Бездоменная металлургия реферат кратко

Обновлено: 04.07.2024

Преподаватели всегда проверяют уникальность сдаваемых работ. Вы можете использовать эту работу для подготовки своего проекта или закажите уникальную.

  1. Значение черной металлургии
  2. Типы предприятий и особенности их размещения
  3. Характеристика Центральной металлургической базы
  4. Экспортные возможности и внутренний рынок
  5. Основные тенденции в развитии черной металлургии

1. Значение черной металлургии

Черная металлургия в первую очередь служит базой для развития машиностроения и металлообработки. Продукция черной металлургии находит применение практически во всех сферах современной экономики. Эта отрасль тяжелой промышленности охватывает такие стадии технологического процесса, как добыча, обогащение и агломерация руд черных металлов, производство огнеупоров, добыча нерудного сырья для черной металлургии, коксование угля, производство чугуна, стали, проката, ферросплавов, вторичный передел черных металлов, добыча вспомогательных материалов, изготовление металлических изделий производственного назначения и др. Но основу черной металлургии составляет производство чугуна, стали и проката.

По добыче железной руды, выплавке чугуна, производству кокса Российская Федерация занимает одно из ведущих мест в мире. Крупнейшими потребителями продукции черной металлургии являются машиностроение и металлообработка, строительная индустрия, железнодорожный транспорт. Самым тесным образом черная металлургия связана с химической и легкой промышленностью.

2. Типы предприятий и особенности их размещения

В структуре черной металлургии выделяется металлургия полного цикла, производящая чугун — сталь — прокат. Помимо основного производства она включает подготовку железной руды к плавке (обогащение, которое преследует цель повысить содержание железа в руде за счет удаления пустой породы, и обжиг руды в специальных печах для удаления углекислоты, серы, фосфора). Для производства чугуна кроме подготовки железной руды требуется технологическое топливо, флюсы, огнеупорные материалы, вода и легирующие металлы (марганец, хром, молибден, титан, ванадий и т.д.), придающие металлу определенные высококачественные свойства. Технологическое топливо — чаще всего кокс, а также газ. Для производства кокса может быть использован только высококачественный коксующийся уголь, высококалорийный, малозольный, малосернистый и высокопрочный.

В размещении предприятий металлургии полного цикла особенно большую роль играют сырье и топливо, на которые приходится до 90% всех затрат по выплавке чугуна, из них примерно 50% — на кокс, 40% — на железную руду. На 1 т чугуна расходуется 1,2–1,5 т угля, не менее 1,5 т железной руды, свыше 0,5 т флюсовых известняков и до 30 м3 оборотной воды. Все это свидетельствует о важности взаимного расположения сырьевых и топливных ресурсов, водоснабжения, вспомогательных материалов. Особенно велика роль железных руд и коксующихся углей. Черная металлургия с полным технологическим циклом тяготеет к источникам сырья (Урал, Центр), к топливным базам (Кузбасс) или к пунктам между ними (Череповец).

Предприятия неполного цикла производят чугун или сталь либо прокат. Предприятия, производящие сталь без чугуна, называются передельными. К этой группе относятся и трубопрокатные заводы. Передельная металлургия ориентируется в основном на источники вторичного сырья (отходы металлургического производства, отходы от потребляемого проката, амортизационный лом) и на потребителя готовой продукции, т.е. на машиностроение. В данном случае и источник сырья, и потребитель представлены в едином лице, так как наибольшее количество металлического лома накапливается в районах развитого машиностроения.

Особую группу по технико-экономическим признакам составляют предприятия, производящие ферросплавы и электростали. Ферросплавы — это сплавы железа с легирующими металлами (марганец, хром, вольфрам, кремний и т.д.). Их основные виды —ферросилиций, феррохром. Без ферросплавов немыслимо развитие качественной металлургии. Их получают в доменных печах или электрометаллургическим путем. В первом случае производство ферросплавов осуществляется на металлургических заводах полного цикла, а также с двумя (чугун — сталь) или одним (чугун) переделом (Чусовой), во втором — их производство представлено специализированными заводами. Электрометаллургия ферросплавов из-за высокого расхода электроэнергии (до 9 тыс. кВт-ч на 1 т продукции) оптимальные условия находит в тех районах, где дешевая энергия сочетается с ресурсами легирующих металлов (Челябинск). Производство электросталей развито в районах, располагающих необходимыми источниками энергии и металлического лома.

Металлургические заводы малой мощности — мини-заводы — приобретают все большую значимость в связи с имеющимися в стране огромными ресурсами металлолома и потребностями современного машиностроения в качественном металле определенных и разных марок, но небольшими партиями. Такие заводы могут обеспечить оперативную выплавку металла нужной марки и в достаточно ограниченном количестве для машиностроительных предприятий. Они способны быстро реагировать на изменение рыночной конъюнктуры, наиболее полно удовлетворять запросы потребителей. Высокое качество сталей, получаемых на мини-заводах, обеспечивается наиболее прогрессивным методом плавки — электродуговым.

Традиционный способ получения стали: сначала в доменных печах получают из руды передельный полупродукт — чугун, а затем в сталеплавильных агрегатах — конвертерах, мартенах, электропечах получают сталь. Новым направлением научно-технического прогресса в отрасли является бездоменная, или бескоксовая, металлургия. В России такое предприятие построено в г. Старый Оскол (Белгородская область) — Оскольский электрометаллургический комбинат. Эта технология в принципе отличается от традиционного процесса, при котором руда сначала плавится при температуре 1600° С вместе с коксом, служащим химическим восстановителем. Здесь же доменная плавка заменяется значительно более простым в управлении и обслуживании процессом металлизации окатышей (окатыши — комочки, полученные из железорудного концентрата). Через окатыши при температуре почти 1000° С пропускается газ-восстановитель, например, получаемая из природного газа смесь водорода с оксидом углерода. Этот газ легко отбирает у железа кислород, а окатыши содержат довольно много кислорода. Образуются металлизированные окатыши, состоящие почти целиком из железа, т.е. происходит прямое восстановление железа. На следующем этапе металлизированные окатыши в мощных дуговых электропечах превращаются в высококачественную сталь.

Данный способ производства имеет огромные преимущества в виде экономии кокса, высокого качества металла, экологической чистоты. Коксующийся уголь становится с каждым годом все дефицитнее и дороже, процесс коксования — сложный и трудоемкий, сопровождается выделением вредных побочных продуктов, т.е. требует дополнительных затрат на строительство очистных сооружений. Высокое качество металла обусловлено чистотой от серы и фосфора и других нежелательных примесей, которые попадают в сталь из чугуна, который в свою очередь наследует их от кокса. Металлизационные установки практически безвредны для окружающей среды в отличие от доменных и коксовых печей. Такая сталь служит в среднем в пять раз дольше.

К недостаткам бездоменной металлургии относятся большие затраты электроэнергии, использование только высококачественных руд с содержанием железа более 60%; более высокая стоимость металла.

В странах, где высоки запасы коксующихся углей, как в России, доменная металлургия будет еще долго иметь большое значение.

Развивается порошковая металлургия (металлокерамика). Выплавка порошковой стали идет в индукционной печи, расплав распыляется азотом высокой чистоты и заполняет металлические капсулы порошком. Такая сталь имеет практически 100%-ю плотность, высокий уровень технологической пластичности. Она позволяет как бы склеивать детали из мельчайших частиц и тем самым сводит отходы практически к нулю. Кроме того, данная технология позволяет утилизировать отходы других технологий, например металлическую стружку, дает возможность изготавливать металлоизделия любой конфигурации, комбинировать металлы, не сплавляющиеся при обычной технологии, т.е. получать металлы с заданными свойствами. Недостатки: трудность получения чистых по химическому составу порошков и сравнительно высокая их стоимость.

В России за последние 10 лет структура производства сталей улучшилась. Хотя, безусловно, это связано не с внедрением НТП в отрасли, а с закрытием многих старых неконкурентоспособных и убыточных предприятий.

3. Характеристика Центральной металлургической базы

Металлургическая база — группа металлургических предприятий, использующих общие рудные и топливные ресурсы и обеспечивающих главные потребности хозяйства страны в металле.

Центральная база черной металлургии располагается на территории Центрального, Центрально-Черноземного и Волго-Вятского экономических районов. Здесь, в Центральном экономическом районе, находится крупнейший железорудный район России, обеспечивающий 45% общероссийской добычи железной руды. Основная часть руды добывается в карьерах Белгородской и Курской областей, однако наиболее ценные руды с высоким содержанием железа залегают в более глубоких горизонтах и отрабатываются рудниками подземной добычи.

Масштабы развития металлургического передела в Центральной базе заметно скромнее уральских (22% чугуна, 16% стали, 17% готового проката и 15% труб общероссийского производства). Большая часть чугуна и стали Центральной базы производится на одном из крупнейших в стране и современном в технологическом отношении Новолипецком металлургическом комбинате. В Старом Осколе находится единственный в России, построенный по немецкой технологии металлургический завод, где из железорудного концентрата методом химического восстановления получают железо, а затем электросталь, минуя стадию производства чугуна. Этот прогрессивный способ металлургического передела не требует кокса и обладает низкими нормами водопотребления, что исключительно важно в Центрально-Черноземном экономическом районе, испытывающем дефицит пресной воды и не обладающем собственными ресурсами топлива.

Основное преимущество Центральной базы черной металлургии заключается в расположении ее на территории крупнейшего в стране железорудного бассейна и в непосредственной близости от машиностроительных центров и других потребителей черных металлов.

Главные недостатки Центральной базы — отсутствие коксующихся углей, напряженный топливно-энергетический баланс и дефицит воды. Наиболее перспективными направлениями дальнейшего развития Центральной базы черной металлургии является форсирование железорудной промышленности как с целью более полного покрытия отечественных потребностей в ее продукции, так и для расширения экспортных поставок, а также увеличение мощности металлургического передела на основе передовой технологии Старо-Оскольского металлургического завода и развитие малой металлургии.

4. Экспортные возможности и внутренний рынок

В течение 2000 г. рост внутреннего потребления продукции черной металлургии, который составил 180%, определил тенденцию развития отрасли. Рост экспорта составил 17%.

В целом отрасль характеризуется преобладанием доли экспорта в сравнении с внутренним потреблением в общем объеме выпуска. С этим связаны такие особенности отрасли, как зависимость общего объема выпуска от объема экспорта; зависимость от торговой политики импортирующих государств; потребность в мерах государственной поддержки; наличие конкуренции между производителями из стран СНГ, которая становится наиболее острой при сокращении экспортных возможностей.

Зависимость объема выпуска отрасли от экспортных возможностей приводит в результате к тому, что при сокращении экспорта сокращается инвестиционная активность предприятий, а значит, возможность дальнейшего развития.

Объемы возможных поставок на экспорт зависят от результата проводимых государствам импортерам и антидемпинговых расследований. Многие проводившиеся в последнее время антидемпинговые расследования привели к существенному снижению поставок. В таких условиях повышается зависимость выпуска объемов внутреннего спроса, этим и определяется основной структурный сдвиг в проводимой предприятиями отрасли сбытовой политике. Основной прирост внутреннего рынка приходится Предприятия таких отраслей, как строительство, машиностроение и металлообработка.

В условиях сокращения экспортных возможностей в результате проводимой государствами-импортерами политики квотирования, введения высоких пошлин и других мер, препятствующих импорту продукции черной металлургии из стран СНГ, предприятия отрасли стран СНГ сталкиваются с проблемой повышенной конкуренции, что значительно ухудшает их положение. Для урегулирования ситуации был создан Совет производителей и экспортеров черных металлов государств СНГ. В состав Совета входят крупнейшие производители и экспортеры металлопроката из России, Украины, Молдовы и Белоруссии. В рамках Совета проходят ежеквартальные встречи предприятий-участников.

5. Основные тенденции в развитии черной металлургии

В связи с тенденцией снижения расхода стали на единицу продукции, с вытеснением черных металлов алюминием и пластмассами, с ресурсосбережением снижается потребность в металле. Наступает эпоха чистых экономно-легированных сталей с большим пределом прочности конструкций. Изделия из них отличаются малой металлоемкостью и долговечностью. В будущем нужен будет металл лишь высокого качества с особыми свойствами, поэтому для отрасли актуальны следующие направления развития.

2. Развитие должно идти за счет модернизации с использованием новейших технологий, диверсификации производств ряда металлургических предприятий, традиционная продукция которых оказывается неконкурентоспособной. Базовыми металлургическими предприятиями останутся Череповецкий, Новолипецкий, Магнитогорский, Нижнетагильский, Челябинский, Западно-Сибирский, Кузнецкий, Новотроицкий, а также трубные заводы.

3. Существенно должна возрасти доля передельной металлургии, так как она дает более дешевый металл. Сейчас 1/2 стали выплавляется из металлолома. В этом плане перспективно строительство мини-заводов (используется скрап, они оснащены электродуговыми печами, дают металл высокого качества, возможна узкая специализация, выполнение небольших заказов, ориентированы на потребителя).

Изменения в размещении черной металлургии имеют следующие перспективные тенденции.

Заключение

Одной из острейших проблем на современном этапе развития металлургического комплекса России являются рациональное природопользование и охрана окружающей среды.

Предприятия по производству черных металлов оказывают сильнейшее воздействие на состояние атмосферного воздуха. По суммарным выбросам вредных веществ черная металлургия занимает третье место после энергетики и цветной металлургии. В 2000 г объем выбросов составил 2,4 млн. тонн (102,9% к уровню 1999 г.), из которых 68% пришлось на оксид углерода, 15% на твердые вещества и 10% — на диоксид серы.

Более половины выбросов приходится на четыре металлургических комбината: Новолипецкий (г.Липецк) — 360 тыс. тонн, Северсталь (г. Череповец) — 340 тыс. тонн; Магнитогорский металлургический комбинат (г. Магнитогорск) — 320 тыс. тонн; Западно-Сибирский металлургический комбинат (г. Новокузнецк) — 210 тыс. тонн.

В целом с ростом производства в черной металлургии растет объем выбросов и сбросов. В настоящее время каждая четвертая тонна токсичных отходов, каждая шестая тонна загрязняющих атмосферу веществ от стационарных источников и каждый девятый кубометр сточных вод, образующихся на промышленных предприятиях России, относятся к отходам черной металлургии.

В условиях острой конкуренции с производителями черных металлов из стран СНГ широкомасштабные работы по решению экологических проблем, связанные с ростом издержек производства, маловероятны.

Будьте осмотрительны! Не сдавайте скачанную работу преподавателю.

Преподаватели всегда проверяют уникальность сдаваемых работ. Вы можете использовать эту работу для подготовки своего проекта или закажите уникальную.

В нашей стране такая технология впервые освоена на Оскольском электрометаллургическом комбинате. Суть её заключается в приготовлении из железорудного концентрата окисленных окатышей, их металлизации и последующей выплавки стали. Железную руду вначале обогащают – содержание железа увеличивается с 34 до 74%. К полученному концентрату добавляется глинистое вещество, которое во вращающихся барабанах (окомкователях) склеивает частицы концентрата в комочки – сырые окатыши диаметром 1–2 см. Для придания окатышам необходимой прочности их обжигают на конвейерной машине.

Далее окатыши направляются в шахтные установки металлизации, где и происходит прямое восстановление железа. Шахты представляют собой высокие (64 м) цилиндрические башни с внутренним диаметром 5 м. К нижней части башни подводится горячий (500-800˚С) восстановительный газ. Он представляет собой природный газ, очищенный от серы и подвергнутый углекислотной конверсии, в результате которой метан и другие углеводороды превращаются в СО и Н2, являющиеся сильными восстановителями. При продувке этой смесью железо восстанавливается, и окатыши становятся металлизованными с содержанием более 90% Fe.

Металлизованные окатыши подают в электроплавильные дуговые печи, в которых получают высококачественную сталь. Слитая в ковши сталь подвергается вакуумированию, продувке аргоном и обработке рафинирующими порошками, отчего её качество ещё более повышается.

Бездоменная металлургия позволяет отказаться от постоянно дорожающего и становящегося всё более дефицитным кокса, от сложного хозяйства коксохимических, агломерационных и доменных цехов. Полученная сталь содержит значительно меньше серы и фосфора, попадающих в обычную сталь из руды и чугуна. Бездоменная металлургия выгодно отличается и в экологическом отношении, т.к. исключает загрязнение окружающей среды сернистыми газами и другими вредными веществами.

ОСНОВЫ ТЕХНОЛОГИИ ОБРАБОТКИ МЕТАЛЛОВ ДАВЛЕНИЕМ, ЛИТЕЙНОГО ПРОИЗВОДСТВА И СВАРКИ

ХАРАКТЕРИСТИКА ОСНОВНЫХ СПОСОБОВ ОМД

Обработкой давлением называют технологические процессы изготовления изделий или заготовок путём пластического деформирования материалов приложенным извне усилием.

Достоинствами ОМД являются высокая производительность, экономный расход металла, улучшение механических свойств металла.

Основными видами ОМД являются: прокатка, волочение, прессование, свободная ковка, объёмная и листовая штамповка.

Введение
Черная металлургия является одной из консервативных отраслей промышленности в отношении замены применяемых агрегатов и технологии принципиально новыми и более эффективными, что обусловлено высокими капитальными затратами, большой мощностью и длительным сроком службы основных металлургических агрегатов, применяемых для выплавки металла, и обслуживающих агрегатов, осуществляющихподготовку железорудного сырья, технологического топлива и других энергоресурсов, необходимых для получения металла из железной руды. Это относится, в первую очередь, к производству кокса, агломерата, окатышей и чугуна.
Долгий срок службы агрегатов и относительно низкие эксплуатационные расходы делают экономически невозможным быструю замену существующего доменного процесса новыми технологическими процессамиметаллургии железа даже при их экономических преимуществах.

- верхней цилиндрической части - колошника, необходимого для загрузки и эффективного распределения шихты в печи;
- самой большой по высоте расширяющейся конической части - шахты, в которойпроисходят процессы нагрева материалов и восстановления железа из оксидов, шахте придаётся форма расширяющегося книзу усечённого конуса для облегчения опускания из колошника загруженных материалов;
- самой широкой цилиндрической части - распара, в котором происходят процессы размягчения и плавления восстановленного железа;
- суживающейся конической части - заплечиков (в виде усеченного и расширяющегосякверху конуса), где образуется восстановительный газ - монооксид углерода;
- цилиндрической части - горна, служащего для накопления жидких продуктов доменного процесса - чугуна и шлака.
В верхней части горна располагаются фурмы - отверстия для подачи нагретого до высокой температуры дутья - сжатого воздуха, обогащенного кислородом и углеводородным топливом.
Чугун выпускается из печи черезлётку, расположенную на дне лещади, по желобам в ковши, а шлак в специальные ковши через две шлаковые лётки.
В верхней части печи имеется малый конус засыпного аппарата, на который попадает шихта, при опускании его шихта попадает в чашу. Из чаши шихта попадает на большой конус, при опускании которого шихтовые материалы попадают в доменную печь, предотвращая.

Способ заключается в плавке металлизованной шихты в электропечах, минуя стадию получения чугуна.

Основные стадии процесса:

1. Получение окисленных окатышей;

2. Получение металлизованных окатышей;

3. Выплавка стали;

Для получения окисленных окатышей рудный концентрат смешивают с глинистым веществом, получают в барабанах шарики диаметром 1-2 см, сушат и обжигают в печи. Окатыши содержат более 67% Fe.

Далее окатыши поступают в шихтную печь, где встречаются на своем пути с потоком горячего восстановительного газа (CO + H2, получающийся при конверсии природного газа). Получаются металлизованные окатыши (содержание железа больше 90%).

Металлизованные окатыши переплавляют в сталь в дуговых печах и затем подвергают дополнительной выпечной обработке – вакуумирование, продувка Ar и обработка рафинирующими порошками.

Схема производства экологически чистая. У нас в стране ОЭМК – производительность 1 мин. т.

Производство стали на последнем этапе этого метода осуществляется в электрических или индукционных печах.

Схемы печей следующие

2. Индукционная печь.

Производство стали в мартеновских печах

Мартеновская печь представляет собой печь пламенного нагрева генеративного типа.

В передней части печи имеются окна для загрузки шихты, в задней – отверстия для слива стали и шлака. В нижней части имеются регенераторы для подогрева входящих газов и воздуха.

Печь выкладывается из доломитового кирпича, свод печи – из хромо-магнезитового (он выдерживает температуру до 1800°C). Топливом для мартенов служит либо мазут, либо доменный или коксовый газы.

Сырьё для приготовления шихты:

Различают следующие процессы:

  1. Рудный: плавка из чугуна 60%, скрапа 20% и руды 20%.
  2. Скрапный: скрапа 70%, чугуна 20%, руды 10%.
  3. Рудно-скрапный: чугуна 40%, скрапа 40% и руды 20%.

Во время плавки окислы железа, входящие в состав скрапа и руды, взаимодействуют с примесями чугуна, и происходит окислительная плавка:

Si + 2FeO = 2Fe + SiO2

Mn + FeO = Fe + MnO

Все эти окислы переходят в шлаки и сливаются с поверхности стали. Для окончательного удаления P и S в печь вводят известняк. Он связывает P и S в соединения CaSiO3 и CaO∙P2O5.

Процесс плавки проводят в течение 5-20 часов в зависимости от содержания в шихте примесей, подлежащих удалению.

Ускорить плавку позволяет применение кислородного дутья, что позволяет:

1. Улучшить теплотехническую работу печи (увеличить теплоту сгорания топлива);

2. Ускорить металлургический процесс (кислородом обогащают воздух до 33% или вдувают кислород в расплав);

Так как все металлургические процессы происходят в основном на границе раздела металл-шлак, то при вдувании кислорода в расплав осуществляется значительное перемешивание и ускорение процесса варки стали.

Кроме того, кислородное дутье позволяет более точно удалить примеси из расплава:

Следовательно, применение кислорода дает возможность расширить ассортимент применяемых чугунов, облегчает передел фосфоритных чугунов и дает возможность перерабатывать руды с большим содержанием фосфора.

С применением кислородного дутья в настоящее время выплавляют до 75% мартеновской стали (в капиталистических странах сталь плавят в основном таким способом). В СССР распространено и обогащение воздуха, и пламенный процесс (дутьё + обогащение воздуха), что позволяет проводить скоростные плавки.

Плазменная плавка стали

Плазменная плавка стали – это ближайшее будущее качественной электрометаллургии.

Процесс плавки заключается в следующем. В печь загружается шихта, затем включается плазмотрон (I=10 кА, U=200-500 В) и возникает плазменная дуга с температурой 15000-30000 К. Под воздействием высокой температуры компоненты шихты переходят в жидкое состояние, и происходит плавка стали. Плавка длится 2-3 часа.

Схема печи следующая

Использование плазменной плавки позволяет эффективно повысить качество стали, получать прогрессивные сплавы. Окружающая атмосфера почти не загрязняется. Уровень шума – 110 Дб (в дуговой печи – 160 Дб).

Цветная металлургия

Производство алюминия

Алюминий – самый распространённый металл в природе (общее содержание в земной коре ~8,8 %). Электрохимический способ получения алюминия открыт в 1886 году, сейчас способ тот же, но аппаратурное оформление – современное. Ежегодное производство ~3 млн. тонн. Алюминий используется в авиа- и автостроении в виде сплавов с Mn, Mg, Cu, Si, Ni, Zn, а также широко используется в электротехнической промышленности (провода). В СССР ~12 заводов по производству Al, 2 на Урале (БАЗ, УАЗ).




Сырьё для производства:

4. Каолин Al2O3 ~ 40% (также содержит SiO2) – из них выгодно сразу получать силумин (сплав Al+Si);

Электролитом для производства Al служит расплав глинозёма с криолитом Al2O3+Na3AlF6.

I. Получение глинозёма.

1) Метод Байера (из бокситов, Si 900° C

Эти смеси размалывают и выщелачивают, при этом в раствор переходят силикат и алюминат натрия, в отвал – Fe2O3, CaSiO3.

Добавляют известковое молоко и отводят CaO∙Al2O3∙2SiO2 в осадок.

II Получение криолита.

Его получают искусственным путём из флюоритов (CaF2+SiO2)

SiO2 + 4HF = SiF4 + H2O побочная реакция

3 000 лет назад человечество вошло в Железный век. В мире получили распространение технологии металлургии железа и изготовления железных орудий. Железо позволило расширить возможности человека. Но шли столетия, менялись государства и технический уклад, а вместе с ними возрастала потребность в железе.

Во второй половине 18 века началась промышленная революция, создавшая механический труд: в производстве стало появляться все больше машин. А увеличение числа машин вызвало резкий рост потребности в металле. И уже эта потребность спровоцировала развитие металлургии. Тогда и случился технологический прорыв, главным достижением которого стала замена в металлургии древесного угля, использовавшегося средневековыми кузнецами, на каменноугольный кокс.

Доминирующая домна

Производительность современных доменных печей повышается увеличением их рабочего объёма. Таковой у средней доменной печи около 5 000 м3. Это обеспечивает выплавку стали до 4 млн тонн в год. Печь такой производительности расходует свыше 10 железнодорожных эшелонов сырья в сутки. Для хорошей производительности требуется тщательная подготовка руды и топлива к плавке, применении руд с усреднённым составом, самофлюсующегося агломерата. А также использование дутья с повышенной влажностью и температурой, автоматической аппаратуры для контроля и регулирования технологических процессов. Особое значение имеет применение кислородного или обогащённого кислородом дутья. Кислородное дутьё способствует повышению температуры и концентрации окиси углерода, улучшает процессы восстановления и уменьшает объём газов.

При этом процесс плавки непрерывен. Для уменьшения расхода кокса и повышения производительности доменной печи воздух (дутьё) нагревают до 1000–1200 °С, обогащают кислородом, а в горн вдувают природный газ, мазут или пылеугольное топливо.

Подготовка руд к доменной плавке необходима для повышения производительности доменной печи, снижения расхода кокса и улучшения качества чугуна. После этого процесса в руде увеличивается содержание железа в шихте и уменьшается число вредных примесей — серы, фосфора, повышается её однородность по кусковатости и химическому составу. Метод подготовки добываемой руды зависит от её качества.

Зольность и сернистость кокса тоже оказывают большое влияние на его расход и производительность доменных печей. При расчётах обычно принимается повышение на 1,5-2% расхода кокса и примерно на столько же снижение производительности доменных печей на каждый процент повышения зольности кокса или на каждую 0,1% повышения его сернистости.

При этом производство с использованием доменных печей вносит серьёзное загрязнение в окружающую среду. Металлургическая отрасль находится на втором месте среди всех других отраслей промышленности по атмосферным выбросам. Предприятия чёрной и цветной металлургии при извлечении металлов вынуждены использовать руду с очень низким содержанием полезных компонентов. Таким образом, на обогащение и плавку поступает огромный объём руды, а это, в свою очередь, порождает большие количества отходящих газов из неиспользуемых компонентов. Именно загрязнение атмосферы является главной причиной экологических проблем, возникающих в результате деятельности металлургических гигантов. Выбросы из труб приводят к загрязнениям почв, уничтожению растительности и образованию техногенных пустошей вокруг крупных заводов. К тому же, экологические проблемы отечественной металлургии обостряются из-за высокого износа оборудования и устаревших технологий.

По данным Минпромэнерго, до 70% всех мощностей в отечественной металлургической промышленности являются изношенными, устаревшими и убыточными.

Альтернатива

Индустриальная эпоха потребовала от производителей металлов улучшения качества их продукции, уменьшения издержек в производстве (в доменном производстве расходуется 60-70% всех топливно-энергетических затрат на производство готовой металлургической продукции), а также выполнения повышающихся требований к экологичности производства. Первая массированная атака на доменную плавку, как на основной вид передела железорудного сырья, пришлась на 1960-е годы. Открытие огромных нефтегазовых месторождений на Ближнем Востоке, в Северной и Центральной Африке, Латинской Америке породило эйфорию надежд в чёрной металлургии в виде замены доменного производства низкотемпературными твердофазными процессами металлизации железорудных материалов.

Так, в 1970-х годах стали появляться промышленные производства железа непосредственно из руды, минуя доменный (с использованием кокса) процесс. Одной из первых появились установки прямого восстановления железа (или губчатого железа). Правда, они были малопроизводительны, а конечный продукт имел довольно много примесей. С совершенствованием процесса, эта технология всё же получила в 1980-х годах широкое распространение. Случилось это после того, как в горно-металлургическом комплексе стали активно применять природный газ, который идеально подошёл для прямого восстановления железной руды. Ещё одним удачным решением стало возможность использовать в процессе прямого восстановления железа продуктов газификации углей (в частности, бурых), попутного газа нефтедобычи и другого топлива-восстановителя.

В 1990-е годы технологические изменения позволили значительно снизить капиталовложения и энергоёмкость в нескольких процессах прямого восстановления железа, в результате чего произошёл новый скачок в производстве продукции в виде металлизированных окатышей DRI (Direct Reduced Iron), которые продолжаются до сих пор.

Эксперты отмечают, что использование губчатого железа при выплавке стали (в основном, в электродуговых печах) позволяет производить наиболее высококачественный, экономически выгодный (с относительно низкой энергоемкостью) и экологически чистый металл (по сравнению с доменным процессом), пригодный для удовлетворения самых высоких требований таких отраслей-потребителей, как машиностроение (авиа-, судостроение и т. д.).

В типовом процессе восстановления железа основной компонент природного газа — метан — разлагают окислением в присутствии катализатора в специальных аппаратах — реформерах, получая смесь восстановительных газов — окиси углерода и водорода. Эта смесь поступает в высокотемпературный реактор, в который подаётся также обрабатываемая железная руда. Есть технологии DRI, использующие метан непосредственно в реакторе, а также восстановительные пылеугольные смеси.

При этом формы и конструкции реакторов очень разнообразны, например, это вращающаяся трубчатая печь или шахтная печь. Сама реакция восстановления максимально эффективно идёт только на поверхности твёрдых частиц руды, поэтому необходим определённый компромисс между сырьём (пылеобразная или пористая форма) и конечной продукцией (спечёнными окатышами, брикетами и т. п.).

Разнообразие технологий, оборудования и сырья создало большое разнообразие названий способов прямого восстановления, число которых перевалило за два десятка. Однако только немногие из них прошли опытно-промышленную и промышленную проверку, доказав свою высокую производительность и рентабельность, а также создавая готовую продукцию высокого и стабильного качества.

Все эффективные методы прямого восстановления качественного железа фактически используют единственный процесс: богатое железорудное сырьё (руда или окатыши с содержанием железа не менее 70%) восстанавливается при высоких температурах до содержания железа (85–90% и более) специальной газовой смесью.

Именно поэтому основное производство железа прямого восстановления главным образом сосредоточено в странах, обладающих большими запасами нефти с попутным газом, собственно природного газа и железной руды — это страны Латинской Америки, Ближнего и Среднего Востока.

На сегодня в мире наиболее широко распространены технологии прямого восстановления железа компании Midrex (США), установки которой работают во многих странах с 1971 года. Лидирующие позиции в DRI эта компания удерживает до сих пор. Даже среди российских предприятий встречаются те, что используют технологии Midrex — это Оскольский электрометаллургический комбинат, который за 1983–1987 годы построил и запустил четыре модуля Midrex, общей мощностью 1,67 миллионов тонн металлизированных окатышей DRI в год, и Лебединский ГОК, который с 1999 года выпускает брикеты HRI мощностью 0,9 миллионов тонн в год. При этом Россия занимает сейчас седьмое место в рейтинге крупнейших стран — производителей подобной продукции в мире.

Железо прямого восстановления почти полностью используется в электрометаллургии. Доменный процесс в таком производстве полностью исключен. Поэтому получаемые продукты от этой технологии позволяет снизить негативное влияние металлургического производства на окружающую среду, в том числе за счёт уменьшения выбросов углекислого газа (оксида серы и др.) в атмосферу.

Высокий расход природного газа — до 400 м3 на 1 т DRI — считался главным недостатком технологий Midrex и её аналогов. Неуклонный рост цен на нефть и газ в последние годы угрожал рентабельности производства железа прямого восстановления. При всей неустойчивости мировых цен на сырьё рентабельность производства железа прямого восстановления сохраняется, тем более в странах, имеющих оптимальные условия для такого производства, включая Россию. Но аналитики сходятся в позитивных оценках развития мирового рынка DRI. По их мнению, баланс спроса и предложения на этом рынке не будет достигнут, по крайней мере, в течение ближайших 3–4 лет.

Мировое производство стали прямым восстановлением не превышает 2-3% от общего её производства. Другой технологией для работы с рудой без использования доменных печей является гидрометаллургический метод, который находится в стадии совершенствования.

Гидрометаллургический метод основан на вытеснении более активным металлом менее активного из получаемого раствора с последующей обработкой этих растворов для выделения металла в свободном виде. Для этой технологии используются руды с незначительным содержанием различных металлов. Руду подвергают процессу гидрометаллургической переработки, т. е. её обрабатывают водными растворами кислот или щелочей. При этом часть соединений отдельных металлов переходят в состояние раствора. Также руду могут предварительно обработать кислородом или хлором, это позволяет повысить содержание в ней соединений, легко растворимых в воде.

Одним из существенных преимуществ гидрометаллургических методов, по сравнению с металлургическими переделами, является то, что они позволяют проводить более полную переработку бедных и полиметаллических руд. При этом с раздельным получением всех полезных компонентов, а основного — в виде продукта с высокой степенью чистоты. Например, цинковые заводы одновременно с цинком выпускают кадмий, свинец, соли или концентраты меди, кобальта, ряд редких металлов и концентратов, а также серную кислоту. Или взять медерафинировочные заводы, на которых выпускают не только медь, но и соли цветных металлов, шламы, содержащие благородные металлы. Стоимость получаемых попутно продуктов может стать весьма важным экономическим фактором для металлургического производства. Важно всегда понимать, что рентабельность гидроэлектрометаллургического производства по сравнению с пирометаллургическим меняется значительно, поскольку в будущем ожидается вовлечение в переработку бедных и забалансовых руд. А для этого необходимо разработать наиболее целесообразные пути извлечения всех полезных компонентов руд, с последующим их разделением и получением металлов или концентратов. При этом пирометаллургические процессы будут заменены гидрометаллургическими.

Правда, несовершенство современного состояния технологии обладает существенным недостатком: сложность технологических процессов и их аппаратурного оформления, приводящая к технико-экономической дороговизне его использования, так, например, вместе с цинком в растворимую форму переходит много железа, а это сильно усложняет последующую гидрометаллургическую переработку обожженного концентрата.

Но при этом эксперты отмечают, что технология имеет хорошие перспективы. развитие гидрометаллургических методов переработки рудного сырья в ближайшие десятилетия сможет обеспечить комплексное использование всех компонентов руд вплоть до пустой породы. Оставшаяся после извлечения полезных компонентов пустая порода может быть тоже использована, так как в ней остаются бедные соединение полезных ископаемых, которые трудно добыть традиционными способами. такая технология будет способствовать превращению производств в полностью безотходные.

Уже сейчас гидрометаллургическим методом получают до 25% всей добываемой меди. тем более, что этот способ позволяет получать металлы, не извлекая руду на поверхность.

Принципиально новым развитием гидрометаллургического метода стала технология использования водных растворов с бактериально-химическим выщелачивание металлов. Основу этого процесса составляет окисление содержащихся в рудах сульфидных минералов тионовыми бактериями. к таким минералам относятся сульфиды железа, меди, никеля, цинка, кобальта, свинца, молибдена, серебра, мышьяка. При этом металлы переходят из нерастворимой сульфидной формы в растворимую сульфатную.

Широкое распространение бактериальное выщелачивание получило при разработке сульфидных золотосодержащих концентратов. Подобно автоклавному выщелачиванию, оно заключается в окислении золотосодержащих сульфидов с помощью кислорода. Однако приемлемая скорость окисления достигается в этом случае не за счёт применения повышенных температур и давлений кислорода, а введением в пульпу микроорганизмов бактерий), содержащих ферменты, являющиеся биокатализаторами окислительных процессов. Выделяющуюся при окислении энергию бактерии используют для своей жизнедеятельности.

Перспективы

Учёные и инженеры во всём мире продолжают технологические поиски различных вариаций методов, использующих менее качественную руду и различные типы топлива. При этом всё больше уделяется внимания экологии процесса и качеству металла. рассматривая вопросы модернизации своего производства, можно задуматься о внедрении новых перспективных технологий без использования доменных печей. Это позволит производству войти в новый технологический уклад и начать снижать свои издержки как материально-финансовые, так и экологические. В ряде стран, в том числе и в россии, имеются особо благоприятные условия для развития новых производств.

Читайте также: