвенную атмосферу органических и минеральных соединений.

2. Разложение и минерализация органических остатков. Синтез из органических и минеральных соединений гумусовых веществ.

3. Подкисление почвенных растворов органическими кислотами, выделяемыми организмами при жизни и освобождающимися после их отмирания, а также образующимися при гумификации. Нейтрализация почвенных растворов при обменных реакциях водорода органических кислот с основаниями, освобождающимися при минерализации органических остатков и разложение первичных минералов.

4 Разрушение первичных минералов породы. Синтез вторичных минералов и органо-минеральных комплексов.

5. Коагуляция органических, органо-минеральных и минеральных коллоидов, образование устойчивых агрегатов. Пептизация почвенных коллоидов, разрушение агрегатов.

6. Гидратация минеральных соединений. Их дегидратация.

7. Окислительные процессы, идущие при свободном доступе кислорода в почву. Восстановительные процессы идут при постоянном или периодическом застое влаги и недостатке кислорода.

8. Движение растворов вверх (восходящий ток влаги) и накопление подвижных соединений в верхней части профиля. Движение растворов вниз (нисходящий ток влаги), растворение и вынос подвижных соединений.

9. Поглощение элементов-органогенов живыми организмами и биогенное их накопление в верхних горизонтах почв. Растворение и вынос элементов биогенной аккумуляции.

10. Адсорбция почвенными коллоидами и живыми организмами газов почвенной атмосферы. Десорбция газов, их выделение в процессе дыхания и при разложении растительных остатков.

Читайте также: