Атомная энергетика плюсы и минусы реферат

Обновлено: 05.07.2024

Атомная энергетика - активно развивающаяся отрасль. Очевидно, что ей предназначено большое будущее, так как запасы нефти, газа, угля постепенно иссякают, а уран - достаточно распространенный элемент на Земле. Но следует помнить, что атомная энергетика связана с повышенной опасностью для людей, которая, в частности, проявляется в крайне неблагоприятных последствиях аварий с разрушением атомных реакторов. Насколько опасна ядерная энергетика? Этим вопросом особенно часто стали задаваться в последнее время, особенно после аварий на атомных электростанциях Тримайл-Айленд и Чернобыльской АЭС.

Оглавление

Введение
1.Атомная энергия: за и против
•Невидимый враг
2.Радиация и человек
•Облучение: мина замедленного действия
•Звезда по имени "Полынь"
•Проблемы чернобыльского саркофага
•Атом выходит из-под контроля
•Радиоактивный "мусор"
•Не только радиация
3.Перспективы атомной энергетики
•Безопасность
•Энергетическая безопасность
•Экологичность
Выводы
Список литературы

Файлы: 1 файл

Атомная энергетика за и против.docx

неГОСУДАРСТВЕННОе ОБРАЗОВАТЕЛЬНОе УЧРЕЖДЕНИе ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

студент группы М -10

Ст.преп Правильникова Н.С

  1. Атомная энергия: за и против
  • Невидимый враг
  1. Радиация и человек
  • Облучение: мина замедленного действия
  • Звезда по имени "Полынь"
  • Проблемы чернобыльского саркофага
  • Атом выходит из-под контроля
  • Радиоактивный "мусор"
  • Не только радиация
  1. Перспективы атомной энергетики
  • Безопасность
  • Энергетическая безопасность
  • Экологичность

Опыт прошлого свидетельствует, что проходит не менее 80 лет, прежде чем одни основные источники энергии заменяются другими - дерево заменил уголь, уголь - нефть, нефть - газ, химические виды топлива заменила атомная энергетика. История овладения атомной энергией - от первых опытных экспериментов - насчитывает около 60 лет, когда в 1939г. была открыта реакция деления урана.

Начиная с 1970 г. во многих странах мира осуществляются масштабные программы развития ядерной энергетики. В настоящее время сотни ядерных реакторов работают по всему миру.

Атомная энергетика - активно развивающаяся отрасль. Очевидно, что ей предназначено большое будущее, так как запасы нефти, газа, угля постепенно иссякают, а уран - достаточно распространенный элемент на Земле. Но следует помнить, что атомная энергетика связана с повышенной опасностью для людей, которая, в частности, проявляется в крайне неблагоприятных последствиях аварий с разрушением атомных реакторов. Насколько опасна ядерная энергетика? Этим вопросом особенно часто стали задаваться в последнее время, особенно после аварий на атомных электростанциях Тримайл-Айленд и Чернобыльской АЭС.

Атомная энергия: за и против

Современная цивилизация немыслима без электрической энергии. Выработка и использование электричества увеличивается с каждым годом, но перед человечеством уже маячит призрак грядущего энергетического голода из-за истощения месторождений горючих ископаемых и все больших экологических потерь при получении электроэнергии.
Энергия, выделяющаяся в ядерных реакциях, в миллионы раз выше, чем та, которую дают обычные химические реакции (например, реакция горения), так что теплотворная способность ядерного топлива оказывается неизмеримо большей, чем обычного топлива. Использовать ядерное топливо для выработки электроэнергии -- чрезвычайно заманчивая идея.
Преимущества атомных электростанций (АЭС) перед тепловыми (ТЭЦ) и гидроэлектростанциями (ГЭС) очевидны: нет отходов, газовых выбросов, нет необходимости вести огромные объемы строительства, возводить плотины и хоронить плодородные земли на дне водохранилищ. Пожалуй, более экологичны, чем АЭС, только электростанции, использующие энергию солнечного излучения или ветра.
Но и ветряки, и гелиостанции пока маломощны и не могут обеспечить потребности людей в дешевой электроэнергии - а эта потребность все быстрее растет.
И все же целесообразность строительства и эксплуатации АЭС часто ставят под сомнение из-за вредного воздействия радиоактивных веществ на окружающую среду и человека.

Ответственность за естественную земную радиацию в основном несут три радиоактивных элемента -- уран, торий и актиний. Эти химические элементы нестабильны; распадаясь, они выделяют энергию или становятся источниками ионизирующего излучения. Как правило, при распаде образуется невидимый, не имеющий вкуса и запаха тяжелый газ радон. Он существует в виде двух изотопов: радон--222, член радиоактивного ряда, образуемого продуктами распада урана-238, ирадон-220 (называемый также торон), член радиоактивного ряда тория-232. Радон постоянно образуется в глубинах Земли, накапливается в горных породах, а затем постепенно по трещинам перемещается к поверхности Земли.
Облучение от радона человек очень часто получает, находясь у себя дома или на работе и не подозревая об опасности, -- в закрытом, непроветриваемом помещении, где повышена его концентрация этого газа -- источника радиации.
Радон проникает в дом из грунта -- сквозь трещины в фундаменте и через пол -- и накапливается в основном на нижних этажах жилых и производственных построек. Но известны и такие случаи, когда жилые дома и производственные корпуса возводят непосредственно на старых отвалах горнодобывающих предприятий, где радиоактивные элементы присутствуют в значительных количествах. Если в строительстве производстве применяют такие материалы как гранит, пемза, глинозем, фосфогипс, красный кирпич, кальциево-силикатный шлак, источником радоновой радиации становится материал стен.
Природный газ, используемый в газовых плитах (особенно сжиженный пропан в баллонах) -- тоже потенциальный источник радона. А если воду для бытовых нужд выкачивают из глубоко залегающих водяных пластов, насыщенных радоном, то высокая концентрация радона в воздухе даже при стирке белья!
Кстати, было установлено, что средняя концентрация радона в ванной комнате, как правило, в 40 раз выше, чем в жилых комнатах и в несколько раз выше, чем на кухне.

Радиация и человек

Радиоактивность и радиоактивный фон Земли - естественное явление природы, существовавшее задолго до появления человека. Человечество в процессе эволюции постоянно находилось под влиянием радиации. Поэтому все органы человека содержат какие-либо радиоактивные изотопы. Пока их количество не превышает безопасного предела, оснований для беспокойства нет. Но если уровень радиации повышается, живые организмы оказываются под угрозой.
Впервые испытали на себе действие повышенных доз радиации ученые, исследователи естественной радиоактивности -- Беккерель, Пьер Кюри, Мария Склодовская-Кюри. Когда супруги Кюри в 1901 г. получили из урановой смоляной обманки первые крупицы радия, Анри Беккерелю предстояло выступить на конференции с докладом о свойствах радиоактивных веществ.
Желая продемонстрировать действие излучения радия на флуоресцирующем экране из сульфида цинка, он на время взял в лаборатории пробирку с несколькими кристаллами хлорида бария, содержащего примесь соли радия и целый день носил эту пробирку в кармане жилета. Демонстрация излучения прошла успешно, хотя Беккерель то и дело поворачивался к экрану спиной, и радиевые лучи должны были проникать к сульфиду цинка сквозь его тело. Но через 10 дней на коже Беккереля напротив жилетного кармана появилось красное пятно, а потом - долго не заживающая язва.
Пьер Кюри тоже успел убедиться в коварстве радия. Не подозревая о серьезной опасности, которой подвергается, он прикладывал ампулу с солью нового элемента к руке и получил глубокий ожог с омертвением тканей…
Видные ученые Мари Склодовская-Кюри, Маргерит Пере и многие другие страдали лучевой болезнью, которая стала профессиональным недугом всех радиохимиков. Однако систематическое изучение биологического действия радиации началось намного позже -- после взрывов атомных бомб в Хиросиме и Нагасаки и многочисленных испытаний ядерного оружия.

Облучение: мина замедленного действия

Радиоактивные вещества (радионуклиды) могут попадать в организм через легкие при дыхании, вместе с пищей, или действовать на кожные покровы, так что облучение может быть как внешним, так и внутренним. Радиоактивные стронций и кальций накапливаются в костях, иод - в щитовидной железе, цезий и калий - практически во всех органах и тканях. Как ни странно, эффективность радионуклидов, попавших внутрь организма, в несколько раз меньше эффективности общего внешнего облучения (особенно в том случае, когда они испускают гамма-излучение).
Последствия облучения разнообразны и очень опасны. Наиболее сильное поражение радиацией вызывает лучевую болезнь, которая может привести к гибели человека. Это заболевание проявляется очень быстро - от нескольких минут до суток. Под действием радиации наступают изменения в составе крови: снижение количества лейкоцитов и тромбоцитов. Чем выше доза радиации, тем сильнее ухудшается состав крови больного и увеличивается вероятность смертельного исхода, который при сильном поражении наступает на 1-3 сутки. В этом случае для лечения необходима тяжелая операция -- пересадка костного мозга.
При относительно слабых дозах у облученного человека в последующие годы жизни могут развиться раковые заболевания, ускоренное старение. В результате радиационного поражения плода в утробе матери возникают различные уродства, умственная отсталость детей. Во втором, третьем и последующих поколениях могут появиться разнообразные генетические заболевания. Радиация может вызвать нарушения детородных функций мужчин и женщин, разрушение щитовидной железы, и другие вредные последствия для здоровья человека.
Последствия радиационного поражения могут проявиться через много лет после облучения. Радиация вызывает повреждения хромосом, однако прямых данных о радиационном влиянии на наследственные заболевания человека до сих пор не получено. Во-первых, пока еще мало известно, что именно происходит в генетическом аппарате. Во-вторых, эти эффекты можно оценить лишь на протяжении многих поколений. В-третьих, их невозможно отличить от тех, которые возникают совсем по другим причинам.
Несомненный вред радиации, особенно в высоких дозах, сегодня известен всем. Поэтому при проектировании, строительстве и эксплуатации атомных электростанций полагается уделять максимум внимания вопросам безопасности и экологическим проблемам. Если ситуация на АЭС не выходит из-под контроля, то их вредное влияние на здоровье людей сопоставимо с действием угольных электростанций или удобрений. Оно намного ниже, чем влияние природных источников излучения (таких как космические лучи, некоторые минералы и горные породы, применяемые в строительстве). Кстати, наибольшие дозы облучения человек получает… в поликлинике, при рентгенодиагностике.
Предусматриваются различные меры, направленные на то, чтобы радиоактивный "джинн" не вырвался на волю и не натворил беды. Тем не менее, из-за просчетов проектировщиков и конструкторов атомных реакторов, а порой - из-за роковых ошибок персонала атомных станций происходят аварии - большие и малые. Самая страшная из них произошла совсем недавно -- 26 апреля 1986 г. на Чернобыльской АЭС, расположенной близ границы Украины и Белоруссии.

Звезда по имени "Полынь"

26 апреля 1986 года на четвертом блоке Чернобыльской АЭС произошла авария, которая привела к разрушению активной зоны реактора и части здания, в котором он был расположен. Государственная комиссия провела расследование причин взрыва, и пришла к выводу: авария произошла во время эксперимента, к проведению которого персонал АЭС был не подготовлен. Включение оператором аварийной защиты реактора привело к взрыву…
Сейчас заключение госкомиссии подвергается сомнению, многие независимые эксперты усматривают в нем предвзятость и даже элементы фальсификации. Видимо, никто и никогда не узнает, почему реактор перешел в непредсказуемое состояние, при котором аварийная защита перестала гарантировать остановку ядерной реакции, и что именно заставило оператора нажать злополучную "красную кнопку". Результат - взрыв и пожар, расплавление и распыление радиоактивного "топлива", ужасные последствия для Украины, Белоруссии, соседних европейских стран.
"Третий Ангел вострубил, и упала с неба большая звезда, горящая подобно светильнику, и пала она на третью часть рек и на источники вод. Имя сей звезде "полынь"; и третья часть вод сделалась полынью, и многие из людей умерли от вод, потому что они стали горьки". Таковы строки из Откровения Иоанна Богослова -- "Апокалипсиса". Не о Чернобыльской ли катастрофе сказано в пророчестве? Ведь полынь по-украински -- чернобыль…
В результате чернобыльского взрыва в окружающее пространство было выброшено колоссальное количество радиоактивных веществ. Перемещение в атмосфере радиоактивного облака, осаждение радионуклидов с пылью и дождем, распространение почвенных и поверхностных вод, загрязненных радиоактивными изотопами, -- все это привело к облучению сотен тысяч человек на территории свыше 23 тыс. км 2 .
В самый момент взрыва погиб оператор ЧАЭС Валерий Ходемчук. Ночью 26 апреля он услышал низкий страшный гул в помещении главного циркуляционного насоса и поднялся туда выяснить обстановку. Через несколько минут обломки бетонных блоков стали его надгробием. Несколько десятков пожарных и специалистов - ликвидаторов аварии, работавших на расчистке территории разрушенного четвертого блока станции от обломков графита, радиоактивной пыли и кусков ядерного горючего, -- погибли от острой лучевой болезни. Еще несколько сотен человек были признаны больными острой лучевой болезнью.
С огромными трудностями был построен "саркофаг" - уникальное сооружение из бетона и стали, изолирующее взорвавшийся блок ЧАЭС от окружающей среды. Дезактивация зоны радиоактивного поражения продолжается по сей день, и этой работе не видно конца. Эта зона включает в себя два города (Чернобыль и Припять), около 80 брошенных сел с домами, фермами, мастерскими, сельскохозяйственной техникой. В зоне находятся 800 "могильников", где похоронены" автомобили, трактора, бульдозеры, экскаваторы и даже танки, набравшие такие дозы радиации, что их уже невозможно дезактивировать.
Люди, подвергшиеся облучению в результате Чернобыльской аварии, теряют здоровье и страдают от множества болезней, вызванных не только радиацией, но и психологическим шоком. Они нуждаются в помощи, но этому мешают многочисленные экономические проблемы, осложняющие жизнь теперь уже независимых Белоруссии, России и Украины, в наибольшей степени ощутивших на себе последствия Чернобыля.

Проблемы чернобыльского саркофага

"Саркофаг", возведенный над (точнее, вокруг) четвертого блока ЧАЭС, уже в 1991 г. выдержал серьезный экзамен на прочность - 3-х-балльное землетрясение. А сейчас стало ясно, что сооружение это вовсе не герметичное, на некоторых его участках радиация начинает выбираться наружу.
И все-таки 150 человек, которые постоянно работают здесь, не только укрепили полуразрушенное здание, но и изучили его "начинку" - выявили несколько критических зон, где то и дело возобновляется разогрев атомного горючего (а значит, идет цепная ядерная реакция).
Возведенный почти вслепую, одновременно с проектированием, в жесточайшей радиационной обстановке, "саркофаг" -- объект с официальным названием "Укрытие" -- страдает от множества бед. Одна из них – радиоактивная пыль.
Весной и летом печально знаменитого года аварии вертолетчики сбросили в жерло горящего реактора 1800 т песка и глины, 2400 т свинца, 800 т доломита, 40 т карбида бора. Все это смешалось с распыленным ядерным топливом и превратилось в радиоактивную пыль, которую полагается смывать водой. Но вода - это еще одна беда "Укрытия". В подвалах, машинном зале и других помещениях ее накопилось несколько тысяч кубометров. И это не просто вода, а концентрированный раствор радиоактивных солей, который может излиться наружу и затопить окрестности.
Самая главная беда "саркофага" и его загадка -- состояние атомного горючего. В момент аварии в реакторе находилось 205 т урана, проработавшего после загрузки всего 865 дней. Сколько осталось после взрыва и пожара, когда температура достигала 7 тыс. градусов? Сколько урана расплавилось, какая его доля унесена в виде радиоактивной пыли?
Вот те проблемы, которые предстоит решать специалистам, инженерам-физикам в ближайшие годы.

Атом выходит из-под контроля

Содержание
Вложенные файлы: 1 файл

Даклад на физику.docx

Областное государственное автономное образовательное учреждение

среднего профессионального образования

"Валуйский индустриальный техникум"

Доклад по физике

Выполнил: студент 2 Т.А группы

Косякин Б.П.
Проверил преподаватель физики:

  1. Вступление
  2. Ядерная энергетика
  3. Плюсы
  4. Минусы
  5. ЛИТЕРАТУРА

Ядерная энергетика (Атомная энергетика) — это отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии.

Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер урана-235 или плутония. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло.

Хотя в любой области энергетики первичным источником является ядерная энергия (например, энергия солнечных ядерных реакций в гидроэлектростанциях и электростанциях, работающих на органическом топливе, энергия радиоактивного распада в геотермальных электростанциях), к ядерной энергетике относится лишь использование управляемых реакций в ядерных реакторах.

Безусловно, основными плюсами атомной энергетики является крайне высокая рентабельность и отсутствие выбросов в атмосферу. За последние полвека по всему миру построено более 400 энергоблоков в 26 различных странах.

Выгода в производстве энергии налицо – если для электростанции мощностью до 1 млн. кВатт требуется до 5 млн. тонн угля, то для аналогичной ядерной станции понадобится всего лишь 30 тонн обогащённого урана.

Производство ядерной энергии не требует кислорода, поскольку отсутствует сам процесс сжигания чего-либо, а значит – отсутствую и выбросы в атмосферу. Для сравнения – тепловые электростанции производят до четверти всех вредных выбросов в атмосферу (в частности в России).

Казалось бы, одни плюсы. Но почему же тогда некоторые страны стараются сейчас постепенно отказываться от атомной энергетики, я постараюсь в краце описать в пункте минусы.

Сейчас в мире много людей не задумываются, что те ресурсы, которые добывают страны, имеют большие последствие, не только для страны, но и для мира! В последствия входят экология например пары дыма входящие в атмосферу, сливы в океаны, моря, реки (от туда всякие мутанты русалки и т.д) , и радиация асевщая на землю пример Чернобыль. Вывод: а самое интересное куда мы будем в будущем девать урановые стержни, атомные станции когда они отработают сваё, об этом учёные создавшие это, не задумывались вовсе о будущем мира, большой минус учёным!

aes40000

Атомная энергетика в основном ассоциируется с Чернобыльской катастрофой, случившейся в 1986 году. Тогда весь мир был потрясен последствиями взрыва атомного реактора, в результате чего тысячи людей получили серьезные проблемы со здоровьем или погибли. Тысячи гектаров загрязненной территории, на которой нельзя жить, работать и выращивать урожай или же экологический способ добывания энергии, который станет шагом в светлое будущее для миллионов людей?

Плюсы атомной энергетики

АЭС

Строительство атомных электростанций остается прибыльными за счет минимальных расходов на производство энергии. Как известно для работы ТЭС нужен уголь, причем ежедневно его расход составляет около миллиона тонн. К себестоимости угля добавляются расходы на транспортировку топлива, что также стоит немало. Что же касается АЭС это обогащенный уран, в связи с чем происходит экономия и на расходы на транспортировку топлива и на его покупку.

Также нельзя не отметить экологичность работы АЭС, ведь долгое время считалось, что именно атомная энергетика положит конец загрязнению окружающей среды. Города, которые строятся вокруг атомных станций, экологически чистые, так как работа реакторов не сопровождается постоянным выбросом вредных веществ в атмосферу, к тому же использование ядерного топлива не требует кислорода. Как результат, экологическая катастрофа городов может страдать только от выхлопных газов и работы других промышленных объектов.

Специалист на АЭС

Экономия средств в данном случае происходит и за счет того, что не требуется строить очистные сооружения для уменьшения выбросов продуктов сгорания в окружающую среду. Проблема с загрязнением больших городов на сегодняшний день становится все более актуальной, так как нередко уровень загрязнения в городах, в которых построены ТЭС, превышает в 2 – 2,5 раза критические показатели загрязнения воздуха серой, золовой пыли, альдегидами, оксидами углерода и азотом.

Чернобыльская катастрофа стала большим уроком для мирового сообщества в связи с чем можно сказать о том, что работа атомных электростанций с каждым годом становится все безопаснее. Практически на всех АЭС были установлены дополнительные меры безопасности, которые во много раз уменьшили возможность того, что произойдет авария, подобная Чернобыльской катастрофе. Реакторы типа Чернобыльского РБМК были заменены реакторами нового поколения, имеющими повышенную безопасность.

Минусы атомной энергетики

Самым главным минусом атомной энергетики является память о том, как почти 30 лет тому назад на реакторе ЧАЭС, взрыв на котором считался невозможным и практически нереальным, произошла авария, ставшая причиной всемирной трагедии. Случилось так потому что авария коснулась не только СССР, но и всего мира – радиоактивное облако со стороны нынешней Украины пошло сначала в сторону Белоруссии, после Франции, Италии и так достигло США.

Даже мысль о том, что однажды такое может повториться становится причиной того, что множество людей и ученых выступают против строительства новых АЭС. Кстати Чернобыльская катастрофа считается не единственной аварией подобного рода, еще свежи в памяти события аварии в Японии на АЭС Онагава и АЭС Фукусима – 1, на которых в результате мощнейшего землетрясения начался пожар. Он стал причиной расплавления ядерного топлива в реаторе блока № 1, из-за чего началась утечка радиации. Это стало последствием эвакуации населения, которое проживало на расстоянии 10 км от станций.

Кроме того очень остро стоит проблема утилизации радиоактивных отходов, для сооружения могильников нужны большие территории, что является большой проблемой для маленьких стран. Несмотря на то, что отходы битумируются и скрываются за толщей железа и цемента, никто не может с точностью уверить всех в том, что они будут оставаться безопасными для людей много лет. Также не стоит забывать, что утилизация радиоактивных отходов очень дорого обходится, вследствие экономии затрат на остекловывание, сжигание, уплотнение и цементирование радиоактивных отходов, возможны их утечки. При стабильном финансировании и большой территории страны этой проблемы не существует, но этим может похвастаться не каждое государство.

Также стоит отметить, что при работе АЭС, как и на каждом производстве, происходят аварии, что становится причиной выброса радиоактивных отходов в атмосферу, землю и реки. Мельчайшие частицы урана и других изотопов присутствуют в воздухе городов, в которых построены АЭС, что становится причиной отравления окружающей среды.

Выводы

Хотя атомная энергетика остается источником загрязнения и возможных катастроф, все же следует отметить, что ее развитие будет происходить и дальше, хотя бы по той причине, что это дешевый способ получения энергии, а месторождения углеводородного топлива постепенно исчерпываются. В умелых руках атомная энергетика действительно может стать безопасным и экологически чистым способом добывания энергии, однако стоит все же отметить, что большинство катастроф произошло именно по вине человека.

В проблемах, касающихся утилизации радиоактивных отходов, очень важно международное сотрудничество, ведь только оно может дать достаточное финансирование для безопасного и долгосрочного захоронения радиационных отходов и использованного ядерного топлива.

Рекомендуем посмотреть интересный документальный фильм об атомной энергетике:

преимущества и недостатки ядерной энергетики они являются довольно распространенным спором в современном обществе, которое четко делится на два лагеря. Некоторые утверждают, что это надежная и дешевая энергия, в то время как другие предупреждают о бедствиях, которые могут привести к неправильному ее использованию..

Ядерная энергия или атомная энергия получается в процессе ядерного деления, которое состоит в бомбардировке атома урана нейтронами, так что он разделяется на два, выделяя большое количество тепла, которое затем используется для выработки электричества..


Первая атомная электростанция была открыта в 1956 году в Великобритании. Согласно Castells (2012), в 2000 году было 487 ядерных реакторов, которые производили четверть мирового электричества. В настоящее время на шесть стран (США, Франция, Япония, Германия, Россия и Южная Корея) приходится почти 75% ядерной энергетики (Fernández and González, 2015).

Многие люди думают, что атомная энергия очень опасна из-за известных аварий, таких как Чернобыль или Фукусима. Тем не менее, есть те, кто считает этот тип энергии "чистым", потому что он имеет очень мало выбросов парниковых газов.

  • 1 Преимущества
    • 1.1 Высокая плотность энергии
    • 1.2 Дешевле, чем ископаемое топливо
    • 1.3 Доступность
    • 1.4 Он выделяет меньше парниковых газов, чем ископаемое топливо
    • 1.5 Не хватает места
    • 1.6 генерирует мало отходов
    • 1.7 Технология все еще в разработке
    • 2.1 Уран является невозобновляемым ресурсом
    • 2.2 Не может заменить ископаемое топливо
    • 2.3 Зависит от ископаемого топлива
    • 2.4 Добыча урана вредна для окружающей среды
    • 2.5 Очень стойкие отходы
    • 2.6 Ядерные катастрофы
    • 2.7 Воинственное использование

    выгода


    Высокая плотность энергии

    Уран - это элемент, который обычно используется на атомных станциях для производства электроэнергии. Это свойство хранить огромное количество энергии.

    Один грамм урана равен 18 литрам бензина, а один килограмм дает примерно ту же энергию, что и 100 тонн угля (Castells, 2012).

    Дешевле, чем ископаемое топливо

    В принципе, стоимость урана, кажется, намного дороже, чем нефть или бензин, но если принять во внимание, что для выработки значительного количества энергии требуются лишь небольшие количества этого элемента, в конечном итоге стоимость становится ниже, чем это ископаемого топлива.

    доступность


    Атомная электростанция обладает способностью работать постоянно, 24 часа в сутки, 365 дней в году, чтобы снабжать город электричеством; это благодаря периоду заправки это каждый год или 6 месяцев в зависимости от завода.

    Другие виды энергии зависят от постоянного запаса топлива (например, угольные электростанции) или периодически или ограничены климатом (например, возобновляемые источники).

    Он выделяет меньше парниковых газов, чем ископаемое топливо


    Атомная энергия может помочь правительствам выполнить свои обязательства по сокращению выбросов парниковых газов. Процесс эксплуатации на атомной станции не выделяет парниковых газов, поскольку не требует использования ископаемого топлива..

    Тем не менее, выбросы происходят в течение всего жизненного цикла установки; строительство, эксплуатация, добыча и переработка урана и демонтаж АЭС. (Sovacool, 2008).

    Из наиболее важных исследований, проведенных для оценки количества CO2, выделяемого в результате ядерной деятельности, среднее значение составляет 66 г CO2e / кВтч. Это значение выбросов больше, чем у других возобновляемых ресурсов, но все же ниже, чем у ископаемых видов топлива (Sovacool, 2008).

    Не хватает места

    Атомной установке требуется мало места по сравнению с другими видами энергетической деятельности; для установки ректора и градирен требуется лишь относительно небольшой участок земли.

    Напротив, для деятельности в области ветровой и солнечной энергии потребовалась бы большая земля для производства той же энергии, что и для атомной электростанции, в течение всего срока ее полезного использования.

    Создает мало отходов

    Отходы, образующиеся на атомной электростанции, чрезвычайно опасны и вредны для окружающей среды. Тем не менее, количество относительно мало по сравнению с другими видами деятельности, и используются адекватные меры безопасности, которые могут оставаться изолированными от окружающей среды, не представляя никакого риска.

    Технология все еще в разработке

    Есть еще много нерешенных проблем, связанных с атомной энергией. Однако в дополнение к делению существует еще один процесс, называемый ядерным синтезом, который включает в себя соединение двух простых атомов вместе с образованием тяжелого атома..

    Развитие ядерного синтеза направлено на использование двух атомов водорода для производства одного из гелия и генерации энергии, это та же самая реакция, которая происходит на солнце.

    Для осуществления ядерного синтеза требуются очень высокие температуры и мощная система охлаждения, которая создает серьезные технические трудности и все еще находится на стадии разработки..

    В случае его реализации это будет означать более чистый источник, поскольку он не будет производить радиоактивные отходы, а также будет генерировать гораздо больше энергии, чем в настоящее время производится путем деления урана..

    недостатки


    Уран является невозобновляемым ресурсом

    Исторические данные из многих стран показывают, что в среднем не более 50-70% урана может быть извлечено в шахте, поскольку концентрации урана менее 0,01% более не являются жизнеспособными, поскольку для этого требуется перерабатывать большее количество урана. камни и используемая энергия больше, чем она может генерировать на заводе. Кроме того, добыча урана имеет период полураспада при извлечении из месторождения 10 ± 2 года (Dittmar, 2013).

    Dittmar предложил модель в 2013 году для всех существующих урановых рудников и планировал до 2030 года, в которой глобальный пик добычи урана 58 ± 4 тыс. Тонн получается около 2015 года, а затем снижается до максимума 54 ± 5 ​​тыс. Тонн. на 2025 год и максимум на 41 ± 5 ктонов около 2030 года.

    Этого количества больше не будет достаточно для питания существующих и планируемых атомных электростанций в течение следующих 10-20 лет (Рисунок 1).


    Не может заменить ископаемое топливо

    Ядерная энергетика сама по себе не представляет альтернативы нефтяному, газовому и угольному топливу, поскольку для замены 10 тераватио, которые генерируются в мире из ископаемого топлива, потребуется 10 тысяч атомных электростанций. На самом деле в мире всего 486.

    Строительство атомной электростанции требует больших вложений денег и времени, обычно от 5 до 10 лет от начала строительства до запуска, и очень часто задержки происходят на всех новых станциях (Циммерман , 1982).

    Кроме того, период эксплуатации является относительно коротким, приблизительно 30 или 40 лет, и для демонтажа установки требуются дополнительные инвестиции..

    Зависит от ископаемого топлива

    Перспективы, связанные с ядерной энергией, зависят от ископаемого топлива. Ядерный топливный цикл включает в себя не только процесс выработки электроэнергии на станции, но и включает в себя ряд мероприятий, которые варьируются от разведки и эксплуатации урановых рудников до вывода из эксплуатации и вывода из эксплуатации атомной станции..

    Добыча урана вредна для окружающей среды

    Добыча урана - это деятельность, которая очень вредна для окружающей среды, поскольку для получения 1 кг урана необходимо удалить более 190 000 кг земли (Fernández and González, 2015).

    В Соединенных Штатах ресурсы урана в обычных месторождениях, где уран является основным продуктом, оцениваются в 1 600 000 тонн субстрата, из которого они могут извлекаться, извлекая 250 000 тонн урана (Theobald, et al., 1972)

    Уран добывается на поверхности или в недрах, измельчается и затем выщелачивается в серную кислоту (Fthenakis and Kim, 2007). Образующиеся отходы загрязняют почву и воду места радиоактивными элементами и способствуют ухудшению окружающей среды..

    Уран несет значительные риски для здоровья работников, которые его добывают. В 1984 году Самет и его коллеги пришли к выводу, что добыча урана является более серьезным фактором риска развития рака легких, чем курение сигарет..

    Очень стойкие отходы

    Когда завод заканчивает свою деятельность, необходимо начать процесс демонтажа, чтобы гарантировать, что будущие виды использования земли не будут представлять радиологический риск для населения или для окружающей среды..

    Процесс демонтажа состоит из трех уровней, и для того, чтобы земля была свободной от загрязнения, требуется период около 110 лет. (Дорадо, 2008).

    В настоящее время существует около 140 000 тонн радиоактивных отходов без какого-либо надзора, которые были сброшены в период между 1949 и 1982 годами в Атлантическом желобе Великобританией, Бельгией, Голландией, Францией, Швейцарией, Швецией, Германией и Италией (Reinero, 2013, Fernández and González, 2015). Учитывая, что срок полезного использования урана составляет тысячи лет, это представляет риск для будущих поколений..

    Ядерные катастрофы

    Атомные электростанции построены со строгими стандартами безопасности, а их стены сделаны из бетона толщиной в несколько метров, чтобы изолировать радиоактивный материал снаружи.

    Однако невозможно сказать, что они на 100% безопасны. За прошедшие годы произошло несколько аварий, которые на сегодняшний день предполагают, что атомная энергия представляет риск для здоровья и безопасности населения..

    11 марта 2011 года произошло землетрясение силой 9 градусов по шкале Рихтера на восточном побережье Японии, вызвавшее разрушительное цунами. Это нанесло значительный ущерб атомной станции Фукусима-Дайичи, чьи реакторы серьезно пострадали.

    Последующие взрывы внутри реакторов выпустили продукты деления (радионуклиды) в атмосферу. Радионуклиды быстро связывались с атмосферными аэрозолями (Gaffney et al., 2004) и впоследствии путешествовали на большие расстояния по всему миру вместе с воздушными массами из-за большой циркуляции атмосферы. (Лозано и др., 2011).

    В дополнение к этому в океан попало большое количество радиоактивного материала, и по сей день завод в Фукусиме продолжает выпускать загрязненную воду (300 тонн в день) (Fernández and González, 2015).

    Авария на Чернобыльской АЭС произошла 26 апреля 1986 года во время оценки электрической системы управления завода. В результате этой катастрофы на 30 000 человек, живущих рядом с реактором, было облучено около 45 бэр каждый, примерно такой же уровень радиации, как и у выживших после взрыва бомбы в Хиросиме (Zehner, 2012).

    В начальный период после аварии наиболее значительными изотопами, выпущенными с биологической точки зрения, были радиоактивные йоды, в основном йод 131 и другие короткоживущие йодиды (132, 133)..

    Поглощение радиоактивного йода при проглатывании загрязненной пищи и воды и при вдыхании привело к серьезному внутреннему воздействию на щитовидную железу людей.

    В течение 4 лет после аварии медицинские осмотры выявили существенные изменения функционального состояния щитовидной железы у облученных детей, особенно детей в возрасте до 7 лет (Никифоров и Гнепп, 1994)..

    Воинственное использование

    Согласно Fernández and González (2015), очень трудно отделить гражданскую ядерную промышленность от военной, поскольку отходы атомных электростанций, такие как плутоний и обедненный уран, являются сырьем для производства ядерного оружия. Плутоний является основой атомных бомб, а уран используется в снарядах.

    Рост ядерной энергии увеличил способность стран получать уран для ядерного оружия. Хорошо известно, что одним из факторов, побуждающих несколько стран, не имеющих ядерно-энергетических программ, проявить интерес к этой энергии, является основание того, что такие программы могут помочь им в разработке ядерного оружия. (Джейкобсон и Делукки, 2011).

    Масштабное глобальное увеличение объектов ядерной энергетики может подвергнуть мир риску перед лицом возможной ядерной войны или террористической атаки. До настоящего времени разработка или попытка разработки ядерного оружия в таких странах, как Индия, Ирак и Северная Корея, осуществлялась тайно на объектах ядерной энергетики (Jacobson and Delucchi, 2011)..


    Развитие человеческой цивилизации требует все большей и большей энергии, и поиск ее источников становится все актуальнее. Перспективным направлением исследований по этой теме является атомная энергетика, краткая характеристика которой представлена в данной статье.

    Применение атомной энергии

    Суть работы всех современных электростанций (исключение – солнечные) – это преобразование механической энергии вращения вала генератора в электрическую. Энергия же вращения производится по-разному. В гидроэлектростанциях это вращение лопаток гидротурбины, а в ветроэнергетике – вращение лопастей ветрового колеса. Но чаще всего, генераторы вращаются паровыми турбинами, пар для которых производится в паровых котлах.

    Тепло для котлов с начала XXв производилось сжиганием угля или мазута. Добыча этих ископаемых становилась все дороже, а требовалось их все больше. В середине XXв появилась новая возможность получения тепла в гораздо больших объемах с меньшими затратами – использование энергии распада тяжелых элементов. В атомном реакторе происходит управляемая ядерная реакция распада ядер урана с выделением большого количества тепла, которое и служит для выработки электроэнергии.

    Схема атомной электростанции

    Рис. 1. Схема атомной электростанции.

    АЭС в Обнинске

    Рис. 2. АЭС в Обнинске.

    Но разработка реакторов на быстрых нейтронах имеет ряд трудно разрешимых проблем конструктивного и экономического плана, поэтому в настоящее время в мире работает лишь два таких реактора на Белоярской АЭС, остальные страны остановили или заморозили разработки.

    Плюсы и минусы атомной энергетики

    Рассмотрим плюсы и минусы атомной энергетики.

    Работа АЭС имеет огромные возможности для обеспечения человечества энергетическими ресурсами. При работе нет потребления сырья, не требуется работа добывающей промышленности. Не используется кислород воздуха, не выделяются в окружающее пространство вредные и опасные вещества.

    Однако после исчерпания (которое обычно происходит в течении 20-30 лет) отработанное атомное топливо нуждается в утилизации и захоронении. Также утилизации подлежат и все конструкции отработавшего реактора, которые много лет подвергались действию радиации. Уменьшение радиоактивного фона происходит медленно, и места захоронений долгое время будут непригодны для жизни.

    Еще большую опасность представляют аварии с выбросом радиоактивного вещества в окружающее пространство. События, произошедшие в Чернобыле в 1986 г, на Фукусиме в 2011 г привели к радиоактивному загрязнению обширных областей.

    Опасности ядерной энергетики

    Рис. 3. Опасности ядерной энергетики.

    Поэтому, хотя развитию ядерной энергетики альтернативы нет, необходимо помнить, что, как и любое изобретение человечества, она несет в себе не только выгоды, но и угрозы, и принимать меры для их исключения.

    Что мы узнали?

    Первая атомная АЭС была построена в 1954г в Обнинске. Атомная энергия позволяет иметь доступ к большим энергетическим ресурсам, являясь экологически более чистой, чем обычные тепловые электростанции. Однако, ядерное топливо представляет собой большую угрозу в случае аварий, а кроме того, после отработки требует утилизации и захоронения.

    Читайте также: