Автоматическое регулирование возбуждения реферат

Обновлено: 08.07.2024

Основным назначением автоматического регулирования возбуждения (АРВ) является повышение устойчивости параллельной работы генераторов при нарушениях нормального режима. В этих условиях АРВ, реагируя на сравнительно небольшие отклонения напряжения (или тока) генератора от нормального значения, значительно увеличивают (форсируют) возбуждение генераторов. При увеличении (особенно форсировке) возбуждения до потолочного значения, увеличивается ЭДС генератора, что способствует повыше­нию предела устойчивости генератора.

Форсировка возбуждения генераторов облегчает и ускоряет процесс восстановления напряжения на шинах после отключения КЗ, что способствует также быстрому самозапуску электродвигателей.

В нормальных условиях АРВ обеспечивают поддержание заданного уровня напряжения и необходимое распределение реактивной нагрузки между параллельно работающими генераторами.

Все автоматические регуляторы возбуждения (АРВ), применяемые на синхронных генераторах, различаются по параметру, на который они реагируют, по способу воздействия на систему возбуждения генератора и под­разделяются на три основные группы.

К первой группе относятся электромеханические АРВ. Эти АРВ реагируют на отклонение напряжения генератора от заданного значения (уставки) и воздействуют на изменение сопротивления в цепи обмотки возбуждения возбудителя. К таким АРВ относятся ранее широко применявшиеся регуляторы напряжения реостатного и вибрационного типов.

Ко второй группе относятся электрические АРВ. Эти АРВ реагируют на отклонение напряжения или тока генератора от заданного значения и подают дополнительный выпрямленный ток в обмотку возбуждения возбудителя от внешних источников питания (трансформаторов тока, напряжения или собственных нужд).

К третьей группе относятся также АРВ, применяемые в основном с выпрямительными системами возбуждения: высокочастотной, тиристорной, бесщёточной. В отличие от АРВ первой и второй группы, эти АРВ не имеют собственных силовых органов (внешних источников питания), а только управляют работой возбудителей.


Простейшим автоматическим устройством, предназначенным для быстрого увеличения возбуждения генератора в аварийном режиме, является релейная форсировка возбуждения (реле U

В чем смысл твоей жизни? В рассадах деревьев и постройке дома? Нет, в доброте и любви к людям! © Александр Дьяков ==> читать все изречения.

1. Общие сведения об устройствах автоматического регулирования возбуждения синхронных машин

Напряжение является показателем качества электроэнергии. Отклонение напряжения в ту или иную сторону от номинального значения ухудшает условия работы энергоприемников потребителей: снижается производительность механизмов и КПД установок, сокращается срок службы электрооборудования, появляется брак выпускаемой продукции и прочее. Поэтому в нормальном режиме работы системы электроснабжения допускается отклонение напряжения у потребителей не более чем на ±5% номинального значения. В ненормальном (послеаварийном) режиме работы допускается снижение напряжения не более чем на 10% номинального.

Напряжение зависит от различных факторов, воздействуя на которые, можно поддерживать заданное его значение.

Напряжение на шинах низшего напряжения приемной подстанции (рис.1.1), т.е. на шинах, от которых получают питание потребители:


, (1.1)

где UЭС - напряжение на шинах высшего напряжения электростанции; Р, Q - активная и реактивная мощности, поступающие к подстанции; R, х - активное и реактивное сопротивления линии и трансформатора приемной подстанции; nт - коэффициент трансформации понижающего трансформатора.

Из (1.1) видно, что напряжение UП зависит от напряжения на шинах электрической станции, перетока мощности по ВЛ и коэффициента трансформации трансформатора понижающей подстанции. Следовательно, воздействовать на напряжения у потребителей можно, изменяя: напряжение на шинах электростанции UЭС; реактивную мощность Q, передаваемую по линии; коэффициент трансформации nт трансформатора понижающей подстанции.



Рисунок 1.1 – Схема электроснабжения

Регулировать значение UЭС и изменять значение Q можно путем изменения тока возбуждения генераторов станции, а также синхронных компенсаторов и двигателей системы электроснабжения. Эту задачу выполняют устройства автоматического регулирования возбуждения (АРВ) синхронных машин.

Устройства АРВ могут быть выполнены на основе двух различных принципов автоматического управления. Первый принцип предусматривает создание разомкнутой автоматической системы управления, т.е. системы управления по возмущающему воздействию. Применительно к АРВ синхронных машин это означает, что возбуждение машины автоматически изменяется в зависимости от значения параметра возмущающего воздействия, влияющего на напряжение на зажимах машины. Если, например, в качестве возмущающего воздействия на вход АРВ подается значение тока статора Iст, то АРВ носит название токового компаундирования. Если в качестве возмущающих воздействий учитываются ток статора и фазовый сдвиг тока статора по отношению к напряжению статора, то имеет место фазовое компаундирование синхронной машины.

В соответствии со вторым принципом АРВ выполняется в виде замкнутой автоматической системы управления и представляет собой регулятор по отклонению напряжения, который реагирует на разность фактического и заданного значений напряжения статора синхронной машины и, воздействуя на систему возбуждения машины, стремится свести эту разность к нулю.

АРВ синхронной машины представляет собой, как правило, совокупность устройства компаундирования и регулятора (или корректора) напряжения.

2. Устройство токового компаундирования


Рисунок 2.1 – Принципиальная схема токового компаундирования (а); характеристика компаундирования (б) и внешняя характеристика (в) компаундированной машины.

Напряжение на шинах синхронной машины Uст, работающей с перевозбуждением, т.е. в режиме выдачи реактивной мощности, снижается по мере увеличения тока статора Iст.

Поскольку значение ЭДС Eq пропорционально току возбуждения, то, изменяя в соответствии с изменением тока статора ток ротора машины, можно поддерживать значение Uст приблизительно постоянным независимо от значения тока Iст. Эту задачу и выполняет устройство токового компаундирования (УТК) (рис.2.1), которое состоит из выпрямителя ВК, подключенного через трансформатор Т ко вторичным цепям трансформаторов тока ТТ, установленных в статорной цени регулируемой синхронной машины. Напряжение на выходе Т может изменяться путем изменения установочного сопротивления Ry. Выпрямленное напряжение UK на выходе устройства токового компаундирования, пропорциональное току статора, подводится к обмотке возбуждения овв возбудителя Вб.

Зависимость напряжения UK от тока Iст регулируемой машины может быть представлена следующим образом:


, (2.1)

где К1, nTB - коэффициенты трансформации соответственно ТТ и ТВ; βBK = Uk/Utb - коэффициент преобразования выпрямителя ВК.


,(2.2)

где Rовв - сопротивление овв; IВ,0 - ток в овв, соответствующий холостому ходу синхронной машины, то в обмотке возбуждения возбудителя проходит ток IК от устройства токового компаундирования.

Характеристики синхронной машины (СМ), как элемента электроэнергетической системы (ЭЭС), во многом определяются свойствами ее системы возбуждения, и развитие синхронных машин неизменно сопровождается усовершенствованием возбудительных систем. Ухудшение параметров синхронных машин, обусловленное повышением степени использования активных материалов, в существенной мере компенсируется возрастанием возможностей систем возбуждения.

Содержание

Введение 3
1. Исторические сведения развития систем возбуждения и автоматических регуляторов возбуждения 5
2. Общие сведения о системах возбуждения и автоматических регуляторах возбуждения 8
Заключение 15
Список литературы 16

Вложенные файлы: 1 файл

реферат по теме Системы возбуждения и и автоматические регуляторы возбуждения.doc

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

на тему: Системы возбуждения и автоматические регуляторы возбуждения

Выполнил студент группы ЗЭ – 173

Проверил Бубенчиков А.А.

1. Исторические сведения развития систем возбуждения и автоматических регуляторов возбуждения 5

2. Общие сведения о системах возбуждения и автоматических регуляторах возбуждения 8

Список литературы 16

Стабилизация режимов энергосистемы и демпфирование колебаний осуществляется быстродействующими системами возбуждения, включающими в себя автоматические регуляторы возбуждения (АРВ).

Характеристики синхронной машины (СМ), как элемента электроэнергетической системы (ЭЭС), во многом определяются свойствами ее системы возбуждения, и развитие синхронных машин неизменно сопровождается усовершенствованием возбудительных систем. Ухудшение параметров синхронных машин, обусловленное повышением степени использования активных материалов, в существенной мере компенсируется возрастанием возможностей систем возбуждения.

Автоматическое регулирование возбуждения генераторов зарекомендовало себя эффективным средством повышения уровня статической и динамической устойчивости ЭЭС. Основы современной теории устойчивости были разработаны в трудах выдающихся ученых А.А. Горева, П.С. Жданова, СЛ. Лебедева и позднее развиты отечественными и зарубежными учеными, в ряду которых следует назвать: В.А. Баринова. В.А. Веникова, Г.Р. Герценберга , И.А. Глебова, И.А. Груздева, А.С. Зеккеля, В.Е. Кадггеляна, M.JI Левинштейна, И.В. Литкенс, В.Г. Любарского, А.А. Рагозина, С.А. Совалова, Н.И. Соколова, В.А. Строева, и других.

История развития автоматических регуляторов возбуждения (АРВ) для турбо-, гидрогенераторов и синхронных компенсаторов насчитывает несколько десятилетий. Идеология построения систем регулирования возбуждения начала формироваться в 30-40 годы.

К середине 50-х годов широкий круг теоретических, расчетных и экспериментальных работ по исследованиям статической устойчивости дальних электропередач в режимах, близких к предельным по пропускной способности, и демпферных свойств ЭЭС завершился созданием автоматического регулятора возбуждения сильного действия (АРВ-СД), характеризующегося высокими коэффициентами усиления и наличием в законе регулирования стабилизирующих сигналов по первым и вторым производным режимных параметров, что позволило совместно с системами быстродействующего возбуждения (статическими тиристорными и диодными бесщеточными) обеспечить высокие пределы статической и динамической устойчивости и интенсивное демпфирование качаний в послеаварийных режимах.

Таким образом, анализ существующих в мире типов АРВ показывает, что в их основе лежит единый принцип предусматривающий пропорционально -дифференциальный (ПД) закон регулирования по отклонению напряжения в сочетании с местными отрицательными обратными связями по напряжению и производной тока возбуждения и стабилизацией по производным режимных параметров

Переход к цифровым методам регулирования и использованию микроЭВМ стимулирует поиск новых алгоритмов и структур, в том числе - перестраиваемых [15]. Цифровые АРВ в которых соответствующие алгоритмы управления реализуются программным путем открывают возможности адаптации законов регулирования к условиям работы генератора в конкретных схемах его связи с энергосистемой и режимами работы последней [3,27,45]. Первый цифровой АРВ-СД был создан в 1978 году. Использование новой структуры АРВ, в частности, пропорционально-интегрально- дифференциального (ПИД) закона регулирования напряжения, обусловливает существенное улучшение характеристик данных регуляторов

1. Исторические сведения развития систем возбуждения и автоматических регуляторов возбуждения

Синхронная машина, система возбуждения и автоматический регулятор возбуждения представляют собой единый комплекс, обеспечивающий эффективную работу генераторов и двигателей. На протяжении длительного времени в качестве возбудителя крупных синхронных машин использовались коллекторные генераторы постоянного тока. Они обычно размещались на общем валу с главной машиной. Реже возбудитель входил в состав отдельного агрегата, состоящего из генератора и асинхронного двигателя. Коллекторы генераторов постоянного тока требовали систематического ухода. Генераторы имели значительную электромагнитную инерционность

В послевоенные годы в нашей стране начались пионерские работы по использованию управляемых вентилей вместо механических коммутаторов-коллекторов. Сначала исследования проводились на лабораторных установках, а затем были созданы и проверены в эксплуатации опытно-промышленные ионные возбудители. В Ленэнерго такая установка была выполнена для гидрогенератора мощностью 33 МВ∙А Нижнесвирской ГЭС- Разработка и испытания проходили под руководством И.А. Глебова и С.Ф. Зонова. Авторство и руководство в создании и испытании опытно-промышленной системы ионного возбуждения турбогенератора мощностью 3 МВт на ТЭЦ № 7 Мосэнерго принадлежат Ю.А. Шмайну, Опытно-промышленная установка гидрогенератора мощностью 55 МВт для Рыбинской ГЭС была создана и испытана с участием В.Я. Масольда. В-первых двух установках использовались ртутные вентили — игнитроны, а в третьей — откачные ртутные вентили. В первой и третьей установках выпрямители подключались к вспомогательным синхронным генераторам, а во второй установке — к трансформатору. получавшему питание от сети.

После проведения всесторонних испытаний и накопления опыта эксплуатации в 1957— 1967 гг. начались разработка и создание систем ионного возбуждения для мощных гидрогенераторов ряда ГЭС (Волжские, Братская, Нурекская, Усть-Илимская, Красноярская. Саяно-Шушснская, Ингушская, Канчагайская, Саратовская, Кременчугская, Асуанская) и для турбогенератора мощностью 30 МВт ТЭЦ-16 Мосэнерго, а также для мощных синхронных компенсаторов (75 и 100 МВ∙А).

В связи с высокой кратностью форсирования (предельное напряжение возбуждения равно четырехкратному значению номинального напряжения) и практически безынерционным действием управляемых вентилей был достигнут наиболее высокий уровень динамической устойчивости машин и линий электропередачи.

Наряду с разработками систем возбуждения для гидрогенераторов велись разработки систем ионного возбуждения для синхронных компенсаторов, которые были применены для подстанций на приемном конце линий электропередачи главным образом напряжением 500 кВ.

Широкое внедрение систем возбуждения с управляемыми преобразователями вместо электромашинных возбудителей было осуществлено впервые в мире в нашей стране. В дальнейшем переход на системы возбуждения с управляемыми вентилями был сделан и в зарубежной практике электромашиностроения.

Наибольший вклад в реализацию нового важного технического направления внесли И. А. Глебов (разработка теории, исследования на опытно-промышленной установке и на электродинамической модели); Е.М. Глух, М.А. Смирнитский, Г.В. Чалый, Ю.А. Шмайн, Е.Л. Эттингер (разработка, испытания и исследования на промышленных установках); А.И. Казанцев, Л.С. Флейшман (разработка и создание оборудования); В.Я. Масольд (наладочные работы и испытания на опытно-промышленной установке). Всем указанным специалистам была присуждена Государственная премия СССР за 1968 г.

После освоения полупроводниковых вентилей дальнейшее развитие систем возбуждения гидрогенераторов, турбогенераторов, синхронных компенсаторов и крупных синхронных машин проходило на основе использования кремниевых тиристоров и диодов.

  1. Общие сведения о системах возбуждения и автоматических регуляторах возбуждения.

Системы возбуждения относятся к числу наиболее ответственных элементов генератора. Несмотря на то, что относительная мощность возбудителей невелика и составляет всего 0,4—0,6 % мощности генераторов, их характеристики существенно влияют как на устойчивость работы генераторов, так и на устойчивость двигательной нагрузки собственных нужд электростанции. Последнее очень существенно для обеспечения устойчивости технологического режима мощных блочных станций.
Системы возбуждения должны отвечать следующим общим требованиям: обеспечивать надежное питание обмотки возбуждения синхронного генератора в нормальных и аварийных режимах; допускать регулирование напряжения возбуждения в заданных пределах; обеспечивать быстродействующее автоматическое регулирование возбуждения с высокими кратностями форсирования в аварийных режимах; осуществлять быстрое развозбуждение и в случае необходимости производить гашение поля в аварийных режимах.
Допустимая длительность форсировочного режима с предельным током возбуждения зависит от системы охлаждения генератора и должна быть не меньше 50 с при косвенной системе охлаждения, 30 с при непосредственном охлаждении ротора и косвенном охлаждении статора, 20 с при непосредственном охлаждении ротора и статора.
Системы возбуждения подразделяются на электромашинные и вентильные. В электромашинной системе возбуждения источником постоянного тока является вспомогательный генератор постоянного тока - возбудитель, непосредственно связанный с валом главного синхронного генератора или приводимый независимым двигателем, синхронным или асинхронным. В вентильной системе источником выпрямленного тока являются ртутные или полупроводниковые вентили, получающие питание от вспомогательного или главного синхронного генератора.

В зависимости от источника энергии, используемого для возбуждения, все системы разделяются на системы независимого возбуждения и самовозбуждения. Преимущественное применение нашли схемы независимого возбуждения, в которых используется механическая энергия на валу возбуждаемой синхронной машины. В этом случае возбудитель не связан с сетью системы и возбуждение может осуществляться независимо от режима ее работы.

До недавнего времени у генераторов всех типов наибольшее распространение имела электромашинная система возбуждения с генератором постоянного тока, непосредственно соединенным с валом основной машины. Предельная мощность электромашинных возбудителей при частоте вращения 3000 об/мин составляет 500 кВт. Этого достаточно лишь для возбуждения турбогенераторов с косвенным охлаждением мощностью до 150 МВт и турбогенераторов с непосредственным охлаждением до 100 МВт. Уменьшение частоты вращения до 750 об/мин позволяет повысить предельную мощность возбудителей до 3 МВт, но требует редуктора, что снижает надежность и увеличивает габариты машинного зала. По этой причине электромашинная система возбуждения с редуктором нашла у нас применение лишь на нескольких турбогенераторах мощностью 300 МВт (ТГВ-300 и ТВМ-300).
Электромашинные системы возбуждения снабжаются автоматическим регулятором в виде устройства компаундирования с корректором напряжения, но быстродействие их по сравнению с другими системами является невысоким (кф = 2, постоянная времени возбудителя Тв = 0,3ч-6,0 с). Поэтому такие системы могут быть применены лишь для возбуждения турбогенераторов, к которым не предъявляют повышенных требований в отношении устойчивости.
В настоящее время электромашинные возбудители применяют только на турбогенераторах мощностью до 100 МВт, на гидрогенераторах небольшой мощности и в качестве резервных возбудителей, в том числе и для генераторов с вентильными системами возбуждения.

Полупроводниковая система возбуждения с высокочастотным возбудителем является основной для турбогенераторов серии ТВВ мощностью 165, 200, -300 и 500 МВт. Высокочастотный возбудитель представляет собой сильно компаундированную индукторную машину, возбуждение которой определяется в основном обмоткой: самовозбуждения, включенной последовательно с обмоткой отора генератора.

При переходных процессах свободный ток ротора, протекая по обмотке самовозбуждения, создает необходимый компаундирующий эффект.

Устойчивость работы и регулирование обеспечиваются устройствами автоматического регулирования возбуждения (АРВ) и бесконтактной форсировки (УБФ), включенными на одинаковые независимые обмотки возбуждения высокочастотного возбудителя и представляющими собой двухсистемный корректор. УБФ получает питание от статорной обмотки высокочастотного возбудителя, а устройство АРВ—от высокочастотного подвозбудителя. Подвозбудитель (машина с постоянными магнитами) находится на одном валу с возбудителем и основным генератором.

2 Автоматическое регулирование возбуждения (АРВ) АРВ- это устройства, позволяющие изменять по заданным условиям тока возбуждение электрических машин. Осуществляется на синхронных генераторах, мощных синхронных двигателях, синхронных компенсаторах, на генераторах и двигателях постоянного тока и на других специальных электрических машинах изменением напряжения на обмотке возбуждения. При этом изменяется сила тока возбуждения электрической машины и, как следствие, основной магнитный поток и эдс в обмотках якоря. АРВ синхронных генераторов осуществляется в основном с целью обеспечения заданного напряжения в электрической сети, а также для повышения устойчивости их параллельной работы на общую сеть. АРВ широко применяется в электроприводе постоянного тока для поддержания постоянства частоты вращения рабочего органа машины путём воздействия на ток возбуждения двигателя или питающего генератора. Форсировка возбуждения генераторов облегчает и ускоряет процесс восстановления напряжения на шинах после отключения КЗ, что способствует также быстрому самозапуску электродвигателей. Все автоматические регуляторы возбуждения (АРВ), применяемые на синхронных генераторах, различаются по параметру, на который они реагируют, по способу воздействия на систему возбуждения генератора и подразделяются на три основные группы. К первой группе относятся электромеханические АРВ. Эти АРВ реагируют на отклонение напряжения генератора от заданного значения (уставки) и воздействуют на изменение сопротивления в цепи обмотки возбуждения возбудителя. К таким АРВ относятся ранее широко применявшиеся регуляторы напряжения реостатного и вибрационного типов. Ко второй группе относятся электрические АРВ. Эти АРВ реагируют на отклонение напряжения или тока генератора от заданного значения и подают дополнительный выпрямленный ток в обмотку возбуждения возбудителя от внешних источников питания (трансформаторов тока, напряжения или собственных нужд). 2

5 генератора, благодаря чему напряжение на зажимах статора генератора восстанавливается. Устройство компаундирования успешно работает и в аварийных режимах работы генератора, когда напряжение генератора снижается, а ток в обмотке статора значительно возрастает. В схему компаундирования входят трансформаторы тока ТТ, вторичная обмотка которых включена на промежуточный трансформатор УТП, а также выпрямитель В1, который выпрямляет ток компаундирования перед подачей его в обмотку возбуждения возбудителя ОВВ. Ток компаундирования I к без учета коррекции пропорционален I г. Компаундирование в чистом виде не может обеспечить достаточно точное поддержание напряжения генератора. Поэтому одновременно с регулированием возбуждения по току статора генератора применяется ещё регулирование по напряжению статора. Для введения регулирующего импульса по напряжению трансформатор УТП(универсальный трансформатор с подмагничиванием) оснащается еще двумя обмотками 2 и 4(рис. 4.10, а). Ток в обмотке 2пропорционален U r. Фаза тока I н подобрана так, что ток I н совпадает по фазе с реактивной слагающей тока генератора. Поэтому при чисто активной нагрузке МДС обмоток 1и 2взаимно сдвинуты на 90, а при чисто реактивной нагрузке генератора они совпадают по фазе. Вследствие этого ток компаундирования при неизменных величинах I г и U t получается тем больше, чем ниже cos φ или выше реактивная нагрузка генератора, это так называемое фазовое компаундирование, которое обеспечивает более точное поддержание напряжения, так как ток компаундирования зависит не только от абсолютного значения тока генератора, но и от cos φ. Через обмотку подмагничивания 4 УТП производится окончательная коррекция тока компаундирования относительно заданного значения U r при помощи корректора напряжения. В общем случае в состав корректора напряжения входят два измерительных элемента И1 и И2, включаемых в цепь трансформатора напряжения ТН через установочный автотрансформатор УAT. 5

6 Рис Структурная схема АРВ сильного действия Принцип действия измерительного органа корректора поясняется рис. 4.10, б. Выпрямленный ток I 1 на выходе измерительного элемента И1прямо пропорционален входному напряжению. Поэтому этот элемент называется линейным. Выпрямленный ток I 2 на выходе элемента И2, который называется нелинейным, имеет нелинейную зависимость от входного напряжения (рис. 4.10, б). Оба тока I 1 и I 2 поступают в усилитель У, который реагирует на их разность и усиливает ее. Ток выхода корректора поступает в данном случае в обмотку 4подмагничивания УТП. Из рис. 4.10, б видно, что при снижении напряжения на входе измерительных элементов менее U 1, под действием разности токов (I 1 I 2 ) ток выхода корректора увеличивается. Корректор поддерживает то напряжение генератора, которое соответствует напряжению U 1 на входе измерительных элементов. С помощью автотрансформатора УATможно изменять настройку корректора. Рассмотренная схема АРВ относится к группе регуляторов пропорционального действия, реагирующих на отклонение тока статора и напряжения статора генератора. Разработаны и находятся в эксплуатации регуляторы сильного действия, реагирующие на скорость изменения параметров регулирования или даже на их 6

7 ускорение. Устройство АРВ сильного действия в сочетании с быстродействующими системами возбуждения, имеющими высокие скорости изменения напряжения возбуждения и большие значения потолочного напряжения возбудителя, обеспечивает значительное повышение устойчивости параллельной работы генератора. При этом регулятор будет по-настоящему эффективен, если изменение возбуждения будет производиться не только с учётом изменения напряжения генератора, но и частоты в энергосистеме. Структурная схема АРВ сильного действия приведена на рис Автоматическое регулирование возбуждения состоит из двух основных звеньев: измерительного звена и усилителя-сумматора. В измерительное звено входят: блок измерения напряжения (БИН) и блок измерения частоты (БИЧ). Блок БИН содержит предвключённый элемент блок коррекции тока (БКТ), в котором происходит автоматическая коррекция измеряемого напряжения в зависимости от реактивной составляющей тока генератора. После БКТ сигнал поступает на измерительные элементы (отклонение напряжения) и U' (производная напряжения), выход которых пропорционален указанным величинам. Блок БИЧ имеет измерительные элементы, выход которых пропорционален и f'. Усилитель-сумматор представляет собой двухкаскадный магнитный усилитель, выходной сигнал которого направляется на управление рабочей и форсировочной группами тиристоров быстродействующей системы возбуждения (исполнительный элемент). Для улучшения характеристик АРВ (повышения быстродействия и др.) в схему регулятора обычно вводят обратные связи (ОС). Пункт автоматического регулирования напряжения (ПАРН) Устройство ПАРН рекомендуется применять в условиях сложной эксплуатации высоковольтных электрических линий 6 10 кв трехфазной сети умеренного и сурового климата в котором господствуют: сильный ветер и гололед с интенсивным оледенением проводов, а также при высокой снеговой нагрузке до 250 кгс/м 2. Высокая протяженность воздушных линий электропередач, отражающаяся на качественных показателях электрической энергии и интенсивное присоединение новых 7

9 Блок автоматического регулирования напряжения (БАРН) Устройство используется для регулировки высоковольтного напряжения 6 10 кв в трехфазных электрических сетях с любым видом заземляющей нейтрали и может применяться для любых типов распределительных устройств подстанций, в том числе для установки в местах критического падения напряжения. БАРН способствует повышению пропускной способности как новых, так и уже существующих воздушных линий. Наличие такого оборудования благоприятно сказывается на передаче электроэнергии на большие расстояния и устраняет асимметрию напряжения в электросетях. Рис 2. Вольтодобавочный автрансформатор используемый в комплектации БАРН, оборудованный 32-ступенчатой регулировкой напряжения Принцип работы БАРН происходит за счет геометрического сложения напряжений обмоток. Изменение параметров напряжения происходит при изменении полярности последовательной обмотки, при повышении напряжения полярность меняется, при понижении полярность последовательной и основной обмоток совпадает. Регулировка осуществляется электроникой в шкафу управления, которая подает команду электроприводу, перемещающему переключатель в заданное положение. 9

10 Рис 3. Электрическая схема БАРН Список литературы: 1. Беркович М.А. и др. Автоматика энергосистем: Учеб. для техникумов/ М.А. Беркович, В.А. Гладышев, В.А. Семенов. 3-е изд., перераб. и доп. - М.: Энергоатомиздат, с

Развитие сильного регулирования возбуждения синхронных машин. Принципы форсирования возбуждения при снижении напряжения статора ниже заданной уставки. Типовые узлы регулятора и их сравнительное описание. Устройство и работа блоков регулятора АРВ–СДП1.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 06.02.2020
Размер файла 249,9 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Автоматические регуляторы возбуждения синхронных машин

1. Развитие сильного регулирования возбуждения синхронных машин

На этой первой стадии работ по созданию и внедрению АРВ для каждой новой электростанции разрабатывался по существу новый, более совершенный тип регулятора, поскольку накопленный опыт был еще недостаточен для окончательного выбора принципа действия, схемы и конструкции.

Сутью второй, закончившейся в начале 70-х годов, стадии развития АРВ стало создание унифицированного регулятора АРВ-СД для всех типов синхронных машин (гидро-, турбогенераторов и синхронных компенсаторов) в составе различных типов систем возбуждения (независимых, систем самовозбуждения и бесщеточных) [47]. Серийный выпуск его продолжался до 1983 г.

АРВ-СД осуществлял пропорционально-дифференциальное регулирование напряжения статора с фиксированным коэффициентом по отклонению напряжения, равным 15, 25 или 50 е.в.н./е.н. Стабилизация режима обеспечивалась сигналами изменения и первой производной частоты напряжения статора, а также первой производной

тока ротора. Предусматривался охват возбудителя жесткой (ЖОС) и гибкой (ГОС) обратными связями по напряжению ротора. Наряду с традиционными функциями поддержания напряжения и обеспечения устойчивости регулирования АРВ-СД выполнен также ряд дополнительных функций по защите генератора и автоматизации технологических процессов, тем самым существенно повышая надежность работы основного оборудования. По объему функций и алгоритмическому обеспечению он превосходил зарубежные разработки того времени.

Было разработано достаточно подробное математическое описание регулятора АРВ-СД, выполненного по проектной схеме [55 - 58]. Однако параметры магнитных усилителей имели большой разброс, поэтому на каждом генераторе в процессе наладки регулятора в его схему приходилось вносить изменения в соответствии со специально разработанными рекомендациями [59, 60]. В связи с этим использование стандартного математического описания АРВ-СД не всегда корректно. Для получения достоверных результатов требуется уточнение параметров АРВ-СД конкретной станции. Исходными данными для такого уточнения могут служить статические и частотные характеристики звеньев и каналов регулирования, определенные после внесенных в процессе наладки изменений схемы регулятора. Если частотные характеристики какого-либо элемента регулятора отсутствуют, допустимо использование стандартного математического описания этого элемента с обязательной проверкой интегральных характеристик канала, в который он входит.

Развитие микроэлектронной техники вызвало моральное старение регулятора АРВ-СД. Поэтому в 1977 г. был разработан унифицированный полупроводниковый регулятор возбуждения типа АРВ-СДП [48, 49] на базе полупроводников и интегральных микросхем. Структурно и алгоритмически он повторял АРВ-СД, были также повторены многие узлы прототипа (промежуточные трансформаторы, потенциал-регулятор в блоке уставки и т.д.). Этой переходной моделью были оснащены шесть гидрогенераторов Саяно-Шушенской ГЭС, что позволило накопить опыт эксплуатации полупроводниковой аппаратуры. Затем серийный выпуск был прекращен.

Последним полупроводниковым регулятором аналогового типа стал регулятор АРВ-СДП 1 [41], которым с 1982 г. оснащаются все синхронные генераторы мощностью от 63 МВт и выше. Это по существу компактный, высокотехнологичный специализированный аналоговый измерительно-вычислительный комплекс, дополненный релейной аппаратурой и по своим характеристикам (табл. 4.1) намного превосходящий предыдущие образцы. По сравнению с предшественниками он выполняет большее количество функций, структурно отличается частотно-зависимой характеристикой канала регулирования напряжения, что повышает качество поддержания напряжения, увеличивает устойчивость регулирования и инвариантность настройки к изменению режима работы генератора и сети за счет динамического снижения коэффициента усиления по отклонению напряжения в области частот собственных колебаний.

Читайте также: