Автоматизация тепловых пунктов реферат

Обновлено: 28.06.2024

Системы теплоснабжения являются крупнейшим потребителем топливно-энергетических ресурсов в стране. От нормального функционирования этих систем зависят условия теплового комфорта в отапливаемых зданиях самочувствие людей, производительность труда и т.д. Выпуск качественной продукции на ряде промышленных предприятии требует строгого соблюдения нормируемых параметров микроклимата. Эффективность предприятий агропромышленного комплекса (урожайность плодов и овощей, выращиваемых в теплицах, продуктивность животноводства) также в большой степени определяется температурно-влажностными режимами в сельскохозяйственных помещениях, обеспечиваемыми работой систем теплоснабжения. Таким образом, проблема повышения качества, надежности, экономичности теплоснабжения имеет государственное значение [1].

Режимы теплопотребления, а следовательно и производства тепловой энергии, зависят, как известно, от большого количества факторов; условий погоды, теплотехнических качеств отапливаемых зданий и сооружений, характеристик тепловой сети и источников энергии и др. При выборе этих режимов нельзя не учитывать функциональных взаимосвязей системы теплоснабжения с другими системами инженерного обеспечения: электро-, газо-, водоснабжения.

Внедрение автоматизированных систем управления технологическими процессами в практику теплофикации и централизованного теплоснабжения позволяет резко повысить технический уровень эксплуатации этих систем и обеспечить значительную экономию топлива. Кроме экономии топлива, автоматизация рассматриваемых систем позволяет улучшить качество отопления зданий, повысить уровень теплового комфорта и эффективность промышленного и сельскохозяйственного производства в отапливаемых зданиях и сооружениях, а также надежность теплоснабжения при уменьшении численности обслуживающего персонала.

Применение системы автоматического программного регулирования отопления позволяет осуществлять дальнейшее совершенствование режима отопления, например, снижать температуру воздуха в жилых зданиях в ночное время или снижать отпуск теплоты на отопление промышленных и административных зданий в нерабочее время, что обеспечивает дополнительную экономию теплоты и создание комфортных условий [2].

1. Автоматические системы энергосбережения в зданиях мегаполисов

- оптимизация режимов производства и потребления энергии, организация её учета и контроля;

- реализация проектов по внедрению энергоэффективной техники и продукции, передовых технологий.

Одним из способов обеспечения более экономичного и эффективного использования энергетических ресурсов в жилищно-коммунальном хозяйстве (ЖКХ) является автоматизация инженерных систем жилых зданий. В основе концепции систем централизованного интеллектуального управления зданием лежит новый подход к организации системы жизнеобеспечения здания, при котором за счет комплекса программно-аппаратных средств значительно возрастает эффективность функционирования и надежность управления всеми инженерными системами и исполнительными устройствами здания. Данный подход позволяет за счет интеграции информации, поступающей от всех эксплуатируемых подсистем (информационных сетей, электроснабжения, систем отопления и вентиляции, охранно-пожарной сигнализации и видеонаблюдения, систем водоснабжения, канализации), получить возможность оперативного доступа к информации о состоянии всех подсистем здания, отображая ее в удобной и понятной форме. "Централизованные системы интеллектуального управления зданием" помогают эффективно управлять инженерными системами здания - сократить затраты на эксплуатацию и операционные затраты, повысить комфортность и безопасность пользователей, оптимизировать производственные процессы, обеспечить безопасность людей, а также дорогостоящего оборудования и имущества.

1.1 Современное здание как объект комплексной автоматизации

Комплексная автоматизация здания это новая отрасль АСУ ТП, так как все системы автоматического управления до сегодняшнего дня выполнялись для промышленных предприятий. В настоящее время в нашей стране строительство является локомотивом индустрии, соответственно можно представить комплексную автоматизацию здания как важную часть строительства.

Поддержание в здании нормальных жизненных условий, обеспечение его безопасности и защищенности от внештатных ситуации обеспечивают множество технологических систем, каждая из которых характеризуется большим набором параметров и сигналов управления. Все они в совокупности образуют то, что называется системой жизнеобеспечения здания.

В сегодняшние здания устанавливают от 25 до 50 и более разнородных систем жизнеобеспечения, которые отличаются не только назначением и выполняемыми функциями, но и принципами работы: электрические, механические, транспортные, электронные, гидравлические и т.д. Каждая из этих систем поставляется производителем, как правило, в виде комплекта оборудования, на базе которого можно создать законченное решение с собственной системой контроля и управления [3].

Для управления всеми этими системами организуется диспетчерский пункт (один или несколько), находящийся на котором диспетчер постоянно получает информацию о состоянии всех узлов системы жизнеобеспечения и имеет возможность при необходимости подать необходимые сигналы управления. Проблема заключается в том, что число параметров контроля и управления для многоэтажного здания может достигать нескольких тысяч, поэтому недопустим применяемый для небольших объектов подход, при котором автоматизация контроля и управления строится на отдельных локальных контроллерах, встроенных в оборудование или смонтированных отдельно и не связанных в единый комплекс.

Для того чтобы все эти разрозненные инженерные системы работали в едином комплексе, осуществляли между собой обмен данными, контролировались и управлялись из единой диспетчерской, главным звеном интеллектуального здания - является система управления зданием (BMS – Building Management System).

Система управления зданием, которую называют еще и системой автоматизации и диспетчеризации инженерного оборудования, является ядром интеллектуального здания и представляет собой аппаратно-программный комплекс, осуществляющий сбор, хранение и анализ данных от различных систем здания, а также управление работой этих систем через сетевые контроллеры (процессоры).

Интеллектуальные сетевые контроллеры, использующие открытые протоколы и стандарты передачи данных LonWork и BACNet, осуществляют контроль и управление работой подведомственных им инженерных систем, а также обмен данными с другими сетевыми контроллерами системы управления зданием. На основе собранной информации сетевые контроллеры автономно посылают управляющие команды на контроллеры инженерных систем в рамках заложенных в них алгоритмов реакции на события в штатных или нештатных ситуациях.

Такая архитектура системы управления зданием позволяет:

- в автоматическом режиме управлять работой систем вентиляции, кондиционирования, отопления, освещения и др., обеспечивая в каждом помещении наиболее комфортные условия для персонала по температуре, влажности воздуха и освещенности;

- получать объективную информацию о работе и состоянии всех систем и своевременно сообщать диспетчерам о необходимости вызова специалистов по сервисному обслуживанию в случае отклонения параметров любой из систем от штатных показателей;

- контролируя максимально возможное число параметров оборудования, точек контроля в здании и показателей загруженности систем, перераспределять энергоресурсы между системами, обеспечивая их эффективное использование и экономию энергоресурсов;

- ввести оптимальный режим управления инженерным оборудованием с целью сокращения затрат на использование энергоресурсов, потребляемых инженерными системами здания (горячей и холодной воды, тепла, электроэнергии, чистого воздуха и т.д.);

- обеспечить централизованный контроль и управление при нештатных ситуациях:

- осуществлять своевременную локализацию аварийных ситуаций;

- оперативно принимать решения при аварийных и нештатных ситуациях (пожаре, затоплении, утечках воды, газа, несанкционированном доступе в охраняемые помещения);

- ввести объективный анализ работы оборудования, действий инженерных служб и подразделений охраны при нештатных ситуациях на основе информации автоматизированных баз данных, документирующих все принятые решения и многое другое.

Используя открытые протоколы обмена данными между различными системами здания, структурированные кабельные и LAN/WAN сети, сетевые контроллеры системы управления зданием позволяют создать инженерную инфраструктуру, которая имеет высокую степень открытости для наращивания и быстрой модернизации инженерных систем. В максимальной конфигурации система управления зданием сможет осуществлять централизованный мониторинг оборудования и управление следующими инженерно-техническими системами и комплексами:

- системы гарантированного и бесперебойного электроснабжения;

- системы освещения (комнатные, коридорные, фасадные и аварийные);

- система горячего и холодного водоснабжения;

- системы канализации и дренажные системы;

- система оперативной связи и видеоконференций;

- система воздухоподготовки, очистки и увлажнения;

- система кондиционирования и климат-контроля;

- система контроля загазованности.

- системы учета и контроля расходования ресурсов;

- система охранно-пожарной сигнализации;

- система противопожарной защиты и пожаротушения;

- система охранного видеонаблюдения;

- система контроля и управления доступом;

- система управления паркингом;

Применение системы управления зданием удорожает общую стоимость инженерии здания на 20-50 долларов США на 1 квадратный метр общей площади здания и зависит от размеров здания и технических требований к работе инженерных систем. Для зданий площадью 15 000 кв. м. и более удорожание составляет $20 на 1 кв. м. Для зданий с меньшей площадью эта цифра увеличивается. Все приведенные оценки сделаны без учета стоимости самого инженерного оборудования, которое использует открытые протоколы обмена данными и будет установлено в здании.

В то же время, применение BMS и ресурсосберегающего оборудования позволяет:

- вписаться в ограниченные энергомощности и исключить расходы на строительство дополнительной подстанции и прокладку силовых кабелей, особенно в центральных частях города, где муниципальные власти ограничивают владельцев зданий в объемах энергопотребления;

- сократить расходы на дорогостоящие ремонт и замену вышедшего из строя оборудования, продлить срок его службы за счет постоянного мониторинга параметров инженерных систем и своевременного проведения наладочных работ при выявлении отклонений параметров систем от нормы;

- снизить на 20% ежемесячные коммунальные платежи (вода, тепло, канализация, электроснабжение) за счет работы систем в наиболее экономном режиме и автоматического перевода инженерии здания из дневного в ночной режим работы (когда автоматически отключается освещение, кондиционеры, снижается температура отопительных батарей в комнатах, персонал которых покинул здание);

- сократить в 3 раза расходы на службу эксплуатации, поскольку большинство систем будет работать в автоматическом режиме, что снижает расходы на ремонт или замену дорогостоящего оборудования, вышедшего из строя по причине халатности персонала или ошибок оператора;

- исключить расходы на интеллектуальную надстройку систем здания при расширении числа инженерных систем и их модернизации за счет использования возможностей открытой архитектуры системы управления здания;

- снизить заболеваемость сотрудников за счет создания комфортных условий для их работы и, как следствие, сократить расходы на реабилитацию сотрудников и страховые выплаты.

Помимо значительного снижения численности персонала, обслуживающего инженерные системы здания, за счет максимальной автоматизации процессов управления и контроля работы систем жизнеобеспечения, владелец интеллектуального здания может рассчитывать на получение следующих выгод:

- увеличится в 2 раза срок бесперебойной работы инженерных систем за счет автоматического поддержания оптимальных условий работы оборудования;

- при возникновении аварийных ситуаций операторы, осуществляющие контроль работы оборудования, будут иметь полную информацию о работе каждой системы и рекомендации BMS по выбору оптимального и наиболее безопасного выхода из ситуации. При этом большая часть задач будет решать автоматика здания;

- расходы на техническое обслуживание оборудования и инженерных систем будут минимальными; поскольку мониторинг параметров всех систем осуществляется круглосуточно и при своевременном вызове сервисных бригад, случаи серьезного ремонта оборудования будут исключены;

- все действия автоматики и операторов систем протоколируются BMS, поэтому вероятность возникновения ситуаций коллективной безответственности за остановку или сбой в работе оборудования близка к нулю.

Курсовая работа содержала в себе теоретическую и практическую часть. В рамках теоретической части был рассмотрен вопрос используемых микропроцессорных устройств автоматизации систем теплоснабжения. Теоретическая часть позволила ознакомиться с общей характеристикой программно-технического комплекса в целом и отдельными современными микропроцессорными устройствами автоматизации. В рамках вопроса… Читать ещё >

Автоматизация теплового пункта ( реферат , курсовая , диплом , контрольная )

Курсовой проект Автоматизация теплового пункта Минск 2012.

1.1 Суточные графики тепловых нагрузок.

1.2 Годовые графики тепловых нагрузок.

2. Практическая часть.

2.1 Выбор теплосчетчика.

2.2 Перечень технических условий, требования которых выполнены в данной части проекта.

2.3 Основные технические решения.

2.5 Электрические и трубные проводки.

2.7 Техобслуживание и ремонт.

2.8 Мероприятия по технике безопасности, охране труда и охране окружающей среды Заключение автоматизация теплоснабжение счетчик зануление Введение Использование комплекса автоматических устройств для управления технологическими процессами в системах теплоснабжения играет одну из ключевых ролей в обеспечении достойного уровня жизни и деятельности граждан, тесно связано с программой по энергосбережению, а также влияет на развитие высокого потенциала эффективности в области энергетики.

Автоматизация систем теплоснабжения включает регулирование (в частности, стабилизацию) параметров, управление работой оборудования и агрегатов (дистанционное, местное), защиту и блокировку их, контроль и измерение параметров, учет расхода отпускаемых и потребляемых ресурсов, телемеханизацию управления контроля и измерения.

Автоматизация систем теплоснабжения обеспечивает высокое качество управления работой отдельных объектов и всей системы теплоснабжения в целом, повышает надежность и уровень эксплуатации систем теплоснабжения, способствует экономии энергетических, материальных и трудовых ресурсов.

В силу взаимосвязи тепловых и гидравлических режимов работы источника теплоты, тепловых сетей и тепловых пунктов потребителей необходима комплексная автоматизация систем теплоснабжения.

Регулирование отпуска теплоты может осуществляться с применением следующих автоматических систем:

Выбор рационального комплекса регулирования отпуска теплоты производится в зависимости от структуры распределительных тепловых сетей, наличия разделения системы отопления здания и средств индивид, регулирования в помещениях. Указанные структуры сетей отличаются количеством трубопроводов и размещением водонагревателей или смесит, устройств горячего водоснабжения. Технические решения по автоматизации регулирования отпуска теплоты в различных ступенях регулирования, регулирования гидравлических режимов работы, управления оборудованием и защиты тепловых сетей и потребителей.

Произвести автоматизацию систем теплоснабжения в тепловом пункте, тем самым обеспечивая высокое качество управления работой отдельных объектов, влияющих на регулирование всей системы теплоснабжения в целом.

При автоматизации центральных тепловых пунктов (ЦТП) городов, микрорайонов решают следующие задачи:

· регулирование подачи (отпуска) теплоты на отопление зданий;

· регулирование температуры воды для горячего водоснабжения;

· регулирование перепада давления сетевой воды па входе в ЦТП при наличии избыточного напора в тепловой сети;

· ограничение максимального расхода сетевой воды с целью сокращения расчетного расхода;

· регулирование перепада давления воды в распределительных сетях отопления;

· регулирование давления (подпора) в обратном трубопроводе от систем отопления для защиты их от опорожнения;

· регулирование уровня воды в баке-аккумуляторе системы горячего водоснабжения;

· регулирование подпитки систем отопления в ЦТП с независимым присоединением этих систем;

· регулирование и управление процессами водоподготовки (при ее наличии);

· управление включением и отключением насосов — хозяйств, (холодного водоснабжения), циркуляции горячего водоснабжения, подпиточных, циркуляционного отопления или корректирующих смесителей;

· включение резервных насосов для каждой из указанных групп;

· измерение температуры, давлений, уровней воды с сигнализацией их предельных значений;

· учет и измерение количества и расхода теплоты, теплоносителей и холодной воды;

· телемеханический контроль, измерение и управление из диспетчерского пункта.

Согласно цели курсовой работы, описанной в предыдущем подпункте, нашей основной задачей является: автоматизация теплопункта с учетом соблюдения всех правил и норм проектирования, ссылаясь на основные принципы регулирования в области автоматизации теплоснабжения.

В качестве исходных данных будем использовать схему трубопровода и место расположения ультразвукового расходомера, параметры расхода теплоносителя, ссылаясь на адрес теплового пункта. Выполнение данной курсовой работы начнем с изучения теоретического материала.

1. Теоретическая часть Графики изменения нагрузок теплоснабжения в течение суток, недели, времени года Графики тепловых нагрузок в отличие от графиков электрических нагрузок строятся не для энергосистемы в целом, а для отдельных районов теплоснабжения или отдельных потребителей.

Выделяются следующие виды тепловых нагрузок:

· технологические нужды промышленных предприятий (пар различных параметров);

· отопление жилых домов и промышленных объектов;

· вентиляция промышленных зданий, учреждений, объектов социально-культурного назначения;

· кондиционирование воздуха на промышленных предприятиях, объектах социально-культурного назначения;

По виду теплоносителя тепловое потребление делится на потребление пара и потребление горячей воды.

При отпуске тепла в виде пара графики нагрузки строятся в весовых единицах (тонны пара в час). Нагрузка в горячей воде определяется в энергетических единицах (ГДж в час или Гкал в час).

Так же как и для электрической нагрузки, имеют место суточные, недельные и годовые графики тепловых нагрузок.

Все виды тепловых нагрузок в большей или меньшей степени изменяются как в течение суток, так и в течение года. Эти изменения обусловлены следующими факторами:

· изменениями температуры наружного воздуха;

· бытовыми и производственными режимами потребителей.

1.1 Суточные графики тепловых нагрузок В отличие от электрической нагрузки потребление тепловой энергии более стабильно в течение суток.

Технологические нужды промышленных предприятий.

Расход тепловой энергии на технологические нужды мало зависит от температуры наружного воздуха, и поэтому конфигурация графиков технологической (обычно паровой) нагрузки в основном определяется режимом работы (количеством рабочих смен) промышленных потребителей. Для потребителей с трехсменным режимом работы конфигурация графика технологического потребления трехступенчатая (по сменам), учитывающая только соотношение величин нагрузки по сменам (рис. 1).

Рис. 2. График технологического потребления для трехсменного непрерывного производства При двухсменном режиме работы график технологического потребления будет, естественно, другой конфигурации (рис. 3).

Рис. 3 График технологического потребления для двухсменного производства Тепловая нагрузка, обеспечиваемая горячей водой.

Наиболее сложную конфигурацию имеет суточный график тепловой нагрузки горячего водоснабжения (рис. 4). Он характеризуется малой нагрузкой ночью, наличием утреннего краткосрочного пика и более длительного вечернего.

Рис. 4 График нагрузки горячего водоснабжения Тепловая нагрузка горячего водоснабжения является круглогодичной, однако летом расход тепловой энергии на горячее водоснабжение снижается до 0.75 от зимнего. Суточный коэффициент неравномерности нагрузки горячего водоснабжения, т. е. отношение максимальной величины к средней, составляет 2.0−2.2.

Расход тепловой энергии на отопление, вентиляцию и кондиционирование воздуха полностью определяется температурой окружающего воздуха, и поэтому эта нагрузка типично сезонная, зависящая от климатических условий.

Так как отопление жилых домов и других объектов социально-бытового назначения производится круглосуточно, а температура наружного воздуха, определяющая величину нагрузки, как правило, в течение суток меняется мало, то график отопительной нагрузки постоянен в течение суток (рис. 5).

Рис 5 Суточный график отопительной нагрузки бытовых потребителей Отопление промышленных и других предприятий, работающих в одну или две смены, также производится круглосуточно, хотя может иметь место меньшая интенсивность в ночные часы (рис. 6).

Рис. 6. Суточный график отопительной нагрузки промышленных потребителей Конфигурация графиков вентиляционной нагрузки и кондиционирования воздуха аналогична конфигурации графиков отопительной нагрузки.

Для коммунально-бытового сектора вентиляция обычно применяется только в учреждениях и предприятиях бытового обслуживания и составляет 30−60% расчетного значения отопительной нагрузки. Вентиляционная нагрузка промышленных предприятий может значительно превышать отопительную нагрузку.

1.2 Годовые графики тепловых нагрузок Ввиду зависимости тепловых нагрузок от температуры наружного воздуха годовые календарные графики могут быть достаточно точно построены только для технологической нагрузки и нагрузки горячего водоснабжения.

Годовой график технологической нагрузки, также как и годовой график электрических нагрузок, фиксирует изменение максимальных нагрузок через месяц. Величина месячного максимума нагрузки рассматривается как наибольшее из значений суточных максимумов нагрузки за данный месяц (рис. 7, 8).

Для отопительной нагрузки наибольшее применение находит график годовой продолжительности тепловых нагрузок, который строится на основе двух графиков:

1. Годовой кривой стояния температур наружного воздуха (из приведенного примера (рис. 9) видно, что температура ниже -16°С наблюдается в течение 1000 часов, а температура ниже +8°С соответствует всей продолжительности отопительного периода).

Рис. 9 График продолжительности стояния температур наружного воздуха Данному графику соответствует расчетная температура для отопления -28°С и продолжительность отопительного периода — 5000 часов.

2. Зависимости величины отопительной нагрузки от температуры наружного воздуха Совмещая эти два графика, можно получить искомую зависимость. Данный график показывает изменение отопительной нагрузки в течение отопительного периода (рис. 11).

Рис. 10. График отопительной нагрузки по продолжительности Обычно отопительный график по продолжительности совмещают с графиком нагрузки горячего водоснабжения, т. е. нагрузки, также обеспечиваемой за счет теплоносителя горячей воды. В этом случае график по продолжительности выглядит следующим образом (рис. 12):

Рис. 11 Совмещенный график по продолжительности нагрузки, покрываемой за счет горячей воды.

2. Практическая часть.

2.1 Выбор теплосчетчика Для выполнения практической части курсовой работы по автоматизации систем теплоснабжения зададимся исходными данными, сведя их в таблицу 1:

Схема трубопровода и место расположения.

Приведена в графической части.

Параметры расхода теплоносителя.

Тип первичного преобразователя расхода.

Согласно номограммы для расчета трубопроводов водяных сетей горячего водоснабжения выбираем счетчик количесвта теплоты и воды вихревой Rosemount 8800DF с пьезоэлектрическим сенсором c диаметром условного прохода первичного .

Приведем технические характеристики вихревого счетчика количества теплоты и воды Rosemount 8800DF.

Счетчик должен соответствовать требованиям защиты IP65 согласно ГОСТ 14 254 . Допускаемая относительная погрешность измерения расхода жидкости не более ± 0,65%. Допускаемая основная приведеная погрешность преобразования расхода в токовый сигнал не более ± 0,025%. Допускаемая приведенная погрешность измерения температуры не более ± 1,2°С. Нестабильность ± 0,1% от измеренного значения расхода в течении 12 месяцев. Время демпфирования устанавливается от 0,2 до 255 с. Диапазон измерения температуры измеряемой среды — от -40 до 232 °C. Базовая установка диапазона входного тока: от 4 до 20 мA.

Принцип действия расходомера основан на эффекте образования вихрей поочерёдно с каждой стороны тела обтекания, помещённого в поток среды. Частота образования вихрей прямо пропорциональна скорости среды и соответственно объемному расходу.

2.2 Перечень технических условий, требования которых выполнены в данной части проекта Перечень норм и правил, требования которых выполнены при разработке проекта ГОСТ 21 .408−93 Правила выполнения рабочей документации автоматизации технологических процессов СНБ1.03.02−96 Состав, порядок разработки и согласования проектной документации в строительстве РМ 4−224−89 Требования к выполнению электроустановок систем автоматизации в пожароопасных зонах РМ 4−206−95 Спецификация оборудования. Указания по выполнению ПУЭ Правила устройства электроустановок Строительные нормы и правила СНиП 3.05.07−85 Система автоматизации СНиП 3.05.06−85 Электротехнические устройства.

2.3 Основные технические решения Проектом предусматривается:

12−30-П-АОВ При автоматизации систем отопления у потребителей подача теплоты обеспечивается путем поддержания регулятором отопления заданного графика температур теплоносителя.

Управление теплоснабжением здания осуществляется с учетом температуры наружного воздуха и динамики ее изменения (учет тепловой энергии здания позволяет выровнять температуру внутри отапливаемых помещений, а так же уменьшает неравномерность нагрузки на тепловую сеть).

2.4 Щиты Щиты автоматизации приняты по ОСТ 36.13−90.

Заземление и питание щитов предусмотрено в электротехнической части проекта Для защиты схем питания, управления и сигнализации проектом предусмотрены автоматические выключатели.

2.5 Электрические и трубные проводки Электрические внешние соединения в помещениях выполняются кабелями марки КВВГ, КММ, ВВГ, прокладываемыми в кабель-каналах ПВХ. В местах возможных механических повреждений кабели защищаются перфоизделиями.

2.6 Зануление В соответствии с ПУЭ занулению подлежат корпуса аппаратов, приборов, каркасы щитов, а также другие нетоковедущие части электроустановок. В качестве нулевых защитных проводников используются свободные жилы контрольных кабелей.

2.7 Техобслуживание и ремонт Обеспечение надежной работы средств автоматизации, а также систем контроля осуществляется соответствующей службой.

2.8 Мероприятия по технике безопасности, охране труда и охране окружающей среды Для безопасности обслуживающего персонала и предупреждения ненормальных режимов работы оборудования предусматривается следующее:

— выбор исполнения аппаратов и приборов, а также вида проводок в соответствии с окружающей средой, централизация ремонта, неприменение приборов с ртутным заполнением, применение специальных приборов и т. п.

Заключение

В данной курсовой работе были изучены основы проектирования и реконструкции схем автоматизации теплового пункта.

Курсовая работа содержала в себе теоретическую и практическую часть. В рамках теоретической части был рассмотрен вопрос используемых микропроцессорных устройств автоматизации систем теплоснабжения. Теоретическая часть позволила ознакомиться с общей характеристикой программно-технического комплекса в целом и отдельными современными микропроцессорными устройствами автоматизации.

В ходе выполнения практической части курсового проекта были рассмотрены основы проектирования схем автоматизации теплового пункта, а именно:

§ Основные принципы проектирования схем автоматизации;

§ Технические условия для проектирования схем теплоснабжения;

§ Нормы и правила проектирования;

§ Основные технические решения проекта;

§ Характеристики объектов управления;

§ Принципы построения электрических схем автоматизации;

В рамках вопроса по реконструкции теплового пункта была произведена замена датчика расхода воды. По условию задания был выбран вихревой расходомер по заданному расходу теплоносителя. В соответствии с характеристиками выбранного датчика, была изменена конфигурация трубопровода в схеме проектирования системы автоматизации теплового пункта.

Курсовая работа позволила изучить теоретический материал и закрепить полученные знания и навыки в области проектирования схем автоматизации систем теплоснабжения.

С развитием цифровых технологий изменился принцип проектирования и эксплуатации ЦТП ввиду того, что:

■ появились программируемые логические контроллеры (ПЛК), которые управляют параметрами теплоносителя в автоматическом режиме, согласно заданным параметрам, без постоянного присутствия дежурного персонала;

■ появились беспроводные средства передачи данных о параметрах теплоносителя и работе оборудования ЦТП на единый пункт диспетчера в режиме реального времени (онлайн).

Качественно новая система диспетчеризации свела к минимуму вероятность возникновения аварийных ситуаций, связанных с человеческим фактором, и минимизировала время на организацию работ по устранению последствий аварий и инцидентов.

Передача параметров теплоносителя в режиме текущего времени и наличие архивов приборов учета тепловой энергии за различные периоды времени устранила спорные моменты хозяйствующих субъектов по качеству поставляемых энергоносителей (для нужд отопления и ГВС). Есть, правда, одно непременное условие: профессиональная подготовка инженерного персонала должна быть достаточно высокой, необходимы, в т.ч., и грамотные IT-специалисты, причем как со стороны заказчика, так и со стороны подрядчика. Ведь за ошибки, связанные с непрофессионализмом при установке и эксплуатации пусть даже самого современного и дорогого оборудования, часто приходится платить гораздо дороже, чем за хорошего специалиста.

Основные моменты, на которые нужно обращать внимание при автоматизации ЦТП:

1. При получении технических условий на проектирование системы автоматизации ЦТП следует обязательно уточнить тепловую нагрузку (реальную или с учетом перспектив), поскольку нередки случаи несоответствия тепловой нагрузки, прописанной в технических условиях, и практических данных (зафиксированных теплосчетчиком), что влечет за собой некорректный выбор проектируемого оборудования.

3. Особое внимание нужно уделить выбору приводов на регулирующие клапаны, при этом лучше отдать предпочтение хорошо зарекомендовавшим себя в работе моделям известных производителей.

4. Главному инженеру проекта следует внимательно просмотреть спецификацию проекта и убедиться, в т.ч., что заложенное импортное оборудование еще не снято с производства и соответствует Техрегламентам РФ и Таможенного союза (ЕАЭС).

5. Следует убедиться в выполнении монтажниками правильного заземления оборудования, согласно проекту, и, в частности, заземления экранирующей оплетки кабелей оборудования КИПиА, соединяющих датчики давления, температуры и др.

6. При проведении пусконаладочных работ следует внимательно контролировать параметры теплоносителя и ГВС (как архивы, так и текущие значения) с целью оптимальной коррекции работы контроллера.

7. При выборе оператора сотовой связи для передачи данных в системе диспетчеризации по каналу GPRS необходимо проверить и оценить уровень сигнала на месте ЦТП (можно даже с помощью простого мобильного телефона).

Задача ПЛК в ЦТП - это управление оборудованием (насосами, регулирующими клапанами, задвижками) для обеспечения заданных параметров теплоносителя и ГВС: опрашивая датчики температуры и давления, поддерживать запрограммированные значения параметров теплоносителя (температуры, давления, расхода), вводить и выводить насосы в работу и в резерв в соответствии с временем наработки или аварийной ситуацией. При возникновении нештатной или аварийной ситуации в автоматическом режиме извещать диспетчера на экране монитора и СМС рассылкой в соответствующие аварийные службы.

Применение ПЛК и специализированных контроллеров позволило повысить качество управления оборудованием тепловых пунктов и параметрами теплоносителя, а применение ЧРП на насосных агрегатах решило проблему избыточного давления теплоносителя на ЦТП и проблему гидроударов при пуске насосов.

Положительная сторона использования свободнопрограммируемых ПЛК широкого профиля - это большие возможности в построении индивидуальных технических решений по каждому конкретному ЦТП, возможность подобрать удобную панель оператора (включая тип экрана TFT LCD), по размерам и техническим возможностям для отображения и корректирования параметров. Свободнопрограммируемые и специализированные ПЛК при правильном использовании показали себя достаточно хорошо в практической работе. Однако для работы с данными ПЛК требуются более опытные программисты.

Шкафы управления ЦТП, собранные на основе ПЛК, используют в своей работе унифицированные датчики температуры и избыточного давления для опроса параметров по температуре и давлению с выходным аналоговым токовым сигналом 4-20 мА.

Исходя из практического опыта, рекомендуется ставить в шкафах управления с блоками ЧРП принудительную вентиляцию.

Относительно недавно появились новые разработки ведущих мировых производителей, такие как сенсорные панели оператора со встроенным ПЛК, имеющие различные размеры экранов (полноцветный сенсорный экран TFT LCD) и различные конфигурации самих контроллеров, более удобные в монтаже, программировании и эксплуатации.

При диспетчеризации ЦТП, кроме организации передачи данных о работе оборудования и параметрах энергоносителей, к GSM модему через маршрутизатор возможно подключение блока охранно-пожарной сигнализации.

Все это дает возможность техническому персоналу правильно оценить работу оборудования и скорректировать настройки, например, температурного графика, а также вовремя среагировать при возникновении нештатной или аварийной ситуации.

Файлы: 1 файл

Если тепловой пункт разрабатывается с зависимым присоединением потребителей и с узлами смешивания, то такое решение должно выглядеть примерно так, как это показано на рис. 3, то есть для каждого вида присоединяемых зависимо систем своя ветка с узлом смешивания, если такой узел требуется.

Расход теплоносителя

Вернемся к узлу ввода в тепловой пункт. О назначении и роли регуляторов разности давления уже было сказано. Теперь следует затронуть тему ограничения расхода сетевого теплоносителя. Применяемые достаточно часто регуляторы разности давления прямого действия, поддерживая постоянную заданную разность давлений сетевого теплоносителя и стабильность сопротивления оборудования теплового пункта по отношению к тепловой сети, определенным образом ограничивают расход сетевого теплоносителя, поступающего в тепловой пункт, обеспечивая таким образом распределение теплоносителя тепловой сети по потребителям согласно расчету.

Тем не менее, такого ограничения может быть недостаточно в случаях отклонения наружной температуры воздуха от расчетных значений в сторону ее понижения в зимнее время или снижения температуры сетевого теплоносителя по каким-то причинам от значений, требуемых по температурному графику.

Для компенсации недостатка тепловой энергии каждый тепловой пункт будет стремиться получить больше теплоносителя из сети. Регулирующие клапаны будут открываться больше, чем должны при расчетных условиях, для увеличения пропуска количества сетевого теплоносителя, снижая таким образом величину сопротивления оборудования теплового пункта для тепловой сети.

Потребители большего количества тепловой энергии будут в таком случае потреблять больше теплоносителя за счет объектов с меньшим энергопотреблением, учитывая то, что у тепловой сети в определенной мере ограниченные возможности.

В технических условиях теплоснабжающих организаций и в заданиях на проектирование тепловых пунктов часто ставятся условия по ограничению расхода сетевого теплоносителя только для систем отопления. Но это не всегда верно. Это приемлемо в том случае, если доля потребности в тепловой энергии для систем отопления значительно превышает долю потребности в тепловой энергии для других систем теплопотребления, например, для подогрева горячей воды в системе горячего водоснабжения. Но достаточно случаев, тем более, если это какое-то производство, где доля теплопотребления от сети на вентиляцию, на горячее водоснабжение и для других потребителей тепла соизмерима или больше потребности тепла на отопление.

В таком случае ограничивать расход сетевого теплоносителя следует на узле ввода тепловой сети в тепловой пункт. Вместо регулятора разности давлений прямого действия необходимо установить на подающем трубопроводе регулирующий клапан с исполнительным механизмом и два датчика давления – один на подающем трубопроводе после регулирующего клапана, другой – на обратном трубопроводе.

В обычных штатных условиях работы теплового пункта по командам датчиков давления через контроллер воздействием на регулирующий клапан поддерживается заданная разность давлений. В случае необходимости ограничить количество сетевого теплоносителя в пределах, установленных техническими условиями, на регулирующий клапан на узле ввода через контроллер подается команда от узла учета тепловой энергии на запрет перемещения регулирующего клапана по командам датчиков давления и установку его на пропуск максимально допустимого количества теплоносителя из тепловой сети, оговоренного техническими условиями. Распределение сетевого теплоносителя между системами теплового пункта при ограничении расхода будет таким, какое определит динамика систем, поскольку в этом случае системы могут выйти из зон регулирования.

На рис. 3 показана схема для однозонных тепловых пунктов.

Схема для однозонных тепловых пунктов

Во всяком случае, автоматизация систем с двумя или более зонами горячего водоснабжения, отопления, вентиляции и с часто устанавливаемыми в тепловых пунктах насосами хозяйственно-питьевого водоснабжения и противопожарными насосами ничем особым не отличается от автоматизации систем для одной зоны. Здесь только требуется, чтобы разделенные на зоны системы были абсолютно автономны. Зона системы отопления, вентиляции, горячего и холодного водоснабжения определяется разностью давлений между нижней и верхней отметкой зоны. Разность давления в зоне не должна превышать 6 ;кг/м 2 , иначе сантехнические устройства в зоне выйдут из строя. Обычно зона определяется по требуемому давлению в системе горячего и холодного водоснабжения. Учитывая то, что из кранов систем холодного и горячего водоснабжения вода должна вытекать с определенным давлением, то учитывается именно это. Другими словами можно сказать, что жилой дом до 17 этажей – это одна зона, выше 17 этажей до 34 ;этажей – это вторая зона и т. д. Но если дом, например, в 22 этажа, то следует его делить на зоны по 11 этажей. Это позволяет равномерно поддерживать параметры систем в обеих зонах. При проведении зонирования следует также учитывать характеристики насосов.

Так много внимания в разговоре об автоматизации тепловых пунктов отведено технологической части потому, что при проектировании далеко нередки случаи, когда одну группу циркуляционных насосов, подобранную на максимальное давление для второй, а то и для третьей зоны, с помощью различных компенсаторов давления или регуляторов разности давлений пытаются использовать для всех зон. Это категорически недопустимо. Аварийные ситуации в таких случаях неизбежны. Здесь никакая автоматика не поможет.

Для пожаротушения насосы подбираются по зонам в зависимости от требуемого напора струи для тушения пожара. В однозонных системах часто воду для тушения пожаров предусматривается подавать по трубам для холодного водоснабжения. Это не лучший вариант, учитывая то, что давление для тушения пожара должно быть, все-таки, выше, чем просто для холодного водоснабжения, и, если предусмотрено еще и автоматическое включение насосов пожаротушения по падению давления (если система под давлением), то при большом водоразборе на хозяйственно-питьевые нужды возможны ложные команды на включение насосов пожаротушения. Для нескольких зон системы хозяйственно-питьевого водоснабжения и пожаротушения должны быть разделены и пуск насосов пожаротушения должен решаться по требуемым конкретным условиям для здания. Худшие из возможных и допустимых вариантов решений можно принимать как выход из положения только в каких-то обоснованных случаях, причем ориентироваться следует не на цену оборудования – принять что подешевле, а на технические и технологические обстоятельства. Ориентировка на низкие цены может привести в конце концов к увеличению суммарных затрат с учетом затрат на обслуживание и ремонт оборудования.

Включение резервного насоса

Для того чтобы в системе понизить давление и с помощью датчика давления подать команду на отключение отказавшего насоса и на включение резервного, необходимо резко и значительно увеличить потребность в перекачиваемой жидкости, что очень часто невозможно, да и не требуется.

Есть несколько способов ввести в работу резервный насос при отказе любого рабочего из группы насосов, параллельно работающих на общий трубопровод:

- Включение резервного насоса по контролю расхода жидкости за каждым насосом. Этот способ громоздкий, дорогой и далеко не всегда оправданный.

- Включение резервного насоса по контролю усиления крутящего момента на валу двигателя насоса. Некоторыми организациями, выпускающими комплектные насосные установки, такой прием по включению резервного насоса используется.

- Включение резервного насоса по контролю тока нагрузки двигателя.

В любую фазу после пускателя устанавливается реле тока, размыкающий контакт которого, настроенный примерно на 0,4 1 ном. двигателя, подключается в схеме вместо датчика давления или разности давлений.

При штатной работе насоса размыкающий контакт реле тока разомкнут.

При отказе насоса, результатом которого будет работа двигателя на холостом ходу (слетела крыльчатка с вала насоса, срезались пальцы в соединительной муфте, если двигатель и насос соединяются через муфту), размыкающий контакт реле тока замкнется и поступит команда на отключение отказавшего насоса и на включение резервного. Такой способ надежен и удобен, поскольку все решается в щите управления. Не нужно прокладывать контрольные кабели к аппаратуре, устанавливаемой на трубопроводах в обвязке насосов, и чем больше насосов в подобной группе, тем удобнее такой способ.

В настоящее время выпускаются невозвратно- запорные обратные клапаны. То есть при отказе насоса такой клапан захлопывается и остается в таком положении без нерегулируемого пропуска.

При использовании обычного обратного клапана он при отказе насоса захлопнется, поскольку его функция – защитить насос от гидравлического удара и за счет эжекции, создаваемой оставшимися в работе насосами, тарелка обратного клапана отойдет от седловины и давление за отказавшим насосом останется неизменным. То есть датчик давления, если он будет установлен на напорном трубопроводе после насоса, не успеет отреагировать на сброс давления в момент захлопывания обратного клапана. Поэтому если можно подобрать невозвратно-запорный обратный клапан с соответствующим диаметром условного прохода, то для включения резервного насоса можно использовать команду от датчика давления или разности давлений. Но в проекте должно быть указано, что используется именно невозвратно-запорный обратный клапан.

При организации работы насосов следует предусмотреть возможность взаиморезервирования насосов, то есть насосы во время работы должны через некоторое заданное время (сутки, двое и т. д.) автоматически менять свои функции – резервный, или резервные насосы должны включиться и стать рабочими, а рабочие насосы перейти на режим ожидания, как резервные. Это необходимо для равномерного износа насосов. Порядок включения резервного насоса при отказе рабочего сохраняется в любом случае, даже если резервный насос только что был рабочим.

Следует иметь в виду, что разработка систем теплового пункта должна выполняться на реальную, вводимую в эксплуатацию нагрузку. Это касается любых систем, не только теплового пункта. То есть если разрабатывается центральный тепловой пункт и при этом предполагается ввести в эксплуатацию в ближайшее время только часть предполагаемой тепловой нагрузки, то системы центрального теплового пункта должны разрабатываться именно для этой части тепловой нагрузки. Для оставшейся предполагаемой тепловой нагрузки, которая будет вводиться в эксплуатацию значительно позже, потребуется свой расчет и свое место для оборудования в помещении центрального теплового пункта. Это очень важно. Мало того, что автоматического регулирования заданных регулируемых параметров просто не будет из-за несоответствия реальной тепловой нагрузки возможностям оборудования, но и увеличится вероятность аварийных ситуаций. Если предполагается значительный временной интервал между вводом в эксплуатацию различных тепловых нагрузок, то лучше предусматривать индивидуальные тепловые пункты в строящихся и вводимых в эксплуатацию зданиях и сооружениях.

Назначение и определение тепловых пунктов

В недавнем прошлом существовали центральные тепловые пункты для группы зданий и сооружений. В каждом из этих зданий и сооружений размещались узлы теплового ввода и распределения теплоносителя по потребителям этих зданий и сооружений, которые назывались индивидуальными тепловыми пунктами.

Читайте также: