Биологические методы анализа реферат

Обновлено: 05.07.2024

БИОЛОГИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

БИОЛОГИЧЕСКИЕ МЕТОДЫ АНАЛИЗА, методы качеств. обнаружения и количеств. определения неорг. и орг. соединений, основанные на применении живых организмов в кач-ве аналит. индикаторов. Живые организмы всегда обитают в среде строго определенного хим. состава. Если нарушить этот состав, напр., исключив из питательной среды определяемый компонент или введя его дополнительно, организм через нек-рое время подаст соответствующий сигнал. В биологических методах анализа устанавливаются связи характера и (или) интенсивности ответного сигнала с кол-вом определяемого компонента. В кач-ве индикаторов применяются микроорганизмы (бактерии, дрожжи, плесневые грибы), водоросли и высшие растения, водные беспозвоночные и позвоночные животные (простейшие, ракообразные, моллюски, личинки комаров, олигохеты, пиявки, рыбы и др.), насекомые, черви, а также ткани, разл. органы и системы (нервная, кровеносная, половая и др.) теплокровных. Питательная среда м. б. естественной, искусственной или синтетической.

Ответный сигнал индикаторного организма на нарушение хим. состава среды м.б. самым разнообразным: изменение характера поведения, интенсивности роста, скорости метаморфоза, состава крови, биоэлектрич. активности органов и тканей, нарушение ф-ций органов пищеварения, дыхания, размножения, патологоанатомич. изменения организма, летальный исход. Напр., при применении микроорганизмов в кач-ве аналит. индикаторов исследуемый компонент можно определять по характеру и интенсивности пигментации и люминесценции (для фотобактерий), динамике накопления биомассы, диаметру зоны угнетения роста микробов, изменению электропроводности р-ров, рН, по качеств. составу и интенсивности газообмена и др. Все изменения оценивают визуально или измеряют с помощью приборов, напр. спектрофотометров, потенциометров, аналит. весов. Для обработки сигналов индикаторного организма применяют вычислительную технику.

Диапазон определяемых содержаний в-в, как и предел обнаружения, зависит от ряда факторов: направленности и продолжительности воздействия хим. соед. на организм, т-ры и рН среды, уровня организации биол. объекта, его индивидуальных, возрастных, половых особенностей и др. Предел обнаружения, как правило, понижается с увеличением продолжительности наблюдения за индикаторным организмом и повышением т-ры (до т-ры свертывания белка). Эксперимент может продолжаться до 40-50 сут. Предел обнаружения Сmin можно оценить по ур-нию: , где-интервал времени с момента начала воздействия до появления аналит. сигнала, п и K-эмпирич. константы, зависящие от биол. активности организма и определяемого в-ва в р-ре. Значения п и К неодинаковы для разных видов организмов и могут характеризовать избирательность биологических методов анализа Иногда, даже при учете ряда переменных факторов, влияющих на предел обнаружения, ответная р-ция организма на одно и то же кол-во определяемого в-ва не воспроизводится. Эти отклонения трудно объяснимы и описываются законами мат. статистики.

Как правило, биологические методы анализа отличаются высокой чувствительностью и избирательностью определения биологически активных в-в, напр. предел обнаружения тиамина с помощью бактерий Streptococcus salivarius составляет 1*10 -5 мкг/мл, хлорофоса с помощью нек-рых ветвистоусых рачков - 1*10 -4 мкг/мл. Кроме того, в ходе анализа можно получить информацию о воздействии определяемых в-в на жизнедеятельность организмов.

Биологические методы анализа применяют для определения ядов разл. назначения (в т. ч. ср-в защиты растений), витаминов, аминокислот, большого числа продуктов орг. и неорг. синтеза, в частности при контроле загрязнений окружающей прир. среды, оценке эффективности работы промышленных очистных сооружений.

При своем росте и развитии организмы извлекают из среды нек-рые элементы и накапливают их в клетках, что можно использовать для концентрирования и селективного извлечения катионов.

Комплексный мониторинг состояния окружающей среды включает в себя исследование природных ресурсов - воды, воздуха, почвы и экосистем в целом физическими, химическими и биологическими методами с целью измерения, оценки и прогноза антропогенных изменений абиотической составляющей биосферы (в первую очередь - загрязнений) и ответной реакции биоты на эти изменения, а также последующих изменений в экосистемах в результате антропогенных воздействий.

Составной частью экологического мониторинга является мониторинг биологический, т.е. система наблюдений, оценки и прогноза любых изменений в биоте, вызванных антропогенными факторами. В рамках биологического мониторинга принято рассматривать три вида деятельности: разработку систем раннего оповещения, диагностику и прогнозирование.

Биотестирование - прием исследования, в котором о качестве среды, о факторах, действующих самостоятельно или в сочетаниях, судят по выживаемости, состоянию и поведению специально помещенных в эту среду организмов - тест-объектов.

Биоиндикация - очень близкий к биотестированию прием, использующий организмы, обитающие в исследуемой среде, присутствие, количество или особенности развития которых служат показателями естественных процессов, условий или антропогенных, изменений среды обитания.

Методика сбора и обработки материала для оценки стабильности развития берёзы повислой (Betula pendula Roth.)63

Оценка стабильности биологических систем любого уровня крайне необходима, особенно для определения степени антропогенного воздействия, Состояние природных популяций билатерально симметричных организмов может быть оценен через анализ величины флуктуирующей асимметрии, характеризующей мелкие ненаправленные нарушения стабильности развития и являющейся интегральным ответом организма на состояние окружающей среды. Растения, как продуценты экосистемы, в течение всей жизни привязанные к локальной территории и подверженные влиянию двух сред: почвенной и воздушной, наиболее полно отражают весь комплекс стрессирующих воздействий на систему.

Традиционные методы, оценивающие химические и физические показатели, не дают комплексного представления о воздействии на биологическую систему, тогда как биоиндикациоииые показатели отражают реакцию организма на все многообразие действующих на него факторов, имея при этом биологический смысл,

При сборе материала для биоиндикационных исследований следует учитывать следующие правила:

В качестве модельного объекта выбирается обычный, широко распространенный вид, в данном случае береза повислая (Betula pendula Roth).

Выборки должны производиться с растений находящихся в сходных экологических условиях по уровню освещенности, влажности и т.д. Например, одна из сравниваемых выборок не должна находиться на опушке, а другая в лесу.

Для анализа используют только средневозрастные растения, избегая молодые экземпляры и старые.

Выборка листьев производится с 10 близко растущих деревьев по 10 листьев с каждого, всего 100 листьев с одной точки (следует брать несколько больше, на случай попадания повреждённых листьев),

Листья берутся из нижней части кроны, на уровне поднятой руки, с максимального количества доступных веток (стараясь задействовать ветки разных направлений, условно – на север, юг, запад, восток).

У березы используют листья только с укороченных побегов.

Листья стараются брать примерно одного, среднего для данного вида размера.

Для обработки собранного материала необходимы: линейка, циркуль-измеритель, транспортир. Одна выборка вся обрабатывается одним человеком.

При занесении данных в компьютер для хранения и математической обработки, используют программу Microsoft Exceel.

Раздел: Экология
Количество знаков с пробелами: 211160
Количество таблиц: 1
Количество изображений: 0

Молочная промышленность является одной из основных отраслей народного хозяйства, обеспечивающее население страны продуктами питания. А питание в свою очередь является основным фактором, определяющим здоровье человека, которое должно не только удовлетворять потребностиорганизма в пищевых веществах и энергии, но и выполнять профилактические и лечебные задачи.

Особенностью технологии как науки является её постоянное развитие и совершенствование, она никогда не останавливается на достигнутом. Совместными усилиями науки и практики разрабатываются все более современные и экономически целесообразные способы переработки сырья, создаются технологии новых продуктов,успешно решаются вопросы использования всех составных частей молока для получения высококачественных и биологически полноценных продуктов питания. Направленность развития технологии подчиняется проблеме формирования оптимального ассортимента молочных продуктов, снижению затрат на их реализацию при сохранении и повышении уровня экономичности производства. Формирование оптимального ассортиментавырабатываемой продукции сочетается с совершенствованием. Диетические кисломолочные напитки обладают высокими пищевыми диетическими и лечебными свойствами, которые были известны еще с древних времен.

Большую роль в распространении кисломолочных напитков в нашей стране сыграли труды И.И. Мечникова. Он считал, что преждевременное старение человеческого организма является следствием постоянного воздействия на негоядовитых веществ, накапливающихся в кишечнике в результате жизнедеятельности гнилостных микроорганизмов. При постоянном употреблении кисломолочных напитков молочная кислота, образующаяся в результате развития молочнокислых бактерий, изменяет реакцию среды в кишечнике и подавляет деятельность гнилостной микрофлоры, предохраняя организм от медленного отравления ядами.

По данным Молочного союзаРоссии, рынок молочной продукции страны ежегодно прирастает на 4-5 % по всему ассортименту, наблюдается устойчивая динамика роста общих объемов как производства, так и потребления. Особенно хороши показатели в сегменте короткоживущей молочной продукции, в частности, в десертной и питьевой группах.

Молочный рынок Марийской республики демонстрирует не только количественный, но и качественныйрост. Предприятия повышают качество продукции, расширяют ассортимент. Конкуренция усиливается, на местный рынок активно выходит продукция молочников Рязани, Татарстана, Самарской области, Мордовии. Впрочем, и марийские предприятия не теряют времени зря. Наша продукция успешно реализуется в ряде регионов России.

БИОЛОГИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

БИОЛОГИЧЕСКИЕ МЕТОДЫ АНАЛИЗА, методы качеств. обнаружения и количеств. определения неорг. и орг. соединений, основанные на применении живых организмов в кач-ве аналит. индикаторов. Живые организмы всегда обитают в среде строго определенного хим. состава. Если нарушить этот состав, напр., исключив из питательной среды определяемый компонент или введя его дополнительно, организм через нек-рое время подаст соответствующий сигнал. В биологических методах анализа устанавливаются связи характера и (или) интенсивности ответного сигнала с кол-вом определяемого компонента. В кач-ве индикаторов применяются микроорганизмы (бактерии, дрожжи, плесневые грибы), водоросли и высшие растения, водные беспозвоночные и позвоночные животные (простейшие, ракообразные, моллюски, личинки комаров, олигохеты, пиявки, рыбы и др.), насекомые, черви, а также ткани, разл. органы и системы (нервная, кровеносная, половая и др.) теплокровных. Питательная среда м. б. естественной, искусственной или синтетической.

Ответный сигнал индикаторного организма на нарушение хим. состава среды м.б. самым разнообразным: изменение характера поведения, интенсивности роста, скорости метаморфоза, состава крови, биоэлектрич. активности органов и тканей, нарушение ф-ций органов пищеварения, дыхания, размножения, патологоанатомич. изменения организма, летальный исход. Напр., при применении микроорганизмов в кач-ве аналит. индикаторов исследуемый компонент можно определять по характеру и интенсивности пигментации и люминесценции (для фотобактерий), динамике накопления биомассы, диаметру зоны угнетения роста микробов, изменению электропроводности р-ров, рН, по качеств. составу и интенсивности газообмена и др. Все изменения оценивают визуально или измеряют с помощью приборов, напр. спектрофотометров, потенциометров, аналит. весов. Для обработки сигналов индикаторного организма применяют вычислительную технику.

Диапазон определяемых содержаний в-в, как и предел обнаружения, зависит от ряда факторов: направленности и продолжительности воздействия хим. соед. на организм, т-ры и рН среды, уровня организации биол. объекта, его индивидуальных, возрастных, половых особенностей и др. Предел обнаружения, как правило, понижается с увеличением продолжительности наблюдения за индикаторным организмом и повышением т-ры (до т-ры свертывания белка). Эксперимент может продолжаться до 40-50 сут. Предел обнаружения Сmin можно оценить по ур-нию: , где-интервал времени с момента начала воздействия до появления аналит. сигнала, п и K-эмпирич. константы, зависящие от биол. активности организма и определяемого в-ва в р-ре. Значения п и К неодинаковы для разных видов организмов и могут характеризовать избирательность биологических методов анализа Иногда, даже при учете ряда переменных факторов, влияющих на предел обнаружения, ответная р-ция организма на одно и то же кол-во определяемого в-ва не воспроизводится. Эти отклонения трудно объяснимы и описываются законами мат. статистики.

Как правило, биологические методы анализа отличаются высокой чувствительностью и избирательностью определения биологически активных в-в, напр. предел обнаружения тиамина с помощью бактерий Streptococcus salivarius составляет 1*10 -5 мкг/мл, хлорофоса с помощью нек-рых ветвистоусых рачков - 1*10 -4 мкг/мл. Кроме того, в ходе анализа можно получить информацию о воздействии определяемых в-в на жизнедеятельность организмов.

Биологические методы анализа применяют для определения ядов разл. назначения (в т. ч. ср-в защиты растений), витаминов, аминокислот, большого числа продуктов орг. и неорг. синтеза, в частности при контроле загрязнений окружающей прир. среды, оценке эффективности работы промышленных очистных сооружений.

При своем росте и развитии организмы извлекают из среды нек-рые элементы и накапливают их в клетках, что можно использовать для концентрирования и селективного извлечения катионов.

Читайте также: