Атф главная энергетическая валюта клетки реферат

Обновлено: 04.07.2024

Три источника ресинтеза АТФ в клетках организма человека. По-видимому, далекие предки клеток человеческого организма существовали много миллионов лет назад в окружении растительных клеток, которые в избытке снабжали их углеводами, причем кислорода было недостаточно или не было еще вовсе. Именно углеводы — наиболее употребимая для производства энергии в организме составная часть питательных веществ. И хотя большинство клеток человеческого тела приобрело способность использовать в качестве энергетического сырья также белки и жиры, некоторые (например, нервные, красные кровяные, мужские половые) клетки способны производить энергию только за счет окисления углеводов.

Процессы первичного окисления углеводов — вернее, глюкозы, которая и составляет, собственно, основной субстрат окисления в клетках, — происходят непосредственно в цитоплазме: именно там расположены ферментные комплексы, благодаря которым молекула глюкозы частично разрушается, а освободившаяся энергия запасается в виде АТФ. Этот процесс называется гликолиз, он может проходить во всех без исключения клетках организма человека. В результате этой реакции из одной 6-углеродной молекулы глюкозы образуется две 3-углеродные молекулы пировиноградной кислоты и две молекулы АТФ.

Образовавшаяся в результате гликолиза пировиноградная кислота содержит в себе еще много потенциальной химической энергии и может служить субстратом для дальнейшего окисления, но для этого нужны специальные ферменты и кислород. Этот процесс происходит во многих клетках, в которых содержатся специальные органеллы — митохондрии. Внутренняя поверхность мембран митохондрий сложена из крупных липидных и белковых молекул, среди которых большое количество окислительных ферментов. Внутрь митохондрии проникают образовавшиеся в цитоплазме 3-углеродные молекулы — обычно это бывает уксусная кислота (ацетат). Там они включаются в непрерывно идущий цикл реакций, в процессе которых от этих органических молекул поочередно отщепляются атомы углерода и водорода, которые, соединяясь с кислородом, превращаются в углекислый газ и воду. В этих реакциях выделяется большое количество энергии, которая запасается в виде АТФ. Каждая молекула пировиноградной кислоты, пройдя полный цикл окисления в митохондрии, позволяет клетке получить 17 молекул АТФ. Таким образом, полное окисление 1 молекулы глюкозы обеспечивает клетку 2+17x2 = 36 молекулами АТФ. Не менее важно, что в процесс митохондриального окисления могут включаться также жирные кислоты и аминокислоты, т. е. составляющие жиров и белков. Благодаря этой способности митохондрии делают клетку сравнительно независимой от того, какими продуктами питается организм: в любом случае необходимое количество энергии будет добыто.

Некоторая часть энергии запасается в клетке в виде более мелкой и подвижной, чем АТФ, молекулы креатинфосфата (КрФ). Именно эта маленькая молекула может быстро переместиться из одного конца клетки в другой — туда, где в данный момент более всего нужна энергия. КрФ не может сам отдавать энергию на процессы синтеза, мышечного сокращения или проведение нервного импульса: для этого требуется АТФ. Но зато КрФ легко и практически без потерь способен отдать всю заключенную в нем энергию молекуле аденазиндифосфата (АДФ), которая сразу же превращается в АТФ и готова к дальнейшим биохимическим превращениям.

Таким образом, затраченная в ходе функционирования клетки энергия, т.е. АТФ, может возобновляться за счет трех основных процессов: анаэробного (бескислородного) гликолиза, аэробного (с участием кислорода) митохондриального окисления, а также благодаря передаче фосфатной группы от КрФ к АДФ.

Креатинфосфатный источник — самый мощный, поскольку реакция КрФ с АДФ протекает очень быстро. Однако запас КрФ в клетке обычно невелик — например, мышцы могут с максимальным усилием работать за счет КрФ не более 6—7 с. Этого обычно достаточно, чтобы запустить второй по мощности — гликолитический — источник энергии. В этом случае ресурс питательных веществ во много раз больше, но по мере работы происходит все большее напряжение гомеостаза из-за образования молочной кислоты, и если такую работу выполняют крупные мышцы, она не может продолжаться более 1,5—2 мин. Зато за это время почти полностью активируются митохондрии, которые способны сжигать не только глюкозу, но также жирные кислоты, запас которых в организме почти неисчерпаем. Поэтому аэробный митохондриальный источник может работать очень долго, правда, мощность его сравнительно невелика — в 2—3 раза меньше, чем гликолитического источника, и в 5 раз меньше мощности креатинфосфатного.

С возрастом происходит изменение сразу двух важных составляющих энергетического обмена: изменяется соотношение масс тканей, обладающих разной метаболической активностью, а также содержание в этих тканях важнейших окислительных ферментов. В результате энергетический обмен претерпевает достаточно сложные изменения, но в целом его интенсивность с возрастом снижается, причем весьма существенно.

В цитоплазме каждой клетки, а также в митохондриях, хлоро-пластах и ядрах содержится аденозинтрифосфорная кислота (АТФ). Она поставляет энергию для большинства реакций, происходящих в клетке. С помощью АТФ клетка синтезирует новые молекулы белков, углеводов, жиров, избавляется от отходов, осуществляет активный транспорт веществ, биение жгутиков и ресничек и т. д.

Молекула АТФ представляет собой нуклеотид, образованный азотистым основанием аденином, пятиуглеродным сахаром рибо-зой и тремя остатками фосфорной кислоты. Фосфатные группы в молекуле АТф соединены между собой высокоэнергетическими (макроэргическими) связями (в формуле обозначены символом ~):


Связи между фосфатными группами не очень прочные, и при их разрыве выделяется большое количество энергии. В результате гидролитического отщепления от АТФ фосфатной группы образуется аденозиндифосфорная кислота (АДФ) н высвобождается порция энергии:


АДФ также может подвергаться дальнейшему гидролизу с отщеплением еще одной фосфатной группы и выделением второй порции энергии; при этом АДФ преобразуется в аденозин-монофосфат (АМФ), который далее не гидролизуется:


АТФ образуется из АДФ и неорганического фосфата за счет энергии, освобождающейся при окислении органических веществ и в процессе фотосинтеза. Этот процесс называется фосфорили-рованием. При этом должно быть затрачено не менее 40 кДж/моль энергии, которая аккумулируется в макроэргических связях:


Следовательно, основное значение процессов дыхания и фотосинтеза определяется тем, что они поставляют энергию для синтеза АТФ, с участием которой в клетке выполняется большая часть работы.

Таким образом, АТФ — это главный универсальный поставщик энергии в клетках всех живых организмов.

АТФ чрезвычайно быстро обновляется. У человека, например, каждая молекула АТФ расщепляется и вновь восстанавливается 2 400 раз в сутки, так что ее средняя продолжительность жизни менее 1 мин. Синтез АТФ осуществляется главным образом в митохондриях и хлоропластах (частично в цитоплазме). Образовавшаяся здесь АТФ направляется в те участки клетки, где возникает потребность в энергии.

Источник : Н.А. Лемеза Л.В.Камлюк Н.Д. Лисов "Пособие по биологии для поступающих в ВУЗы"

Аденозинтрифосфат, также известный как АТФ, является молекула который несет энергию внутри клеток. Это основная энергетическая валюта клетка и является конечным продуктом процессов фотофосфорилирования (добавление фосфатная группа к молекуле, использующей энергию света), клеточное дыхание, а также ферментация, Все живые существа используют АТФ. Помимо использования в качестве источника энергии, он также используется в передача сигнала пути для клеточной коммуникации и включается в дезоксирибонуклеиновую кислоту (ДНК) во время синтеза ДНК.

Структура АТФ


Функции АТФ

Источник энергии

АТФ является основным носителем энергии, которая используется для всех клеточных активностей. Когда АТФ гидролизуется и превращается в аденозиндифосфат (АДФ), выделяется энергия. Удаление одной фосфатной группы высвобождает 7,3 килокалорий на моль или 30,6 кДж на моль при стандартных условиях. Эта энергия питает все реакции, которые происходят внутри клетки. АДФ также может быть преобразован обратно в АТФ, так что энергия доступна для других клеточных реакций.

АТФ производится несколькими различными способами. Фотофосфорилирование – это метод, специфичный для растений и цианобактерий. Это создание АТФ из АДФ с использованием энергии солнечного света, и происходит во время фотосинтез, АТФ также образуется из процесса клеточного дыхания в митохондрии клетки. Это может быть через аэробного дыхания, который требует кислорода, или анаэробное дыхание, чего нет. Аэробного дыхания производит АТФ (наряду с углекислым газом и водой) из глюкозы и кислорода. Анаэробное дыхание использует химические вещества, кроме кислорода, и этот процесс в основном используется археями и бактерии которые живут в анаэробных условиях. Ферментация является еще одним способом получения АТФ, который не требует кислорода; он отличается от анаэробного дыхания, потому что он не использует цепь переноса электронов, Дрожжи и бактерии являются примерами организмов, которые используют ферментацию для образования АТФ.

Передача сигнала

АТФ является сигнальной молекулой, используемой для клеточной коммуникации. Киназы, которые являются ферментами, которые фосфорилируют молекулы, используют АТФ в качестве источника фосфатных групп. Киназы важны для передачи сигнала, то есть как физический или химический сигнал передается от рецепторов снаружи клетки внутрь клетки. Как только сигнал находится внутри ячейки, ячейка может ответить соответствующим образом. Клеткам могут быть даны сигналы расти, метаболизироваться, дифференцироваться в определенные типы или даже умирать.

Синтез ДНК

Нуклеиновая основа аденина является частью аденозина, молекулы, которая образуется из АТФ и помещается непосредственно в РНК. Другие нуклеиновые основания в РНК, цитозине, гуанине и урациле, аналогично образуются из CTP, GTP и UTP. Аденин также обнаружен в ДНК, и его включение очень похоже, за исключением того, что АТФ превращается в форму дезоксиаденозинтрифосфата (dATP), прежде чем стать частью цепи ДНК.

АТФ, АДФ, АМФ, цАМФ

Другие молекулы связаны с АТФ и имеют сходные названия, такие как аденозиндифосфат (АДФ), аденозинмонофосфат (АМФ) и циклический АМФ (цАМФ). Чтобы избежать путаницы, важно знать некоторые различия между этими молекулами.

Аденозиндифосфат (ADP), который иногда также известен как аденозин пирофосфат (APP), особенно в химии, уже упоминался в этой статье. Он отличается от АТФ, потому что он имеет две фосфатные группы. АТФ становится АДФ с потерей фосфатной группы, и эта реакция высвобождает энергию. Сам ADP формируется из AMP. Цикл между АДФ и АТФ во время клеточного дыхания дает клеткам энергию, необходимую для осуществления клеточной деятельности

Аденозинмонофосфат (AMP), также называемый 5′-адениловой кислотой, имеет только одну фосфатную группу. Эта молекула находится в РНК и содержит аденин, который является частью генетический код, Он может быть получен вместе с АТФ из двух молекул АДФ или путем гидролиза АТФ. Это также сформировано, когда РНК сломана. Он может быть преобразован в мочевую кислоту, которая является компонентом мочи, и выводится через мочевой пузырь.

лагерь

Циклический аденозинмонофосфат (цАМФ) происходит от АТФ и является еще одним мессенджером, используемым для передачи сигнала и активации определенных протеинкиназ. Это можно разбить на AMP. Пути цАМФ могут играть роль в некоторых раковых заболеваниях, таких как карцинома, У бактерий он играет роль в обмене веществ. Когда бактериальная клетка не производит достаточно энергии (например, из-за недостатка глюкозы), возникают высокие уровни цАМФ, и это включает гены, которые используют источники энергии, отличные от глюкозы.

  • Клеточное дыхание – Энергия из питательных веществ преобразуется в АТФ.
  • Передача сигнала – передача сигналов снаружи клетки внутрь.
  • Гидролиз – Разрыв связи в молекуле и расщепление ее на более мелкие молекулы в результате реакции с водой.
  • киназа – Фермент, который переносит фосфатную группу из АТФ в другую молекулу.

викторина

1. Как можно получить АТФ?A. ФерментацияB. Клеточное дыханиеC. фотофосфорилированияD. Все вышеперечисленное

Ответ на вопрос № 1

D верно. АТФ может быть получен с помощью всех этих методов, хотя разные организмы используют разные методы для его производства и не используют все три из этих методов. Вариант B, клеточное дыхание, включает аэробное и анаэробное дыхание.

2. Где производится АТФ в клетке?A. МитохондрииB. ядроC. РибосомыD. Эндоплазматическая сеть

Ответ на вопрос № 2

3. В каком типе генетического материала обнаружен аденин?A. ДНКB. РНКC. И ДНК, и РНКD. Ни ДНК, ни РНК

Ответ на вопрос № 3

С верно. Аденин находится как в ДНК, так и в РНК. В ДНК аденин связывается с тимин в то время как в РНК аденин связывается с урацилом. Когда аденин присоединяется к рибозному сахару, он образует аденозин, который является частью АТФ. Аденозин – это молекула, содержащая аденин в РНК, тогда как в ДНК эта молекула представляет собой дезоксиаденозин (аденин, присоединенный к дезоксирибоза сахар).

Три источника ресинтеза АТФ в клетках организма человека. По-видимому, далекие предки клеток человеческого организма существовали много миллионов лет назад в окружении растительных клеток, которые в избытке снабжали их углеводами, причем кислорода было недостаточно или не было еще вовсе. Именно углеводы — наиболее употребимая для производства энергии в организме составная часть питательных веществ. И хотя большинство клеток человеческого тела приобрело способность использовать в качестве энергетического сырья также белки и жиры, некоторые (например, нервные, красные кровяные, мужские половые) клетки способны производить энергию только за счет окисления углеводов.

Процессы первичного окисления углеводов — вернее, глюкозы, которая и составляет, собственно, основной субстрат окисления в клетках, — происходят непосредственно в цитоплазме: именно там расположены ферментные комплексы, благодаря которым молекула глюкозы частично разрушается, а освободившаяся энергия запасается в виде АТФ. Этот процесс называется гликолиз, он может проходить во всех без исключения клетках организма человека. В результате этой реакции из одной 6-углеродной молекулы глюкозы образуется две 3-углеродные молекулы пировиноградной кислоты и две молекулы АТФ.

Образовавшаяся в результате гликолиза пировиноградная кислота содержит в себе еще много потенциальной химической энергии и может служить субстратом для дальнейшего окисления, но для этого нужны специальные ферменты и кислород. Этот процесс происходит во многих клетках, в которых содержатся специальные органеллы — митохондрии. Внутренняя поверхность мембран митохондрий сложена из крупных липидных и белковых молекул, среди которых большое количество окислительных ферментов. Внутрь митохондрии проникают образовавшиеся в цитоплазме 3-углеродные молекулы — обычно это бывает уксусная кислота (ацетат). Там они включаются в непрерывно идущий цикл реакций, в процессе которых от этих органических молекул поочередно отщепляются атомы углерода и водорода, которые, соединяясь с кислородом, превращаются в углекислый газ и воду. В этих реакциях выделяется большое количество энергии, которая запасается в виде АТФ. Каждая молекула пировиноградной кислоты, пройдя полный цикл окисления в митохондрии, позволяет клетке получить 17 молекул АТФ. Таким образом, полное окисление 1 молекулы глюкозы обеспечивает клетку 2 + 17 х 2 = 36 молекулами АТФ. Не менее важно, что в процесс митохондриального окисления могут включаться также жирные кислоты и аминокислоты, т. е. составляющие жиров и белков. Благодаря этой способности митохондрии делают клетку сравнительно независимой от того, какими продуктами питается организм: в любом случае необходимое количество энергии будет добыто.

Некоторая часть энергии запасается в клетке в виде более мелкой и подвижной, чем АТФ, молекулы креатинфосфата (КрФ). Именно эта маленькая молекула может быстро переместиться из одного конца клетки в другой — туда, где в данный момент более всего нужна энергия. КрФ не может сам отдавать энергию на процессы синтеза, мышечного сокращения или проведение нервного импульса: для этого требуется АТФ. Но зато КрФ легко и практически без потерь способен отдать всю заключенную в нем энергию молекуле аденазиндифосфата (АДФ), которая сразу же превращается в АТФ и готова к дальнейшим биохимическим превращениям.

Таким образом, затраченная в ходе функционирования клетки энергия, т. е. АТФ, может возобновляться за счет трех основных процессов: анаэробного (бескислородного) гликолиза, аэробного (с участием кислорода) митохондриального окисления, а также благодаря передаче фосфатной группы от КрФ к АДФ.

Креатинфосфатный источник — самый мощный, поскольку реакция КрФ с АДФ протекает очень быстро. Однако запас КрФ в клетке обычно невелик — например, мышцы могут с максимальным усилием работать за счет КрФ не более 6–7 с. Этого обычно достаточно, чтобы запустить второй по мощности — гликолитический — источник энергии. В этом случае ресурс питательных веществ во много раз больше, но по мере работы происходит все большее напряжение гомеостаза из-за образования молочной кислоты, и если такую работу выполняют крупные мышцы, она не может продолжаться более 1,5–2 мин. Зато за это время почти полностью активируются митохондрии, которые способны сжигать не только глюкозу, но также жирные кислоты, запас которых в организме почти неисчерпаем. Поэтому аэробный митохондриальный источник может работать очень долго, правда, мощность его сравнительно невелика — в 2–3 раза меньше, чем гликолитического источника, и в 5 раз меньше мощности креатинфосфатного.

С возрастом происходит изменение сразу двух важных составляющих энергетического обмена: изменяется соотношение масс тканей, обладающих разной метаболической активностью, а также содержание в этих тканях важнейших окислительных ферментов. В результате энергетический обмен претерпевает достаточно сложные изменения, но в целом его интенсивность с возрастом снижается, причем весьма существенно.

Читайте также: