Архитектура мультисервисной сети реферат

Обновлено: 05.07.2024

Мультисервисная сеть позволяет оператору любого уровня, на любой территории в масштабах области, города, поселка предоставлять каждому абоненту следующие услуги связи:
многоканальное кабельное телевидение;
высокоскоростной доступ к сети Интернет;
организация каналов видеонаблюдения;
организация сети передачи данных Ethernet;
сбор учетной и телеметрической информации и управление приборами учета для ЖКХ;

Файлы: 1 файл

Мультисервисные сети.docx

Мультисервисная сеть позволяет оператору любого уровня, на любой территории в масштабах области, города, поселка предоставлять каждому абоненту следующие услуги связи:

  • многоканальное кабельное телевидение;
  • высокоскоростной доступ к сети Интернет;
  • организация каналов видеонаблюдения;
  • организация сети передачи данных Ethernet;
  • сбор учетной и телеметрической информации и управление приборами учета для ЖКХ;
  • другие услуги, которые могут потребоваться массовым абонентам.

Схема предлагаемого варианта мультисервисной сети (FTTB)

Отметим основные достоинства такой сети:

  • мультисервисная сеть опционально обеспечивает резервирование передаваемого сигнала до каждого дома в случае разрыва оптического кабеля на любом участке магистрального или квартального кольца. Магистральное и квартальное кольцо имеют минимальное количество заказных ответвителей, ввариваемых в волокна, по которым распространяется оптический сигнал от головной станции. Вследствие этого обеспечивается хороший энергетический запас сигнала в магистральном и каждом квартальном кольце;
  • магистральное и квартальное кольцо имеют минимальное количество заказных ответвителей ввариваемых в волокна, по которым распространяется оптический сигнал от головной станции. Вследствие этого обеспечивается хороший энергетический запас сигнала в магистральном и каждом квартальном кольце;
  • в квартальных кольцах массово используются одинаковые ответвители с разъемными соединениями. В зависимости от количества групповых пунктов связи в квартальном кольце ответвители используемые массового могут быть типа 1х2, 1х3, 1х4, 1х5 - это определяется проектом сети;
  • для строительства мультисервисной сети используется качественное и недорогое активное и пассивное оборудование, характеристики и цены на которое изложены ниже, в соответствующих разделах.

Для строительства мультисервисной сети целесообразно использовать самонесущий оптический кабель, монтаж которого можно производить путем подвеса между домами любыми доступными способами: подвес к стойкам радиофикации, подвес между техническими этажами, подвес между лифтовыми будками и т.п. Такой способ прокладки кабеля позволит наиболее быстро с наименьшими затратами организовать магистральные линии связи и легко расширить их в будущем путем подвеса дополнительного кабеля. Мы рекомендуем использовать для строительства и готовы поставить самонесущие оптические кабели производства предприятия "Инкаб". Расстояние между опорами - не более 150 метров.

Монтаж активного и пассивного оборудования в домах производится в Магистральных, Домовых и Абонентских ящиках устанавливаемых: на технических этажах; в лазах на крышу; в выходах в лифтовые будки; внутри подъездов. Прокладка кабелей внутри домов ведется либо по слаботочным щиткам, либо по собственной распределительной сети построенной с применений пластиковых труб. Питание активного оборудования в домах осуществляется от напряжения 220В, 50Гц от слаботочных щитков.

Мультисервисная сеть — это единая сеть, способная передавать голос, видеоизображения и данные. Основным стимулом появления и развития мультисервисных сетей является стремление уменьшить стоимость владения, поддержать сложные, насыщенные мультимедиа прикладные программы и расширить функциональные возможности сетевого оборудования. Цель данной статьи состоит в представлении возможностей технологий мультисервисных сетей, концепции построения, примеров использования и оборудования, предлагаемого ведущими производителями, — Cisco Systems и 3Com.

Концепция мультисервисности сетей

Концепция мультисервисности содержит несколько аспектов, относящихся к различным сторонам построения сети.

Во-первых, конвергенция загрузки сети, определяющая передачу различных типов трафика в рамках единого формата представления данных. Например, в настоящее время передача аудио- и видеотрафика происходит в основном через сети, ориентированные на коммутацию каналов, а передача данных — по сетям с коммутацией пакетов. Конвергенция загрузки сети определяет тенденцию использования сетей с коммутацией пакетов для передачи и аудио- и видеопотоков, и собственно данных сетей. Однако это не отрицает требования дифференцирования трафика в соответствии с предоставляемым качеством услуг.

Во-вторых, конвергенция протоколов, определяющая переход от множества существующих сетевых протоколов к общему (как правило, IP). В то время как существующие сети предназначены для управления множеством протоколов, таких как IP, IPX, AppleTalk, и одного типа данных, мультисервисные сети ориентируются на единый протокол и различные сервисы, требующиеся для поддержки различных типов трафика.

В-четвертых, конвергенция устройств, определяющая тенденцию построения архитектуры сетевых устройств, способной в рамках единой системы поддерживать разнотипный трафик. Так, коммутатор поддерживает коммутацию Ethernet-пакетов, IP-маршрутизацию и соединения АТМ. Устройства сети могут обрабатывать данные, передаваемые в соответствии с общим протоколом сети (например, IP) и имеющие различные сервисные требования (например, гарантии ширины полосы пропускания, задержку и др.). Кроме того, устройства могут поддерживать как Web-ориентированные приложения, так и пакетную телефонию.

В-пятых, конвергенция приложений, определяющая интеграцию различных функций в рамках единого программного средства. Например, Web-браузер позволяет объединить в рамках одной страницы мультимедиа-данные типа звукового, видеосигнала, графики высокого разрешения и др.

В-шестых, конвергенция технологий выражает стремление к созданию единой общей технологической базы для построения сетей связи, способной удовлетворить требованиям и региональных сетей связи, и локальных вычислительных сетей. Такая база уже существует: например, асинхронная система передачи (АТМ) может использоваться для построения как региональных, так и локальных вычислительных сетей.

В-седьмых, организационная конвергенция, предполагающая централизацию служб сетевых, телекоммуникационных, информационных под управлением менеджеров высшего звена, например, в лице вице-президента. Это обеспечивает необходимые организаторские предпосылки для интегрирования голоса, видеосигнала и данных в единой сети.

Все перечисленные аспекты определяют различные стороны проблемы построения мультисервисных сетей, способных передавать трафик различного типа как в периферийной части сети, так и в ее ядре.

Требования к мультисервисным сетям

Мультисервисные сети позволяют операторам расширить свои сетевые магистрали в направлении предоставления новых сервисов, предлагая дополнительные услуги для широкого круга корпоративных клиентов. Под мультисервисными сетями мы понимаем предоставление разнородных телекоммуникационных услуг по единой инфраструктуре передачи данных.

Когда речь заходит о реализации мультисервисных сетей, обычно подлежат рассмотрению четыре технических вопроса: пропускная способность, задержка, рассинхронизация, управление.

Растущий спрос на новые виды широкополосных передач данных, потребность в доступе к Интернету в условиях жесткой конкуренции вынуждает провайдеров расширять диапазон услуг, снижать расходы на инфраструктуру и прочее. Таким образом, нужна платформа, способная предложить комплексное решение, позволяющее предоставлять широкий спектр услуг: АТМ, Frame Relay, Internet, IP, передачи голоса и видеосигнала с гарантированным качеством обслуживания (QoS) и максимальной готовностью. При этом клиент становится абонентом недорогих и надежных служб от одного поставщика, получает высокоскоростной доступ к Интернету, имеет возможность вносить изменения в набор услуг и служб и оплачивает только один счет.

Что касается проектирования сети, то мультисервисные сети требуют совершенно иного подхода. Доставка видео и голоса должна осуществляться в реальном времени — с необходимостью приоритетности в случае перегрузок транспортной сети. Однако сетевая индустрия никогда не ориентировалась на сети реального времени, данные доставлялись в соответствии с возможностями сети в конкретный промежуток времени.

Архитектура мультисервисной сети

Существует множество вариантов построения мультисервисной сети. Один из них предусматривает построение гомогенной инфраструктуры — это или полностью пакетная, не ориентированная на соединения сеть (типа разделяемых и коммутируемых ЛВС, пакетных региональных сетей связи), или ориентируемые на соединения сети (типа АТМ). Ни одна из перечисленных архитектур в отдельности практически не способна удовлетворить пользователей при построении мультисервисной сети из-за различий в экономических и функциональных требованиях для локальных вычислительных сетей и региональных сетей связи. Мультисервисная сеть, простирающаяся на большие расстояния, должна иметь ядро — региональную сеть связи, — окруженное периферийными локальными вычислительными сетями.

В общем случае, периферийные локальные сети используют различные технологии. Одна сеть может быть основана на коммутируемой Ethernet-технологии (без устройств маршрутизации), другая — на маршрутизируемых сегментах Ethernet-сети, и третья — на технологии АТМ ЛВС.

Ядро сети может быть построено на основе технологий frame relay, асинхронной системы передачи или Internet.

В то время как проблемы с QoS в локальной вычислительной сети можно решить радикальным расширением полосы пропускания, с экономической точки зрения в региональной сети связи это невыполнимо. Поэтому региональные сети связи проектируются с учетом оптимизации использования ресурса для определенного типа трафика.

Для магистралей сети наилучшим решением, обеспечивающим масштабируемую пропускную способность и гарантированное качество услуг QoS, в настоящее время является технология ATM. Многофункциональные коммутаторы АТМ, предоставляя различные интерфейсы для подключения оконечного оборудования, обеспечивают взаимодействие через единую инфраструктуру. С их помощью крупные предприятия также могут объединить трафик различных сетей в единой магистрали, наделив при этом свою сетевую инфраструктуру новыми качествами, которые, скорее всего, потребуются уже в ближайшем будущем.

QoS ни в коем случае нельзя считать единственным условием эффективной поддержки межпользовательской связи в реальном времени. Наличие QoS в сети обеспечивает доставку аудио-, видеоинформации и данных. Необходимо, однако, обеспечить также совместимость с существующими инфраструктурами для передачи голоса и видеоинформации — с коммутируемыми сетями общего доступа учрежденческими АТС (PBX).

В будущем сети для передачи данных сольются с телефонными сетями и различия между ними исчезнут. Это слияние произойдет, когда ATM действительно станет повсеместным. При этом АТС ничем не будет отличаться от сетевого коммутатора ATM. Подавляющее большинство коммутаторов сможет обрабатывать все типы данных и коммутировать любой трафик. Сегодня поставщики и пользователи готовятся к этому будущему, и очертания сети нового типа со временем будут становиться все более четкими.

Оборудование и решения, предлагаемые Cisco Systems

В конце марта 1998 года компания Cisco Systems объявила о начале третьей стадии пятиэтапной стратегии построения сетей с интеграцией различного типа трафика data/voice/video, в конечном счете направленной на охват всех типов оборудования предприятия. Устройства для построения мультисервисных территориально-распределенных сетей позволяют предоставлять комплексные услуги, объединяющие голосовой трафик, потоки данных и Internet на одной управляемой платформе, и по достоинству оценены поставщиками услуг связи и корпоративными клиентами как в России, так и за рубежом.

В итоге программа должна охватывать все вопросы, связанные с построением интегрированных корпоративных сетей и сетей сервис-провайдеров для передачи разнородного трафика — от небольших точек доступа до магистральных сетей, с подключением по выделенным линиям и посредством сетей общего пользования. Первая фаза этой стратегии была представлена в октябре 1997 года на выставке Interop в Париже. Первыми результатами ее реализации стали возможность уменьшения расходов на междугородные телефонные переговоры за счет их переноса на инфраструктуру корпоративной сети и начало интеграции телефонных и вычислительных сетей. Дальнейшие планы Cisco предусматривают внедрение таких решений, как телефония в Интернете и интрасетях, создание центров технической поддержки на основе Web-технологий, использование видеоприложений на рабочем месте. В рамках этой стратегии ведутся работы по передаче голоса по сетям Frame Relay, ATM и IP.

Классификация оборудования, реализующего функции гибкого коммутатора (Softswitch). Проектирование транспортной пакетной сети с использованием технологии NGN. Расчеты абонентских концентраторов и транспортных шлюзов мультисервисной пакетной сети.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 08.04.2011
Размер файла 3,3 M

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Федеральное агентство связи

Сибирский Государственный Университет Телекоммуникаций и Информатики

Выполнила: ст-ка гр. АС-43

Проверил: Битнер В.И

1. Общая архитектура сети NGN

2. Трехуровневая модель NGN

3. Гибкий коммутатор (Softswitch)

3.1 Классификация оборудования, реализующего функции гибкого коммутатора (Softswitch)

4. Проектирование транспортной пакетной сети с использованием технологии NGN

4.1 Исходные данные

4.2 Расчет характеристик абонентских концентраторов и транспортных шлюзов мультисервисной пакетной сети

4.3 Расчет характеристик коммутаторов транспортной сети

4.4 Расчет характеристик Softswitch

4.5 Определение маршрутов передачи потоков информации в транспортной сети

4.6 Выбор типа интерфейса для взаимодействия коммутаторов транспортной сети

Приложение 1. Характеристика выбранного кодека

Идущий в России процесс цифровизации сетей электросвязи охватыватил как сети общего пользования, так и ведомственные и частные сети, которые с переходом к цифровым методам передачи с высокой пропускной способностью, новым системам сигнализации и сетевым концепциям предоставления услуг пользователям все более усложняются. Одно из важнейших направлений цифровизации - модернизация сетей связи общего пользования на основе концепции NGN (Next Generation Network) -- сетей связи следующего поколения.

Основная задача сетей нового поколения заключается в обеспечении взаимодействия существующих и новых телекоммуникационных сетей, поддерживаемых единой инфраструктурой для передачи любых видов информации (голоса, данных, видео).

Под термином “сеть следующего поколения” (NGN) понимают концепцию построения сетей связи, обеспечивающих предоставление неограниченного набора услуг с гибкими возможностями по их управлению, персонализации и созданию новых услуг за счет унификации сетевых решений. В состав NGN входит универсальная транспортная платформа с распределенной коммутацией.

В концепции построения мультисервисной сети нового поколения заложена идея конвергенции (объединения) существующих сетей разных операторов и технологий (ТфОП, сетей мобильной связи и сетей с технологией IP). Конвергенция (Convergence) процесс постепенного сближения различных технологий и служб связи с целью унификации оборудования и расширения функциональных возможностей систем и сетей.

1. Общая архитектура сети NGN

Одним из основных отличий концепции NGN от реализуемых до этого сетевых инфраструктур является переход к принципиально другой функциональной модели. В классической ТфОП основными функциональными элементами являлись узлы доступа и узлы коммутации различного уровня. При этом оборудование узла коммутации решало одновременно несколько задач: коммутацию потоков пользовательской у информации, обработка вызова и предоставление услуг.

Концепция NGN, в первую очередь, характеризуется четким разделением трех уровней соединения в соответствии с их функциональными задачами: для коммутации и передачи речевой информации используется транспортный функциональный уровень, для передачи информации сигнализации -- уровень сигнализации, а предоставление услуг, отличных от базовых, осуществляется со стороны уровня услуг. При этом между уровнями определены интерфейсы, которые являются объектом стандартизации. Получив подобную независимость друг от друга, уровни в дальнейшем могут развиваться самостоятельно. Более того, с точки зрения административного деления сети может ставиться вопрос о том, чтобы услуги различных уровней предоставлялись различными операторами

Второй особенностью инфраструктуры NGN является использование универсальных технологий транспортной сети, базирующихся на технологиях пакетной коммутации. В классических сетях предоставление услуг ТфОП базировалось на технологии коммутации каналов, а предоставление услуг доступа к сетям передачи данных и передачи данных предполагало либо формирование новой транспортной структуры, либо неэффективное использование существующего транспорта сети с коммутацией каналов. Тогда как в сетях NGN пакетные технологии, определенные для передачи данных, используются для предоставления всех видов услуг.

Указанные особенности отличают сети NGN от обычных телефонных и IP-сетей, наиболее широко распространенных в мире телекоммуникаций. Сети NGN, будучи результатом слияния сети интернет и телефонных сетей, объединяют в себе их лучшие черты и обладают следующими характеристиками:

§ Адаптируемость для передачи трафика любого вида, что можно сравнить с адаптируемостью сети интернет в противоположность отсутствию гибкости ТфОП в передаче данных (это особенно важно, если учитывать, что на передачу данных вскоре будет приходиться до 90% телекоммуникационного трафика).

§ Гарантированное качество голосовой связи и критически важных приложений передачи данных. В этом случае сеть NGN обладает надежностью ТфОП в противоположность негарантированному качеству связи сети интернет.

§ Низкая стоимость передачи в расчете на единицу объема информации приближается к стоимости передачи данных в сети интернет, а не ТфОП (общий объем трафика данных и голосового трафика каждый год утраивается).

2. Трехуровневая модель NGN

По своей архитектуре сеть NGN является трехуровневой и состоит из следующих уровней:

уровня управления коммутацией и передачей информации;

уровня услуг и управления услугами.

Задачей уровня управления коммутацией и передачей являются обработка информации сигнализации, маршрутизация вызовов и управление потоками.

Уровень управления услугами содержит функции управления логикой услуг и приложений и представляет собой распределенную вычилительную среду, обеспечивающую:

предоставление инфокоммуникационных услуг;

создание и внедрение новых услуг;

взаимодействие различных услуг.

Трехуровневая модель сети NGN представлена на рисунке 1.

Рисунок 1. Трехуровневая модель NGN

Особенностью технологии NGN являются открытые интерфейсы между транспортным уровнем и уровнем управления коммутацией. Применительно к классической АТС это все равно, что разделить оборудование станции на функциональные блоки, когда один блок реализует функции по обработке сигнализации, маршрутизации вызовов, сбору статистической информации и т. д., а второй блок (или группа блоков) обеспечивает собственно коммутацию несущих каналов. При этом взаимодействие между блоками реализуется при помощи стандартизованных протоколов.

3. Гибкий коммутатор (Softswitch)

Гибкий коммутатор (Softswitch) -- реализует функции по логике обработки вызова, доступу к серверам приложений, доступу к ИСС, сбору статистической информации, тарификации, сигнальному взаимодействию с сетью ТфОП и внутри пакетной сети, управлению установлением соединения и др. Гибкий коммутатор является основным устройством, реализующим функции уровня управления коммутацией и передачей информации.

На рисунке 2 приведен состав компонентов, входящих в Softswitch, и нумерация поддерживаемых протоколов. В таблице 3.1 приведены интерфейсы и протоколы оборудования Softswitch.

Таблица 3.1 Интерфейсы и протоколы оборудования Softswitch

- Ethernet (10 BaseT, 10 BaseF),

- Fast Ethernet (100 BaseTX, 100BaseFX, 100 BaseFL),

- Gigabit Ethernet (1000 BaseTX, 1000 BaseCX, 1000 BaseLX, 1000 BaseLH, 1000 Base SX),

- сети передачи данных (V.10, V.11, V.24, V.28, V.35, X.21, X.21bis, E1ПЦИ),

Автор реферата, не претендуя на исчерпывающее изложение темы, в рамках небольшой работы, поставила своей целью изучение перспективной мультисервисной сети triple-play, которая позволяет пользователям по одному кабелю широкополосного доступа использовать одновременно три сервиса — высокоскоростной доступ в Интернет, кабельное телевидение и телефонную связь. Чтобы понять всю эффективность данной сети, важно рассмотреть какие услуги эта сеть предоставляет, её устройство и выгодность использования. Также хотелось бы осветить как сеть triple-play проникает на российский рынок компьютерных инноваций.

Автор реферата считает данную тему актуальной в современном мере. Три услуги - один провайдер, единый сервисный центр в случае неполадок вместо трех. И при этом пользователь может одновременно смотреть телевизор, работать в сети Интернет и пользоваться телефонной связью.

Triple-play - маркетинговый телекоммуникационный термин, описывающий модель, когда пользователям по одному кабелю широкополосного доступа предоставляется одновременно три сервиса - высокоскоростной доступ в Интернет, кабельное телевидение и телефонная связь.

Сегодня оператор мультисервисной сети, который обеспечивает своим абонентам широкополосное IP-подключение (со скоростью не менее нескольких мегабит в секунду), способен в принципе все три наиболее массовых и привычных сервиса предоставлять одновременно через IP-канал. Технологически такие IP-каналы могут быть разными (на основе xDSL, Ethernet), главное, чтобы они обеспечивали нужную полосу пропускания и были управляемыми с точки зрения качества: поддерживали приоритизацию различных типов трафика, различные уровни обслуживания. Следует отметить, что оператор такой мультисервисной сети не просто воспроизводит старые услуги на новой технологической базе, но и делает их более интересными, качественно иными и обязательно расширяет этот список новыми услугами, которые отсутствовали в традиционных сетях. Например, наряду с телепрограммами (видео) в IP-сети можно вещать и радиопрограммы (аудио), причем с любым качеством, вплоть до многоканального Dolby Stereo Surround 5.1.[1] Сегодня в IP-сети доступны и весьма популярны сетевые компьютерные игры, web-чаты, всевозможные интернет-пейджеры (типа Skype или ICQ). Таким образом, triple play - это, в сущности, маркетинговый термин, подобный NGN( Next Generation Network - сети следующего поколения - мультисервисная сеть связи, ядром которой является опорная IP-сеть, поддерживающая полную или частичную интеграцию услуг передачи речи, данных и мультимедиа), поскольку и в том и в другом случае речь идет об операторской мультисервисной IP-сети, о современных IP-технологиях.

Оператору триединый (как минимум) сервис выгоден: вместо одной услуги он предоставляет несколько, увеличивая свой доход. Более того, для традиционных телефонных операторов это, по сути, единственная возможность вообще выжить на крайне динамичном рынке в условиях сильного снижения доходности голосовых услуг и доминирования мобильных операторов в качестве операторов голосовой связи. Например, в России сегодня уже чуть ли не втрое больше сотовых телефонов, чем проводных.[2]

В данном разделе хотелось бы рассмотреть как может выглядеть операторский комплекс предоставления услуг triple play в широкополосной IP-сети и в чем его отличие, например, от сети кабельного ТВ с поддержкой IP (такой способ широкополосного IP-доступа сегодня довольно популярен).

Во-первых, для triple play нужна собственно широкополосная IP-сеть, т.е. инфраструктура, способная выдерживать нагрузку, создаваемую видеопотоками (это самая большая часть трафика); поддерживать IPmulticast (многоадресная рассылка) для ТВ-вещания; иметь встроенные механизмы управления качеством (приоритизация, трафик-инжиниринг, QoS и т.д.), а также удовлетворять требованиям минимизации времени задержки, джиттера и процента потерь пакетов. Надо заметить, что предоставление в единой IP-сети таких разных по внутренней логике услуг, как доступ в Интернет (к web-сайтам), голосовая (телефонная) связь и ТВ (каждая со своим набором специфических требований к сети), требует очень тщательного планирования и продумывания принципов организации сети и взаимодействия ее элементов на всех уровнях модели OSI.

Схема организации сети Triple Play :





cable plant ADSL 2






Если в нашей сети triple-play есть услуги телефонной связи, и есть услуги теле- и видеовещания, то довольно просто превратить телефонную услугу в услугу видеотелефонии , подключив к абонентскому STB (set-top-box – устройство, которое одним своим интерфейсом подключается к IP-сети, а другим – к телевизору) недорогую USB-камеру и модернизировав ПО на стороне оператора. В традиционных сетях телевещания и телефонии этого сделать нельзя в принципе, в сети кабельного телевидения с поддержкой IP – можно, но не столь изящно, как в сети triple-play, поскольку телевизионная часть КТВ логически никак не связана с ее IP-частью. Логически связать картинку на экране телевизора с телефонным вызовом заметно сложнее. Следует обратить внимание, что наличие такой камеры сразу же дает возможность одновременного предоставления в сети triple- play еще одной услуги – услуги видеонаблюдения, которая в традиционном варианте требует опять же своей собственной инфраструктуры, другими словами – своей собственной проводки и устройств в квартире абонента.

Но ведь видео в IP-сетях – это не только видеотелефония, видеоконференцсвязь и телевидение. Это еще и VoD (Video on Demand (англ. видео по требованию) - видео по запросу, система индивидуальной доставки абоненту телевизионных программ или видеофильмов по кабельной сети с мультимедиа сервера в контейнерах MPEG, AVI, FLV, MKV, QuickTime) и различные услуги на его основе. Художественные и документальные фильмы, видеопрограммы (в том числе и ТВ) могут храниться на сетевых серверах и по запросу абонента воспроизводиться на экране его телевизора. Это означает, с точки зрения оператора, кроме услуги обычного VoD, что уже само по себе неплохо и, очевидно, будет востребовано, потому что не надо ходить в видеопрокаты и магазины, торгующие DVD-дисками и видеокассетами. Фильм можно заказать и посмотреть, не отходя от телевизора, выбрав и оплатив услугу с помощью дистанционного пульта.


Рисунок 1. Возможность размещения видеоматериалов в сети для абонентов

И наконец, услуги на базе одной мультисервисной IP-сети (triple-play, NGN и т.д.) оператор может предлагать очень разным группам пользователей – от частных лиц и предприятий малого и среднего бизнеса до крупных предприятий и организаций. Единая IP-инфраструктура и IP-технологии на базе открытых стандартов делают возможным широчайший спектр услуг, рассчитанных на любые запросы. Это важное отличие IP-технологий от традиционных, где для каждой группы абонентов операторами обычно создавалась, по сути, отдельная инфраструктура.

В России переход к мультисервисным IP-сетям только начинается. Количество операторов, которые строят такие сети и внедряют современные услуги на базе IP-технологий, пока невелико.

Таблица 1. Крупнейшие операторы сети triple-play в России

Название компании

Технология передачи данных

Начало коммерческой эксплуатации проекта

Предположительный показатель ARPU , $ на абонента в месяц

Мультисервисная сеть — это единая сеть, способная передавать голос, видеоизображения и данные. Основным стимулом появления и развития мультисервисных сетей является стремление уменьшить стоимость владения, поддержать сложные, насыщенные мультимедиа прикладные программы и расширить функциональные возможности сетевого оборудования. Цель данной статьи состоит в представлении возможностей технологий мультисервисных сетей, концепции построения, примеров использования и оборудования, предлагаемого ведущими производителями, — Cisco Systems и 3Com.

Концепция мультисервисности сетей

Концепция мультисервисности содержит несколько аспектов, относящихся к различным сторонам построения сети.

Во-первых, конвергенция загрузки сети, определяющая передачу различных типов трафика в рамках единого формата представления данных. Например, в настоящее время передача аудио- и видеотрафика происходит в основном через сети, ориентированные на коммутацию каналов, а передача данных — по сетям с коммутацией пакетов. Конвергенция загрузки сети определяет тенденцию использования сетей с коммутацией пакетов для передачи и аудио- и видеопотоков, и собственно данных сетей. Однако это не отрицает требования дифференцирования трафика в соответствии с предоставляемым качеством услуг.

Во-вторых, конвергенция протоколов, определяющая переход от множества существующих сетевых протоколов к общему (как правило, IP). В то время как существующие сети предназначены для управления множеством протоколов, таких как IP, IPX, AppleTalk, и одного типа данных, мультисервисные сети ориентируются на единый протокол и различные сервисы, требующиеся для поддержки различных типов трафика.

В-четвертых, конвергенция устройств, определяющая тенденцию построения архитектуры сетевых устройств, способной в рамках единой системы поддерживать разнотипный трафик. Так, коммутатор поддерживает коммутацию Ethernet-пакетов, IP-маршрутизацию и соединения АТМ. Устройства сети могут обрабатывать данные, передаваемые в соответствии с общим протоколом сети (например, IP) и имеющие различные сервисные требования (например, гарантии ширины полосы пропускания, задержку и др.). Кроме того, устройства могут поддерживать как Web-ориентированные приложения, так и пакетную телефонию.

В-пятых, конвергенция приложений, определяющая интеграцию различных функций в рамках единого программного средства. Например, Web-браузер позволяет объединить в рамках одной страницы мультимедиа-данные типа звукового, видеосигнала, графики высокого разрешения и др.

В-шестых, конвергенция технологий выражает стремление к созданию единой общей технологической базы для построения сетей связи, способной удовлетворить требованиям и региональных сетей связи, и локальных вычислительных сетей. Такая база уже существует: например, асинхронная система передачи (АТМ) может использоваться для построения как региональных, так и локальных вычислительных сетей.

В-седьмых, организационная конвергенция, предполагающая централизацию служб сетевых, телекоммуникационных, информационных под управлением менеджеров высшего звена, например, в лице вице-президента. Это обеспечивает необходимые организаторские предпосылки для интегрирования голоса, видеосигнала и данных в единой сети.

Все перечисленные аспекты определяют различные стороны проблемы построения мультисервисных сетей, способных передавать трафик различного типа как в периферийной части сети, так и в ее ядре.

Требования к мультисервисным сетям

Мультисервисные сети позволяют операторам расширить свои сетевые магистрали в направлении предоставления новых сервисов, предлагая дополнительные услуги для широкого круга корпоративных клиентов. Под мультисервисными сетями мы понимаем предоставление разнородных телекоммуникационных услуг по единой инфраструктуре передачи данных.

Когда речь заходит о реализации мультисервисных сетей, обычно подлежат рассмотрению четыре технических вопроса: пропускная способность, задержка, рассинхронизация, управление.

Растущий спрос на новые виды широкополосных передач данных, потребность в доступе к Интернету в условиях жесткой конкуренции вынуждает провайдеров расширять диапазон услуг, снижать расходы на инфраструктуру и прочее. Таким образом, нужна платформа, способная предложить комплексное решение, позволяющее предоставлять широкий спектр услуг: АТМ, Frame Relay, Internet, IP, передачи голоса и видеосигнала с гарантированным качеством обслуживания (QoS) и максимальной готовностью. При этом клиент становится абонентом недорогих и надежных служб от одного поставщика, получает высокоскоростной доступ к Интернету, имеет возможность вносить изменения в набор услуг и служб и оплачивает только один счет.

Что касается проектирования сети, то мультисервисные сети требуют совершенно иного подхода. Доставка видео и голоса должна осуществляться в реальном времени — с необходимостью приоритетности в случае перегрузок транспортной сети. Однако сетевая индустрия никогда не ориентировалась на сети реального времени, данные доставлялись в соответствии с возможностями сети в конкретный промежуток времени.

Архитектура мультисервисной сети

Существует множество вариантов построения мультисервисной сети. Один из них предусматривает построение гомогенной инфраструктуры — это или полностью пакетная, не ориентированная на соединения сеть (типа разделяемых и коммутируемых ЛВС, пакетных региональных сетей связи), или ориентируемые на соединения сети (типа АТМ). Ни одна из перечисленных архитектур в отдельности практически не способна удовлетворить пользователей при построении мультисервисной сети из-за различий в экономических и функциональных требованиях для локальных вычислительных сетей и региональных сетей связи. Мультисервисная сеть, простирающаяся на большие расстояния, должна иметь ядро — региональную сеть связи, — окруженное периферийными локальными вычислительными сетями.

В общем случае, периферийные локальные сети используют различные технологии. Одна сеть может быть основана на коммутируемой Ethernet-технологии (без устройств маршрутизации), другая — на маршрутизируемых сегментах Ethernet-сети, и третья — на технологии АТМ ЛВС.

Ядро сети может быть построено на основе технологий frame relay, асинхронной системы передачи или Internet.

В то время как проблемы с QoS в локальной вычислительной сети можно решить радикальным расширением полосы пропускания, с экономической точки зрения в региональной сети связи это невыполнимо. Поэтому региональные сети связи проектируются с учетом оптимизации использования ресурса для определенного типа трафика.

Для магистралей сети наилучшим решением, обеспечивающим масштабируемую пропускную способность и гарантированное качество услуг QoS, в настоящее время является технология ATM. Многофункциональные коммутаторы АТМ, предоставляя различные интерфейсы для подключения оконечного оборудования, обеспечивают взаимодействие через единую инфраструктуру. С их помощью крупные предприятия также могут объединить трафик различных сетей в единой магистрали, наделив при этом свою сетевую инфраструктуру новыми качествами, которые, скорее всего, потребуются уже в ближайшем будущем.

QoS ни в коем случае нельзя считать единственным условием эффективной поддержки межпользовательской связи в реальном времени. Наличие QoS в сети обеспечивает доставку аудио-, видеоинформации и данных. Необходимо, однако, обеспечить также совместимость с существующими инфраструктурами для передачи голоса и видеоинформации — с коммутируемыми сетями общего доступа учрежденческими АТС (PBX).

В будущем сети для передачи данных сольются с телефонными сетями и различия между ними исчезнут. Это слияние произойдет, когда ATM действительно станет повсеместным. При этом АТС ничем не будет отличаться от сетевого коммутатора ATM. Подавляющее большинство коммутаторов сможет обрабатывать все типы данных и коммутировать любой трафик. Сегодня поставщики и пользователи готовятся к этому будущему, и очертания сети нового типа со временем будут становиться все более четкими.

Оборудование и решения, предлагаемые Cisco Systems

В конце марта 1998 года компания Cisco Systems объявила о начале третьей стадии пятиэтапной стратегии построения сетей с интеграцией различного типа трафика data/voice/video, в конечном счете направленной на охват всех типов оборудования предприятия. Устройства для построения мультисервисных территориально-распределенных сетей позволяют предоставлять комплексные услуги, объединяющие голосовой трафик, потоки данных и Internet на одной управляемой платформе, и по достоинству оценены поставщиками услуг связи и корпоративными клиентами как в России, так и за рубежом.

В итоге программа должна охватывать все вопросы, связанные с построением интегрированных корпоративных сетей и сетей сервис-провайдеров для передачи разнородного трафика — от небольших точек доступа до магистральных сетей, с подключением по выделенным линиям и посредством сетей общего пользования. Первая фаза этой стратегии была представлена в октябре 1997 года на выставке Interop в Париже. Первыми результатами ее реализации стали возможность уменьшения расходов на междугородные телефонные переговоры за счет их переноса на инфраструктуру корпоративной сети и начало интеграции телефонных и вычислительных сетей. Дальнейшие планы Cisco предусматривают внедрение таких решений, как телефония в Интернете и интрасетях, создание центров технической поддержки на основе Web-технологий, использование видеоприложений на рабочем месте. В рамках этой стратегии ведутся работы по передаче голоса по сетям Frame Relay, ATM и IP.

На второй стадии программы Cisco предложила ряд продуктов для доступа к глобальным сетям с интегрированными услугами.

В настоящее время в качестве единой транзитной АТС могут работать сети, построенные на базе ATM-коммутаторов Stratacom (устройства BPX, TGX, MGX, IGX) фирмы Cisco, использующих централизованную модель маршрутизации.

Оборудование Cisco Systems линии Stratacom основано на отраслевых стандартах и является масштабируемым. Наличие модификаций шасси различной плотности портов дает возможность выбора наиболее подходящего оборудования для удовлетворения ваших потребностей. Stratacom — это модульная масштабируемая платформа, ориентированная на развитие, обеспечивающая производительность, необходимую для больших сетевых центров.

При развертывании АТМ-сетей неизбежно возникают сложности с сетевым администрированием из-за большого числа соединений, каждое из которых имеет свой определенный уровень сервиса (QoS), а также с оптимальным распределением полосы пропускания для пользователей, планированием ресурсов и т.д. Для решения этих проблем в данном проекте применяется система управления StrataSphere — масштабируемая среда управления для АТМ-систем, позволяющая начать с нескольких узлов и довести их число до нескольких тысяч. Программное обеспечение StrataSphere разработано для управления сложными, территориально распределенными магистральными сетями, построенными на оборудовании StrataCom.

Интегрированный концентратор доступа Cisco MC3810, включенный в семейство MC3800, как и другие продукты этой компании, работает под управлением программного продукта Cisco IOS. Он сочетает в себе возможности многопротокольного маршрутизатора с функциями сжатия, коммутации и высококачественной передачи голоса и видео в сетях Frame Relay и ATM. Это устройство может подключаться к любой стандартной учрежденческой АТС, системе видеоконференций, а также взаимодействовать с другой аппаратурой Cisco. Концентратор MC3810 способен работать со скоростями от 56 Кбит/с до 2,048 Мбит/с, что обеспечивает гибкое развитие сети по мере роста требований заказчика. Поставщики сетевых услуг могут использовать его для предоставления недорогого интегрированного доступа к сетям Frame Relay, постепенно осуществляя миграцию к ATM-соединениям по каналам T1/E1. При этом MC3810 обеспечивает дифференцированные услуги для трафика различных типов, что допускается далеко не всеми устройствами доступа в сети АТМ.

Эффективные алгоритмы сжатия голоса позволяют при его передаче по корпоративным сетям обходиться значительно меньшей полосой пропускания, чем при работе обычных мультиплексоров или коммутируемых телефонных сетей общего пользования. Cisco MC3810 может обслуживать до 24 голосовых каналов со сжатием до 8 Кбит/с при помощи алгоритма G.729 CS-ACELP, обеспечивает подавление эхо-сигнала и поддерживает механизмы повышения эффективности использования полосы пропускания. Благодаря развитым средствам обработки голосовых вызовов его можно применять в качестве местной АТС для небольших офисов. Гибкая программная конфигурация каналов связи позволяет предоставлять услуги Frame Relay, ATM без замены оборудования и значительных перерывов в работе.

Одновременно Cisco модернизировала АТМ-коммутатор StrataCom IGX, обеспечив его совместимость с MC3810 для обмена голосовым трафиком и данными. Этот коммутатор, предназначенный для глобальных сетей, объединяет все виды трафика на одной магистрали. Сочетание IGX/MC3810 позволяет заказчикам реализовать такие возможности, как гарантированное качество обслуживания (QoS) и средства управления трафиком не только на сетевой магистрали, но и в сетях удаленных филиалов компании. Новое ПО коммутатора IGX осуществляет сжатие голосового сигнала в два-восемь раз, обеспечивая устойчивую работу с обычными АТС и значительную экономию полосы пропускания.

Модернизации подвергся и другой АТМ-коммутатор — LightStream 1010, возможности которого в области обслуживания мультимедийных приложений и передачи разнородного трафика теперь расширились. Предусмотренные в нем средства эмуляции каналов также соответствуют возможностям концентраторов доступа серии MC3800. Дополнительные средства управления трафиком включают поддержку раздельных очередей для каждого потока данных и ряд программных усовершенствований. Благодаря им этот коммутатор может поддерживать отдельные контракты на обслуживание для десятков тысяч потоков, обеспечивает функционирование виртуальных частных сетей и позволяет сервис-провайдерам создавать изолированные виртуальные сети. Развитые средства управления трафиком виртуальных частных сетей позволяют выбирать различную степень их интеграции с услугами сетей общего пользования.

Новые и модернизированные продукты, представленные Cisco, расширяют ассортимент ее периферийного оборудования, предназначенного для объединения с телефонными сетями и переноса голосового трафика на инфраструктуру сетевой магистрали. Теперь список этих устройств включает интегрированные концентраторы доступа MC3810, коммутаторы для ЛС серии Catalyst 5500, АТМ-коммутаторы LightStream 1010 и IGX, маршрутизаторы серий 7xx, 3600 и 7200. Для передачи мультимедийного трафика по сетевой магистрали предназначены АТМ-коммутатор StrataCom BPX, маршрутизаторы серии 7500 и гигабитные коммутаторы третьего уровня серии 12 000. Новые возможности, предусмотренные в ПО Cisco IOS, позволяют определить различные классы обслуживания для IP-трафика и организовать управление им на основе приоритетов. Они соответствуют аналогичным механизмам в сетях АТМ и дополняют эти механизмы на уровне традиционных сетей.

Для построения периферийной части сети компания Cisco Systems предлагает универсальные коммутаторы для глобальных сетей BPX 8680 и MGX 8800, способные обеспечить отличную масштабируемость и поддержку разнообразных служб. Что касается служб, то и BPX 8680, и MGX 8800 могут быть добавлены к существующим сетям ATM/Frame Relay. MGX 8800 и, конечно, BPX 8680 поддерживают программное обеспечение Cisco IOS, что гарантирует широкую поддержку IP, наличие функций защиты данных, администрирования и взаимодействия с сетями, уже использующими ПО Cisco IOS. Что касается масштабируемости, обе платформы готовы к применению интерфейсов OC-48C/STM16, позволяя развернуть сети высокой производительности, как необходимо для передачи трафика различных служб.

Коммутатор BPX 8650, основанный на технологии MPLS, обеспечивает динамическую коммутацию IP-пакетов в среде ATM. Cisco также предлагает своим заказчикам upgrade-пакет, с помощью которого они могут модернизировать установленные коммутаторы серии BPX 8600, дополнив их возможностями MPLS для смешанной среды IP+ATM.

Граничный коммутатор глобальной сети MGX 8800 ориентирован на применение в узлах доступа (PoP) и центральных офисах, обслуживающих максимум 1400 интерфейсов DS1. Для крупных коммуникационных центров, в которых необходимо поддерживать до 16 тыс. интерфейсов DS1, предназначен универсальный сервисный узел BPX 8680.

Коммутатор MGX 8800 поддерживает широкий набор узкополосных и широкополосных интерфейсов, обеспечивая диапазон скоростей от DS0 до OC-48c/STM-16 при пропускной способности коммутационной матрицы 45 Гбит/с.

Используя коммутатор MGX 8800, провайдеры смогут предложить своим клиентам практически полный ассортимент сервисов глобальной сети.

В качестве магистральной платформы, поддерживающей как IP, так и АТМ-трафик, Cisco Systems предлагает оптический коммутатор TGX 8750, способный обслуживать разнообразные периферийные устройства, включая ATM/Frame Relay, IP-маршрутизацию или xDSL-сети. Устройство поддерживает иерархический интерфейс Private Network-to-Network Interface (IPNNI), средства автоматической коммутации с защитой данных (Automatic Protection Switching) в среде SONET/SDH и стандарт взаимодействия оптических сетей OC-48c (наряду с OC-48).

Ядро сети ATM с коммутаторами TGX 8750, построенное на базе интерфейса IPNNI, можно расширить до нескольких тысяч узлов, поддерживающих коммутируемые (SVC) и программируемые постоянные (PVC) виртуальные каналы, а также виртуальные каналы, связывающие один узел с несколькими. Для управления приоритетами при передаче голосового трафика и данных коммутатор применяет алгоритм организации очередей по виртуальным каналам. Cредства контроля доступной скорости передачи (ABR), основанные на ее явном указании, позволяют в полном объеме использовать сетевые ресурсы при минимальном ухудшении характеристик сервиса.

Коммутатор TGX 8750 помимо поддержки надежных масштабируемых протоколов маршрутизации (PNNI, OSPF, IS-IS) для повышения отказоустойчивости позволяет продублировать коммутационные матрицы, процессорные платы, источники питания, интерфейсные карты, допуская горячую замену. Поддержка резервных интерфейсных карт для портов OC-3c, OC-12c, OC-48 и OC-48c обеспечивается средствами автоматической коммутации с защитой данных (SONET 1+1 Automatic Protection Switching), гарантирующими быстрое восстановление работоспособности сетевых служб.

Читайте также: