Аппараты для экстракции реферат

Обновлено: 02.07.2024

Жидкостная экстракция – это избирательное, селективное извлечение растворителем (экстрагентом) одного или нескольких компонентов из смеси жидких веществ. После осуществления процесса экстракции получают две фазы: экстракт (экстрагент, насыщенный извлекаемым компонентом) и рафинат (раствор, очищенный от извлекаемого вещества).

Экстракция является почти единственно возможным методом разделения жидких смесей, которые не могут быть разделены ректификацией вследствие того, что жидкости имеют близкие температуры кипения или разлагаются при нагревании.

В зависимости от вида контакта между фазами экстракторы делятся на группы:

· смесительно-отстойные, в которых смешение и разделение фаз происходит скачкообразно, от ступени к ступени;

· колонные, в которых осуществляется непрерывный (или почти непрерывный) контакт экстрагента и обрабатываемого раствора;

· центробежные экстракторы, в которых разделение фаз происходит в поле центробежных сил. Здесь контакт фаз может быть ступенчатым или непрерывным.

Смесительно-отстойные экстракторы относятся к числу старейших экстракционных аппаратов, важным достоинством которых является возможность их эффективного применения для процессов экстракции, требующих большого числа ступеней. Смесительно-отстойные экстракторы занимают большую площадь, но требуют меньшей высоты производственного помещения (при горизонтальном расположении ступеней). Недостатком смесителей-отстойников многих конструкций является медленное отстаивание в них жидкостей, что нежелательно при обработке дорогостоящих, взрывоопасных, легковоспламеняющихся веществ. Кроме того, наличие мешалок с приводом усложняет конструкцию аппарата и приводит к повышению капитальных затрат и эксплуатационных расходов. Возможна организация непрерывного процесса экстракции в батарее экстракторов при условии разделения полученной эмульсии в специальных отстойниках. В батарее мешалок можно осуществлять процесс прямоточного или противоточного направления.

Колонные экстракторы делятся на гравитационные и экстракторы с подводом внешней энергии. Все гравитационные экстракторы отличаются простотой конструкции, отсутствием движущихся частей. Соответственно стоимость таких аппаратов и расходы, связанные с их эксплуатацией, относительно невелики. Однако в большинстве случаев интенсивность массопередачи в гравитационных экстракторах низка. Гравитационные экстракторы мало пригодны для работы с большими соотношениями расходов фаз. Для интенсификации процесса массопередачи применяют экстрактора с подводом внешней энергии. В таких аппаратах достигается увеличение поверхности контакта фаз за счет высокой степени диспергирования и турбулизации сплошной фазы. Пульсация способствует выравниванию скоростей жидкости по сечению колонны и уменьшению продольного перемешивания.

Центробежные экстракторы являются интенсивно работающими аппаратами. Значительные скорости движения фаз обусловливают их высокую производительность и компактность. Они незаменимы в процессах экстракции продуктов, время пребывания которых в аппарате ограничено (например, экстракция антибиотиков). Однако такие экстрактора имеют сложную конструкцию, высокую стоимость и дороги в эксплуатации.

ЭКСТРАКТОР С МЕШАЛКОЙ


Принцип работы

Экстрактор с мешалкой (рис. 12) состоит из корпуса 2 и мешалки 3, закрепленной на валу электродвигателя 1.

После заполнения аппарата обрабатываемым раствором и экстрагентом, осуществляется его включение. Перемешивающее устройство (мешалка) осуществляет дробление жидкости, увеличивая поверхность контакта фаз, поддерживает полученные капели во взвешенном состоянии и приводит их к относительному перемещению. В основном применяются быстроходные механические пропеллерные или турбинные мешалки, которые могут устанавливаться на валу по две штуки. После процесса смешения аппарат отключается от источника энергии, фазы расслаиваются и, благодаря различию в плотностях, удаляются из нижней части аппарата поочередно.

РАСПЫЛИТЕЛЬНЫЙ ЭКСТРАКТОР

Принцип работы

Распылительный колонный экстрактор (рис. 13) состоит из полой колонны, внутри которой имеются распределительные устройства 1 и 2 для ввода легкой и тяжелой фаз. Верхняя и нижняя части колонны имеют больший диаметр, чем диаметр корпуса, и играют роль отстойников для разделения эмульсий.

Обрабатываемый раствор и экстрагент поступают в колонну через распределительные устройства. Жидкость I, имеющая большую плотность (тяжелая фаза) подается сверху, жидкость II с меньшей плотностью (легкая фаза) – снизу. При этом одной жидкостью заполняется весь объем колонны – это так называемая сплошная фаза, другая подается в виде небольших капель (диспергируется) – это дисперсная фаза. В распылительном экстракторе, представленном на рис. 13, диспергируется более легкая фаза. При прохождении капель по высоте колонны происходит процесс переноса вещества из одной фазы в другую. В зависимости от того, в какой фазе находится переносимое вещество, различают массопередачу в каплю и из капли. Легкая фаза, достигнув верхней части колонны, отстаивается, освобождаясь от капель более тяжелой фазы, и сливается с верхнего уровня отстойника. Тяжелая фаза отводится из колонны снизу через гидрозатвор 3. Высота гидрозатвора определяет положение границы раздела фаз и обусловливает диспергирование той или другой жидкости. Для предотвращения образования газовой пробки гидрозатвор соединен трубой 4 с верхним пространством аппарата, свободным от жидкости.

НАСАДОЧНЫЙ ЭКСТРАКТОР


Принцип работы

Насадочный колонный экстрактор (рис. 14) по конструкции аналогичен насадочному абсорберу. Он состоит из колонны, в которой находятся насадка 1, опорная решетка 2.

Насадку укладывают на опорную решетку, имеющую отверстия или щели для прохода жидкостей. Сначала подают исходный раствор, который является тяжелой фазой. Экстрагент противотоком диспергируют с помощью распределительного устройства. В слое насадки капли многократно коалесцируются (коалесценция – процесс сливания капелек жидкости в более крупные капли) и дробятся вновь, что повышает эффективность процесса. Разделение фаз в колонне происходит в отстойных зонах, из которых в дальнейшем осуществляется их слив. Для регулирования границы раздела фаз в аппарате используется гидрозатвор.

ТАРЕЛЬЧАТЫЙ ЭКСТРАКТОР

Принцип работы

Тарельчатая колонная (рис. 15) состоит из колонны, по высоте которой расположены ситчатые или перфорированные тарелки 1, имеющие отверстия для прохода дисперсной фазы, переливные трубки 2 для перетока тяжелой фазы, также имеется гидрозатвор 3.

Сплошная фаза I, как более тяжелая, движется сверху, перетекая от тарелки к тарелке по переливным трубам. Противотоком к ней диспергируется более легкая фаза II, которая собирается под тарелкой, образуя сплошной слой. Гидростатическим давлением слоя жидкость преодолевает сопротивление отверстий тарелки и вновь диспергируется, взаимодействуя со сплошной фазой. И так от тарелки к тарелке. Для регулирования границы раздела фаз в аппарате используется гидрозатвор.

Диспергировать можно и более тяжелую фазу. В этом случае она будет образовывать сплошной слой уже на тарелке и под действием гидростатического давления продавливаться через отверстия, дробиться и взаимодействовать со сплошной фазой.

ПУЛЬСАЦИОННЫЙ ЭКСТРАКТОР


Принцип работы

В пульсационной колонне (рис. 16) степень диспергирования увеличивается за счет дополнительного подвода механической энергии. Экстрактор состоит из колонны, в которой расположены ситчатые тарелки 1, у которых отсутствуют переливы. Возвратно-поступательное движение жидкостям сообщает поршневой насос 2 (или механический, пневматический и др. пульсатор).

Тяжелая сплошная фаза I движется сверху вниз. Более легкая дисперсная фаза II осуществляет движение снизу вверх. При взаимодействии фаз осуществляется их пульсация поршневым насосом или пульсатором. Пройдя по высоте колонны, каждая фаза отстаивается в отстойниках и отводится из колонны.

Пульсацию жидкостям можно сообщить посредством вибрации перфорированных тарелок, укрепленных на общем штоке, которому сообщается возвратно-поступательное движение. Такие аппараты чаще называют вибрационными экстракторами.

В пищевой промышленности экстракция применяется для выделения необходимых компонентов, например ароматических, или для удаления нежелательных горьких веществ. Области применения самые различные: получение сахара из сахарной свеклы, получение ароматических веществ и эфирных масел из растительного сырья, получение экстрактов пряностей, экстрактов хмеля, натуральных красителей, удаление спирта из напитков, никотина из табака и кофеина из кофе.

Содержание
Вложенные файлы: 1 файл

реферат по ПиА.doc

Список использованной литературы ………………………………………………………..…16

Одним из перспективных методов разделения и концентрирования является экстракция . Давно известно, что многие вещества распределяются между двумя несмешивающимися жидкостями, причем характер разделения в известной степени зависит от растворимости веществ в индивидуальных фазах. Использование этого явления для разделения и очистки веществ стало одним из основных методов в органической химии. Долгое время в области неорганической химии экстракцией интересовались мало. Поэтому экстракцию принято считать относительно молодым методом. Одним из первых широкомасштабных проектов внедренных в мире было использование сверхкритической экстракции. Технология сверхкритической экстракции находит свое применение для извлечения из растительного сырья алкалоидов

Для многих областей применения экстракция является более эффективной, более избирательной и менее затратной альтернативой конкурентным методам разделения, таким как дистилляция, выпаривание и мембранная технология. Экстракция определяется как процесс извлечения одного или нескольких веществ из другого вещества.

В пищевой промышленности экстракция применяется для выделения необходимых компонентов, например ароматических, или для удаления нежелательных горьких веществ. Области применения самые различные: получение сахара из сахарной свеклы, получение ароматических веществ и эфирных масел из растительного сырья, получение экстрактов пряностей, экстрактов хмеля, натуральных красителей, удаление спирта из напитков, никотина из табака и кофеина из кофе.

1 Общие сведения

В экстрактор загружаются исходный раствор, содержащий распределяемое вещество или вещества, и растворитель. Жидкость используемая для извлечения компонентов, называется экстрагентом. Массообмен между фазами протекает при их непосредственном контакте. Полученная в результате экстракции жидкая смесь поступает в разделитель, где разделяется на экстракт – раствор экстрагированных веществ в экстрагенте и рафинат – остаточный раствор, из которого экстрагированы извлекаемые компоненты. Разделение смеси на экстракт и рафинат происходит в результате отстаивания или сепарирования.

Процесс экстракции проводят в аппаратах различной конструкции – экстракторах.

Экстракцию широко используют для извлечения ценных продуктов из разбавленных растворов, а так же для получения концентрированных растворов.

Основное преимущество экстракции – низкая рабочая температура процесса, что позволяет разделять жидкие смеси термолабильных веществ, например антибиотиков, разлагающихся при повышенных температурах.

Во многих случаях экстракцию применяют в сочетании с ректификацией. Поскольку расход теплоты на ректификацию уменьшается с увеличением концентрации исходного раствора, предварительное концентрирование раствора экстракцией позволяет сократить расход теплоты на разделение исходной смеси.

Физические основы процесса

Равновесие в процессах экстракции характеризуется коэффициентом распределения φ, который равен соотношению равновесных концентраций экстрагируемого вещества в обеих жидких фазах – в экстракте и рафинате. Коэффициент распределения, как правило, в промышленных системах определяют экспериментальным путем.

Кинетические закономерности процесса экстракции описывают основными законами массопередачи.

Для увеличения площади поверхности фазового контакта одну из фаз диспергируют в виде капель в другой сплошной фазе. Площадь поверхности фазового контакта определяется задержкой дисперсной фазы в экстракторе и средним поверхностно-объемным диаметром капель. Распределяемое вещество диффундирует из сплошной фазы к поверхности капель, а затем внутрь капли либо, наоборот, из капли через поверхность раздела фаз сплошную фазу.

Массопередача внутри капель осуществляется молекулярной и конвективной диффузией. Конвеция внутри капель возникает благодаря циркуляии жидкости. Форма и размер капель в процессе экстракции многократно меняются в результате диспергирования и коалесценции. При этом происходит обновление поверхности межфазового контакта. Для описания массопередачи в процессах экстракции пользуются вторым законом Фика.

Выщелачивание (частный случай экстракции) – это извлечение из твердого тела одного или нескольких веществ при помощи растворителя, обладающего избирательной способностью.

В пищевой промышленности выщелачиванием обрабатывают каппилярно-пористые тела растительного или животного происхождения.

Экстрагирование существенно отличается от экстракции жидкостной, которая протекает в гетерогенной системе жидкость - жидкость. При экстрагировании размеры твердых тел задаются предшествующими операциями (измельчение).

Различают два принципиально разных способа извлечения: экстрагирование растворенного вещества и экстрагирование твердого вещества. В случае экстрагирования растворенного вещества пористый объем твердого тела заполнен раствором целевого компонента, который при извлечении диффундирует за пределы пористого тела в экстрагент. Классический пример - извлечение сахара из свекловичной стружки при ее обработке горячей водой. Экстрагирование твердого вещества происходит, если целевой компонент, заполняющий пористый объем твердого тела, находится в твердом состоянии. При обработке твердого тела экстрагентом диффузионной стадии предшествует стадия растворения целевого компонента. В обоих случаях пористый инертный скелет либо остается в неизмененном виде, либо подвергается определенным изменениям.

К основным стадиям экстрагирования относят: подготовку сырья и экстрагента (очистка и измельчение сырья, нагревание растворителя); непосредственное контактирование твердой и жидкой фаз в аппарате, называемом экстрактором; разделение системы твердая фаза - раствор (отстаивание, фильтрование, центрифугирование).

Физические основы процесса

В соответствии со вторым началом термодинамики при взаимодействии твердой и жидкой фаз их состояние изменяется в направлении достижения равновесия, которое характеризуется равенством химических потенциалов извлекаемого вещества в объеме твердого тела и в основной массе экстрагента. При извлечении растворенного вещества это равносильно равенству его концентраций в обеих фазах; условие нарушается, если целевой компонент адсорбируется твердой фазой, тогда равновесие определяется изотермой адсорбции. При извлечении твердого вещества равновесие обусловлено растворимостью целевого компонента, находящегося в контакте с экстрагентом, при полном же извлечении твердого компонента его концентрации в основной массе раствора и в пористом объеме выравниваются.

Кинетически экстрагирование подчиняется законам массообмена, конвективной и молекулярной диффузии, а также законам переноса извлекаемого вещества из твердой фазы в жидкую. Движущая сила переноса целевого компонента - разность его химических потенциалов в фазах. На практике для упрощения связи между скоростью процесса и составом материальных потоков движущую силу экстрагирования выражают через переменный во времени градиент концентраций извлекаемого вещества в фазах.

Две контактирующие жидкие фазы и распределяемый между ними целевой компонент образуют экстракционную систему. Извлекающая фаза включает только экстрагент (или смесь экстрагентов) либо является раствором одного или нескольких экстрагентов в разбавителе, служащем для улучшения физических (вязкость, плотность) и экстракционных свойств экстрагентов.

Прикрепленные файлы: 1 файл

Жидкостная экстракция.docx

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение высшего профессионального образования

Институт природных ресурсов

Кафедра химической технологии топлива

и химической кибернетики

Реферат на тему

Студент гр.2КМ31 В.В. Норин

Руководитель О.К. Семакина

преподаватель каф. ХТТ и ХК (подпись)

Экстракция Жидкостная (позднелат. extractio - извлечение, от extraho - вытягиваю, извлекаю), перевод одного или нескольких компонентов раствора из одной жидкой фазы в контактирующую и не смешивающуюся с ней другую жидкую фазу, содержащую избирательный растворитель (экстрагент); один из массообменных процессов химической технологии. Используется для извлечения, разделения и концентрирования растворенных веществ.

Экстрагенты обеспечивают переход целевых компонентов из исчерпываемой (тяжелой) фазы, которая чаще всего представляет собой водный раствор, в извлекающую (легкую) фазу (обычно органическую жидкость). Две контактирующие жидкие фазы и распределяемый между ними целевой компонент образуют экстракционную систему. Извлекающая фаза включает только экстрагент (или смесь экстрагентов) либо является раствором одного или нескольких экстрагентов в разбавителе, служащем для улучшения физических (вязкость, плотность) и экстракционных свойств экстрагентов. В качестве разбавителей используют, как правило, жидкости (керосин, бензол, хлороформ и др.) либо их смеси, которые в исчерпываемой фазе практически нерастворимы и инертны по отношению к извлекаемым компонентам раствора. Иногда к разбавителям добавляют модификаторы, повышающие растворимость экстрагируемых компонентов в извлекающей фазе или облегчающие расслаивание: спирты, кетоны, трибутилфосфат и т.д.).

К основным стадиям жидкостной экстракции относятся:

1) приведение в контакт и диспергирование фаз;

2) разделение или расслаивание фаз на экстракт (извлекающая фаза) и рафинат (исчерпываемая фаза);

3) выделение целевых компонентов из экстракта и регенерация экстрагента, для чего наряду с дистилляцией наиболее часто применяют реэкстракцию (процесс, обратный жидкостной экстракции), обрабатывая экстракт водными растворами веществ, обеспечивающих полный перевод целевых компонентов в раствор или осадок и их концентрирование;

4) промывка экстракта для уменьшения содержания и удаления механически захваченного исходного раствора.

В любом экстракционном процессе после достижения требуемых показателей извлечения фазы должны быть разделены. Эмульсии, образующиеся при перемешивании, обычно термодинамически неустойчивы, что обусловлено наличием избыточной свободной энергии вследствие большой межфазной поверхности. Последняя уменьшается из-за коалесценции (слияния) капель дисперсной фазы. Коалесценция энергетически выгодна (особенно в бинарных системах) и происходит до тех пор, пока не образуются два слоя жидкости.

Разделение эмульсий осуществляется, как правило, в две стадии. Сначала довольно быстро осаждаются (всплывают) и коалесцируют крупные капли. Значительно более мелкие капли остаются в виде "тумана", который отстаивается довольно долго. Скорость расслаивания зачастую определяет производительность аппаратуры всего экстракционном процесса. На практике для интенсификации разделения фаз используют центробежные силы и применяют различные устройства или насадки, которые располагают в отстойниках (см. ниже). В ряде случаев расслаиванию способствует электрическое поле.

Основные требования к промышленным экстрагентам: высокая избирательность; высокая экстракционном емкость по целевому компоненту; низкая растворимость в рафинате; совместимость с разбавителями; легкость регенерации; высокие химическая, а в ряде случаев и радиационная стойкость, негорючесть или достаточно высокая температура вспышки (более 60 °С); невысокая летучесть и низкая токсичность; доступность и невысокая стоимость.

Наиболее распространенные промышленные экстрагенты подразделяют на следующие классы:

1) нейтральные, извлечение которыми осуществляется по разным механизмам в зависимости от кислотности исходного раствора,- вода, фосфорорганические соединения (главным образом трибутилфосфат), нефтяные сульфоксиды, насыщенные спирты, простые и сложные эфиры, альдегиды, кетоны и др.;

2) кислые, которые извлекают катионы металлов в орг. фазу из водной,- фосфорорганические кислоты [ди(2-этилгексил)фосфорная кислота], карбоновые и нафтеновые кислоты,сульфокислоты, алкилфенолы, хелатообразующие соединения (гидроксиоксимы, алкилгидроксихинолины, дикетоны);

3) основные, с помощью которых извлекают анионы металлов из водных растворов, первичные, вторичные, третичные амины и их соли, соли четвертичных аммониевых, фосфониевых и арсониевых оснований и др.

Жидкостная экстракция, как и любой реальный процесс, протекает во времени. Кинетически жидкостная экстракция представляет собой массопередачу, которая сопровождается разнообразными физико-химическими процессами, происходящими на межфазной границе, в прилегающих к ней слоях и в объемах фаз. Скорость экстракции, или количество вещества, переходящего в единицу времени из одной фазы в другую, определяется по ф-ле:

где К - коэффициент массопередачи; F - площадь межфазной поверхности; - движущая сила процесса. Если параметры v, F и известны, то можно найти значение плотности межфазного потока (j), коэф. массопередачи и обратную ему величину - так называемое сопротивление массопередаче (Rм):

В зависимости от природы Rм или, иными словами, в зависимости от того, каким конкретно процессом (химической реакцией или диффузией) лимитируется скорость извлечения вещества, могут быть предложены различные способы воздействия на скорость экстракции. Возможны два основных пути ее регулирования:

1) введением в экстракционном систему механической энергии, затрачиваемой на принудительном перемешивание и диспергирование фаз с целью увеличения поверхности их контакта и коэффициентов массоотдачи в фазах;

2) воздействием на скорость химических реакций и межфазных физико-химических процессов.

В химической технологии в качестве главного фактора интенсификации жидкостная экстракция используют первый путь, так как обычно скорость экстракции лимитируется диффузией. Однако необходимо учитывать, что возрастание межфазной поверхности и коэффициента массоотдачи в фазах становится все менее заметным по мере увеличения интенсивности принудительного перемешивания. Поэтому попытки дальнейшего ускорения экстракции за счет дополнительных затрат механической энергии могут оказаться неэффективными. Кроме того, при интенсивных режимах перемешивания возможно снижение скорости разделения фаз на последующих стадиях процесса. Если скорость извлечения вещества ограничена скоростью медленных хим. реакций в фазах, то при прочих равных условиях скорость экстракции не зависит от размера межфазной поверхности. Интенсификация экстракционного процесса возможна лишь за счет ускорения самих реакций.

В подавляющем большинстве экстракционных систем, особенно при интенсивном перемешивании, сопротивление массопередаче Rм сосредоточено в межфазной области. Это означает, что все действующие в ней факторы будут оказывать влияние на коэффициент массопередачи. К числу таких факторов относятся: межфазные реакции между экстрагентом и извлекаемым веществом; блокировка межфазной поверхности в результате аккумуляции на ней труднорастворимых продуктов реакций, микрокапель, твердых частиц или, др. словами, вследствие образования в межфазной области конденсированных межфазных пленок и зон микрогетерогенности; влияние процессов адсорбции - десорбции и двойного электрического слоя; самопроизвольная межфазная конвекция из-за нарушения гидродинамической стабильности границы раздела фаз (эффект Марангони).

Знание закономерностей кинетики процесса и информация о коэффициент массопередачи необходимы для расчетов экстракционной аппаратуры и определения путей интенсификации жидкостной экстракции.

Способы организации процесса

Осуществляют в аппаратах, называемыми экстракторами, с однократным и многократным контактом фаз. Соответственно различают однократную (одноступенчатую) и многократную (многоступенчатую) экстракцию; при этом ступенями разделения служат отдельные аппараты или их секции.

Наиболее распространенна в промышленности. Проводится непрерывно и по способу движения фаз подразделяется на противоточную, полупротивоточную и перекрестноточную. Чаще всего применяют противоточную экстракцию одним экстрагентом (рис. 1) с числом ступеней обычно 5-10. Для трудноразделяемых компонентов (напр., близких по свойствам лантаноидов) число ступеней достигает 70-100.

Рис. 1. Схема противоточной многократной экстракции: 1-4, . n - экстракторы.

Четкость разделения исходной смеси можно повысить, используя следующие способы. При жидкостной экстракции с обратной флегмой экстрагент и рафинат частично отделяются от соответственного экстракта и исходного раствора; далее определенные доли этих фракций обратно возвращаются в экстрактор навстречу уходящим потокам (процесс проводят подобно ректификации). При жидкостной экстракции с двумя несмешивающимися экстрагентами каждый из них избирательно растворяет какой-либо компонент или группу компонентов экстракционном системы.

Реже используют полупротивоток и перекрестный ток. При полупротивоточной экстракции одна фаза "неподвижна" (не перемещается со ступени на ступень), а другая фаза последовательно проходит все ступени каскада, вымывая компоненты раствора в порядке убывания коэффициента Полупротивоток применяют для извлечения и разделения компонентов, присутствующих в системе в очень малых количествах. При необходимости более полного извлечения целевого компонента из исходного раствора иногда используют перекрестноточную экстракцию (рис. 2): исчерпываемая фаза движется последовательно вдоль ступеней каскада, а извлекающая фаза поступает на каждую ступень и с нее же выводится.

Рис. 2. Схема перекрестноточной многократной экстракции.

Осуществляется периодически или непрерывно, возможна лишь при высоких значениях и применяется преимущественно для аналитических целей. Примером промышленной реализации одноступенчатого процесса может служить мембранная экстракция, основанная на использовании мембран жидких и сочетающая одновременно прямой процесс и реэкстракцию. Роль мембран выполняет слой органической жидкой фазы, разделяющий два водных раствора - исчерпываемый и извлекающий. Жидкая мембрана обычно содержит активный компонент - экстрагент, служащий для переноса целевых компонентов из исчерпываемой фазы в извлекающую. Разновидность мембранной жидкостная экстракция - экстракция во множественных эмульсиях вода - масло - вода.

Жидкостная экстракция - многофакторный процесс, математическое описание и оптимизация которого требуют сведения воедино совокупности равновесных, кинетических, гидродинамических, конструктивных данных и результатов масштабирования. Эта задача успешно решается с помощью структурного моделирования экстракционном процессов. В основе его лежат структурные модели, адекватно описывающие равновесие, кинетику и аппаратурное оформление каждого реального процесса. В отличие от функциональных моделей, которые также используются для описания экстракционном процесса, но рассматривают его или отдельные элементы лишь с целью установления количественных корреляции между отдельными параметрами, структурные модели обладают более широкими экстраполяционными возможностями и пригодны для оптимизации жидкостная экстракция на стадии промышленного проектирования.

Аппаратурное оформление процесса

По способу контакта фаз промышленные экстракторы подразделяют на дифференциально-контактные (колонные аппараты), ступенчатые и промежуточные конструкции. Аппараты первой группы отличаются непрерывным контактом фаз и плавным изменением концентрации извлекаемого компонента вдоль длины (высоты) аппарата. При таком профиле концентраций фазы ни в одной точке экстрактора не приходят в равновесие. Эти аппараты более компактны и требуют ограниченных производственных площадей, однако в них за счет продольного перемешивания (обусловлено конвективными осевыми потоками, застойными зонами, турбулентными пульсациями и т. д.) может значительно уменьшаться средняя движущая сила.

Аппараты второй группы состоят из дискретных ступеней, в каждой из которых осуществляется контакт фаз, после чего они разделяются и движутся противотоком в последующие ступени. Продольное перемешивание выражено слабее, но необходимость разделения фаз между соседними ступенями может приводить (при плохо отстаивающихся системах) к существенному увеличению размеров экстрактора.

Их подразделяют на гравитационные и с внешним подводом энергии. Эффективность колонн оценивают кпд отдельных ступеней разделения, высотой, эквивалентной теоретической ступени (ВЭТС), либо высотой единицы переноса (ВEП). ВЭТС зависит от гидродинамического режима в колонне и физико-химических свойств экстракционной системы. Высоту (длину) колонны, в которой проводится многоступенчатый процесс, рассчитывают по ф-ле: H = N x ВЭТС(ВЕП), где N - необходимое число ступеней, определяемое, как правило, графически по изотермам экстракции и материальным балансам или с помощью расчетов на ЭВМ.

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.



Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Южно-Уральский государственный университет

1 Явление экстрагирования и экстракции 3

2 Аппараты для экстрагирования и экстракции 8

1 Явление экстрагирования и экстракции

Экстрагирование - (от лат. extraho - вытягиваю, извлекаю), перевод одного или нескольких компонентов из твердого пористого тела в жидкую фазу с помощью избирательного растворителя (экстрагента). Является одним из массообменных процессов химической технологии. Наряду с термином "экстрагирование" часто применяют термин " выщелачивание ", название которого происходит от слова " щелочь ". Действительно, в некоторых технологических процессах извлечения раствор содержит щелочь , однако во многих иных аналогичных процессах, также называемых " выщелачиванием ", щелочь вообще не используется. Поэтому термин "экстрагирование", под которым понимают извлечение в системе твердое тело - жидкость , следует считать более общим и предпочтительным.
Экстрагирование существенно отличается от экстракции жидкостной , которая протекает в гетерогенной системе жидкость - жидкость . При экстрагировании размеры твердых тел задаются предшествующими операциями ( измельчение ).
Различают два принципиально разных способа извлечения: экстрагирование растворенного вещества и экстрагирование твердого вещества. В случае экстрагирования растворенного вещества пористый объем твердого тела заполнен раствором целевого компонента, который при извлечении диффундирует за пределы пористого тела в экстрагент. Классический пример - извлечение сахара из свекловичной стружки при ее обработке горячей водой . Экстрагирование твердого вещества происходит, если целевой компонент, заполняющий пористый объем твердого тела , находится в твердом состоянии. При обработке твердого тела экстрагентом диффузионной стадии предшествует стадия растворения целевого компонента. В обоих случаях пористый инертный скелет либо остается в неизмененном виде, либо подвергается определенным изменениям.
К основным стадиям экстрагирования относят: подготовку сырья и экстрагента (очистка и измельчение сырья, нагревание растворителя); непосредственное контактирование твердой и жидкой фаз в аппарате, называемом экстрактором ; разделение системы твердая фаза - раствор ( отстаивание , фильтрование , центрифугирование ).
Промышленные экстрагенты должны обладать высокой избирательностью, легко регенерироваться и быть сравнительно дешевыми. Таким требованиям отвечают вода , этанол , бензин , бензол , СС1 4 ацетон , растворы кислот, щелочей и солей .
На скорость и механизм экстрагирования существенно влияет структура твердых пористых тел, особенности строения которых определяются их природой и технологической обработкой на стадиях, предшествующих экстрагированию. Такие тела могут обладать изотропной или анизотропной структурой. Изотропные тела имеют одинаковое строение во всех направлениях. Этому условию отвечают тела, состоящие из весьма малых сцементированных между собой частиц, а также тела животного или растительного происхождения, обладающие клеточным строением. При измельчении изотропных тел возможно появление анизотропии . Для анизотропных тел может наблюдаться регулярная анизотропия . Так, в случае растительных объектов, имеющих систему капилляров, направление вдоль капилляра предпочтительно для диффузионного переноса в сравнении с направлением, перпендикулярным к капилляру. При нерегулярной анизотропии тело можно рассматривать как совокупность емкостей, отделенных одна от другой непроницаемыми перегородками. Особенно неблагоприятно для экстрагирования существование замкнутых областей, изолирующих заключенную в них жидкость от экстрагента.
В соответствии со вторым началом термодинамики при взаимодействии твердой и жидкой фаз их состояние изменяется в направлении достижения равновесия , которое характеризуется равенством химических потенциалов извлекаемого вещества в объеме твердого тела и в основной массе экстрагента. При извлечении растворенного вещества это равносильно равенству его концентраций в обеих фазах; условие нарушается, если целевой компонент адсорбируется твердой фазой, тогда равновесие определяется изотермой адсорбции . При извлечении твердого вещества равновесие обусловлено растворимостью целевого компонента, находящегося в контакте с экстрагентом, при полном же извлечении твердого компонента его концентрации в основной массе раствора и в пористом объеме выравниваются.
Кинетически экстрагирование подчиняется законам массообмена , конвективной и молекулярной диффузии , а также законам переноса извлекаемого вещества из твердой фазы в жидкую. Движущая сила переноса целевого компонента - разность его химических потенциалов в фазах. На практике для упрощения связи между 

скоростью процесса и составом материальных потоков движущую силу экстрагирования выражают через переменный во времени градиент концентраций извлекаемого вещества в фазах. Массобмен обычно делят на извлечение растворенного вещества и твердого вещества :

- при массообмен е извлечения растворенного вещества концентрационное поле в объеме сферической пористой частицы радиусом R (наиболее распространенный случай) с изотропной структурой может быть описано дифференциальтным уравнением диффузии в сферических координатах:
где с - концентрация вещества, растворенного в пористом объеме твердого тела (целевого компонента); t - время; D - коэф. диффузии вещества в порах частицы; r - радиальная координата (0rR).

Диффундирующий из глубины пористого тела целевой компонент достигает его границ и переходит в экстрагент. Этот процесс выражается ур-нием:

где К - коэффициент массоотдачи; , c 1 - соответственно концентрация вещества на поверхности частицы и текущая концентрация вещества в объеме экстрагента. Вводя безразмерные параметры j= r/R и Bi = KR/D, преобразуем уравнение (2) к виду:
Из уравнения (3) становится ясным физический смысл параметра Bi. При Bi параметр , т. е. концентрация вещества на поверхности частицы равна его концентрации в растворе. При Bi1 производная мала и с = const; соответствующий режим, называется внешнедиффузионным (конвективная диффузия ), достигается увеличением скорости обтекания твердых частиц жидкостью . Подбирая определенные условия, для обеспечения макс. 

интенсивности экстрагирования можно перевести внешнедиффузионный режим во внутридиффузионный.

Систему уравнений (1) и (2) необходимо решать совместно с уравнением материального баланса, устанавливающим зависимость между с и c 1 . Эта зависимость определяется схемой взаимодействия фаз при экстрагировании (прямоток, противоток). Для прямоточного процесса:

где V и W - соответственно объем всех пор твердого тела , содержащих раствор, и экстрагента, поступающего в единицу времени в экстрактор ; с 0 - начальная концентрация целевого компонента в порах; с н - начальная концентрация целевого компонента в экстрагенте;- осредненная (к моменту времени концентрация целевого компонента в пористом объеме. Последняя составляет:
Для противоточного процесса:

где с к - конечная концентрация целевого компонента в экстрагенте на выходе из экстрактора .

- массообмен при извлечении твердого вещества . Возможны различные варианты распределения твердого целевого компонента по объему частицы. В большинстве случаев наблюдается равномерное распределение. Вследствие растворения вещества и диффузии его за пределы частицы область, содержащая твердый целевой компонент, при экстрагировании систематически сокращается.

Процесс описывается уравнением (1) при краевых условиях: и где r 0 - радиус сферы, в которой целевой
компонент сохраняется в твердом виде; c s - концентрация насыщения раствора целевым компонентом.

Вместо решения задачи с подвижной границей раздела фаз можно использовать также приближенное уравнение:

где М - масса твердого целевого компонента в объеме частицы.
Рассматривая медленный процесс извлечения твердого вещества как квазистационарный, т. е. такой, при котором в каждый момент времени "успевает" установиться стационарное распределение концентраций в виде [(с s - с)/(с s — c 1 )] = = [(1 - r о /r)/(1 - r о /R)], находят:

где Из уравнения (8) определяют время t э , извлечения всего вещества из частицы радиусом R. Более общую задачу непрерывного экстрагирования (прямоток, противоток) решают, используя уравнения материального баланса (4) и (5).

По сравнению с растворением экстрагирование протекает медленнее. Для его интенсификации целесообразны следующие способы: повышение температуры экстрагента, что ускоряет извлечение растворенного и твердого веществ, а также снижается вязкость экстрагента; повышение относительной скорости движения фаз сокращает время экстрагирования; интенсивное перемешивание приводит к обновлению поверхности контакта твердых частиц с экстрагентом; повышение давления , восстанавливает нарушенный контакт внутренней поверхности частиц с жидкостью .

Экстрагирование используют для извлечения соединений редких металлов , для извлечения из пористых продуктов спекания различных веществ, для выделения органических соединений из растительного сырья, для образования пористых структур путем добавления и последующего извлечения растворимого вещества после фиксации структуры (напр., в производстве пористых пластмасс , применяемых как изоляционный материал).


2 Аппараты для экстрагирования и экстракции

Смесь растворителя (экстрагента) с извлеченным компонентом называют экстрактом, а смесь, оставшуюся после экстракции, - рафинатом. Процесс экстракции происходит при взаимодействии жидкой и твердой фаз или только жидких фаз. В качестве примеров можно привести: для первого вида экстракции - извлечение из древесины канифоли и скипидара, из феррита - едкого натра, из свекловичной стружки - сахара; для второго вида экстракции - отделение дивинила от ацетальдегида, а также очистка капролактама от примесей.

В первую очередь, аппараты экстрагирования делят на экстракторы для твердых и для жидких тел.

В аппаратах для твердых тел экстракцию осуществляют по периодическому и непрерывному способам. При периодической работе цикл состоит из загрузки, экстрагирования, выгрузки и подготовки к следующему циклу.

Для непрерывно действующих аппаратов не требуется затрачивать время на загрузку и выгрузку продуктов, поэтому цикл их работы сокращается, а производительность возрастает. На рис. 1 (а, б) изображены экстракторы периодического действия ( А
+В— смесь; С —растворитель; С + В 2 — экстракт, А + В 1 — рафинат) – это аппараты, снабженные насосами, загрузочными и выгрузочными механизмами (быстродействующими затворами и люками). Периодически действующие аппараты объединяют в батареи (рис. 1, в) для более полного извлечения экстракта и повышения производительности. Для ускорения экстрагирования растворитель нагревают в теплообменниках. Загрузку и выгрузку твердого материала выполняют поочередно для каждого аппарата.



В непрерывно действующих аппаратах продукт А + В и растворитель С движутся по противоточной схеме: С + В 2 - экстракт, А + В 1 - рафинат). Такие экстракторы различают по способу перемещения в них твердых веществ. Так, в экстракторе, материал перемещается вертикальным шнеком вверх. В другом аппарате он перемещается цепью со скребками. В гребковом экстракторе твердый компонент смеси перемещается специальными гребками, установленными на общем валу и помещенными в отдельных секциях. В барабанном экстракторе твердый материал перемещается при вращении барабана, снабженного установленными по спирали гребками.

Рисунок 1- Аппараты для экстрагирования твердых тел
В экстракторе для жидкостей периодического действия при перемешивании смеси А + В с растворителем С извлекаемый компонент переходит в раствор, а затем отделяется от растворителя в результате отстаивания в отсеке аппарата, заполненного насадкой; при этом образуется экстракт С + В 2 и рафинат А + В 1 .

Аппараты непрерывного экстрагирования жидкостей устроены следующим образом: ротационный экстрактор (рис. 2, а) имеет ротор в виде многослойного перфорированного барабана, вращающегося вокруг горизонтальной оси. Тяжелая жидкость С (растворитель) поступает через полую ось к центру, а легкая смесь А + В
— в отделения на периферии ротора. Под действием центробежной силы легкая жидкость устремляется ближе к оси, а тяжелая — ближе к периферии, создавая этим противоточное движение жидкостей. Степень перфорации концентричных барабанов ротора составляет 2%.



Рисунок 2 - Аппараты для экстрагирования жидких тел
Насадочный колонный экстрактор (рис. 2, б), в котором осуществляется противоточное движение распыленных насадкой частиц жидкостей, действует аналогично абсорберу. В колонном пульсационном экстракторе (рис. 2, в) процесс экстрагирования интенсифицируется за счет пульсации жидкости мембраной, получающей колебательные движения от поршневого механизма. Это повышает эффективность процесса экстракции. В колонном аппарате (рис. 2, г) процесс экстракции интенсифицируется за счет высокой турбулентности, создаваемой с помощью инжекторов. В смесительно-отстойном аппарате (рис. 2, д) мешалки, сидящие на вертикальном валу, смешивают вещества, а в насадке между мешалками происходит их расслоение и разделение.

Существуют и другие классификации экстракторов. По взаимному направлению движения твердой фазы и экстрагента экстракторы подразделяют на прямоточные и противоточные, по режиму работы - на аппараты периодического, полунепрерывного и непрерывного действия.

Из представителей периодического и полунепрерывного действия наиболее распространены камерные аппараты (реакторы) с механическим, пневматическим или пневмомеханическим перемешиванием , а также так называемые настойные 

чаны с неподвижным слоем твердых частиц с циркуляцией (перколяторы) и без циркуляции экстрагента. Аппараты для экстрагирования в плотном слое обычно располагаются вертикально и имеют комбинированную форму: в основной части цилиндрическую, с одного или обоих концов - форму усеченного конуса (рис. 3, а). На решетку сверху загружается слой твердого материала, через который сверху вниз протекает экстрагент; для выгрузки твердого остатка служит откидное днище.
Рисунок 3 - Экстракторы периодического действия: а - единичный аппарат; б -батарея аппаратов (I-V); 1 - корпус; 2 - ложное днище (решетка); 3 - откидное днище; 4 - штуцер для ввода свежего экстрагента; 5 - штуцер для отвода концентрированного раствора; 6 - насос .

Последовательное соединение 4-16 таких аппаратов в батарею (рис. 3, б) позволяет перейти к полунепрерывной противоточной схеме. Благодаря замкнутой системе коммуникаций удается периодически отключать от циркуля системы один из аппаратов, освобождать его от полностью истощенного материала и заполнять свежим. Далее этот аппарат снова включают в систему циркуляции и подают в него наиболее обогащенный экстрагент, прошедший через все остальные аппараты, затем отключают следующий, аппарат, в который до этого поступал чистый экстрагент, и т.д. С увеличением числа аппаратов процесс приближается к непрерывному.
Главные недостатки описанных экстракторов , которые продолжают широко применяться в химических производствах: большие затраты ручного труда при их 

эксплуатации, значительные потери экстрагируемого вещества при выгрузке, высокая металлоемкость, трудность регулирования работы. Экстракторы периодического действия используют в производстве небольших партий фармацевтических препаратов, настоев, морсов и др. Экстракторы полунепрерывного действия (батарея аппаратов) малоэффективны, громоздки и сложны в обслуживании.

К основным экстракторам непрерывного действия относятся шнековые и ленточные аппараты.

Рисунок 4 - Шнековый экстрактор непрерывного действия: 1, 2, 3 - загрузочная, горизонтальная и экстракционная колонны; 4-6 - шнеки; 7 -разделительное сито.

Шнековый экстрактор (рис. 4) представляет собой трехколонный аппарат с транспортирующим органом шнекового типа. Твердая фаза последовательно перемещается через загрузочную, горизонтальную и экстракционную колонны навстречу движущемуся экстрагенту. В верхней части загрузочной колонны имеется сито для отделения экстракта от твердой фазы. Достоинства аппарата - малая металлоемкость и небольшая занимаемая площадь. Недостатки обусловлены конструкцией шнека, вокруг вала которого закручивается твердый материал, поэтому иногда шнек заменяют цепным транспортирующим органом.


Для равномерного распределения экстрагента по поверхности материала над слоем размещены распылители. Пройдя через слой материала, раствор поступает в воронку, откуда насосом подается в смежную зону, которая расположена в направлении, противоположном движению ленты. Распространены также роторные аппараты карусельного типа, реализующие тот же принцип действия.

Ленточный экстрактор (рис. 5) имеет стальной корпус, внутри которого

Рисунок 5 - Ленточный экстрактор непрерывного действия: 1 - корпус; 2 - бункер; 3 - ленточный транспортер; 4 - воронка; 5 - насосы .

расположен транспортер с перфорированной лентой. Подаваемый в аппарат материал движется слоем высотой 0,6-1,2 м по верхней ветви транспортера.

Преимущества экстракторов непрерывного действия, применяемых в многотоннажных производствах, перед периодически функционирующими аппаратами: более высокий коэффициент массоотдачи от поверхности твердых частиц к экстрагенту; полное исключение ручного труда при обслуживании; возможность создания экстрактов большой единичной мощности и автоматизации экстрагирования.

Жидкостная экстракция – это избирательное, селективное извлечение растворителем (экстрагентом) одного или нескольких компонентов из смеси жидких веществ. После осуществления процесса экстракции получают две фазы: экстракт (экстрагент, насыщенный извлекаемым компонентом) и рафинат (раствор, очищенный от извлекаемого вещества).

Экстракция является почти единственно возможным методом разделения жидких смесей, которые не могут быть разделены ректификацией вследствие того, что жидкости имеют близкие температуры кипения или разлагаются при нагревании.

В зависимости от вида контакта между фазами экстракторы делятся на группы:

· смесительно-отстойные, в которых смешение и разделение фаз происходит скачкообразно, от ступени к ступени;

· колонные, в которых осуществляется непрерывный (или почти непрерывный) контакт экстрагента и обрабатываемого раствора;

· центробежные экстракторы, в которых разделение фаз происходит в поле центробежных сил. Здесь контакт фаз может быть ступенчатым или непрерывным.

Смесительно-отстойные экстракторы относятся к числу старейших экстракционных аппаратов, важным достоинством которых является возможность их эффективного применения для процессов экстракции, требующих большого числа ступеней. Смесительно-отстойные экстракторы занимают большую площадь, но требуют меньшей высоты производственного помещения (при горизонтальном расположении ступеней). Недостатком смесителей-отстойников многих конструкций является медленное отстаивание в них жидкостей, что нежелательно при обработке дорогостоящих, взрывоопасных, легковоспламеняющихся веществ. Кроме того, наличие мешалок с приводом усложняет конструкцию аппарата и приводит к повышению капитальных затрат и эксплуатационных расходов. Возможна организация непрерывного процесса экстракции в батарее экстракторов при условии разделения полученной эмульсии в специальных отстойниках. В батарее мешалок можно осуществлять процесс прямоточного или противоточного направления.

Колонные экстракторы делятся на гравитационные и экстракторы с подводом внешней энергии. Все гравитационные экстракторы отличаются простотой конструкции, отсутствием движущихся частей. Соответственно стоимость таких аппаратов и расходы, связанные с их эксплуатацией, относительно невелики. Однако в большинстве случаев интенсивность массопередачи в гравитационных экстракторах низка. Гравитационные экстракторы мало пригодны для работы с большими соотношениями расходов фаз. Для интенсификации процесса массопередачи применяют экстрактора с подводом внешней энергии. В таких аппаратах достигается увеличение поверхности контакта фаз за счет высокой степени диспергирования и турбулизации сплошной фазы. Пульсация способствует выравниванию скоростей жидкости по сечению колонны и уменьшению продольного перемешивания.

Центробежные экстракторы являются интенсивно работающими аппаратами. Значительные скорости движения фаз обусловливают их высокую производительность и компактность. Они незаменимы в процессах экстракции продуктов, время пребывания которых в аппарате ограничено (например, экстракция антибиотиков). Однако такие экстрактора имеют сложную конструкцию, высокую стоимость и дороги в эксплуатации.

ЭКСТРАКТОР С МЕШАЛКОЙ


Принцип работы

Экстрактор с мешалкой (рис. 12) состоит из корпуса 2 и мешалки 3, закрепленной на валу электродвигателя 1.

После заполнения аппарата обрабатываемым раствором и экстрагентом, осуществляется его включение. Перемешивающее устройство (мешалка) осуществляет дробление жидкости, увеличивая поверхность контакта фаз, поддерживает полученные капели во взвешенном состоянии и приводит их к относительному перемещению. В основном применяются быстроходные механические пропеллерные или турбинные мешалки, которые могут устанавливаться на валу по две штуки. После процесса смешения аппарат отключается от источника энергии, фазы расслаиваются и, благодаря различию в плотностях, удаляются из нижней части аппарата поочередно.

РАСПЫЛИТЕЛЬНЫЙ ЭКСТРАКТОР

Принцип работы

Распылительный колонный экстрактор (рис. 13) состоит из полой колонны, внутри которой имеются распределительные устройства 1 и 2 для ввода легкой и тяжелой фаз. Верхняя и нижняя части колонны имеют больший диаметр, чем диаметр корпуса, и играют роль отстойников для разделения эмульсий.

Обрабатываемый раствор и экстрагент поступают в колонну через распределительные устройства. Жидкость I, имеющая большую плотность (тяжелая фаза) подается сверху, жидкость II с меньшей плотностью (легкая фаза) – снизу. При этом одной жидкостью заполняется весь объем колонны – это так называемая сплошная фаза, другая подается в виде небольших капель (диспергируется) – это дисперсная фаза. В распылительном экстракторе, представленном на рис. 13, диспергируется более легкая фаза. При прохождении капель по высоте колонны происходит процесс переноса вещества из одной фазы в другую. В зависимости от того, в какой фазе находится переносимое вещество, различают массопередачу в каплю и из капли. Легкая фаза, достигнув верхней части колонны, отстаивается, освобождаясь от капель более тяжелой фазы, и сливается с верхнего уровня отстойника. Тяжелая фаза отводится из колонны снизу через гидрозатвор 3. Высота гидрозатвора определяет положение границы раздела фаз и обусловливает диспергирование той или другой жидкости. Для предотвращения образования газовой пробки гидрозатвор соединен трубой 4 с верхним пространством аппарата, свободным от жидкости.

НАСАДОЧНЫЙ ЭКСТРАКТОР


Принцип работы

Насадочный колонный экстрактор (рис. 14) по конструкции аналогичен насадочному абсорберу. Он состоит из колонны, в которой находятся насадка 1, опорная решетка 2.

Насадку укладывают на опорную решетку, имеющую отверстия или щели для прохода жидкостей. Сначала подают исходный раствор, который является тяжелой фазой. Экстрагент противотоком диспергируют с помощью распределительного устройства. В слое насадки капли многократно коалесцируются (коалесценция – процесс сливания капелек жидкости в более крупные капли) и дробятся вновь, что повышает эффективность процесса. Разделение фаз в колонне происходит в отстойных зонах, из которых в дальнейшем осуществляется их слив. Для регулирования границы раздела фаз в аппарате используется гидрозатвор.

ТАРЕЛЬЧАТЫЙ ЭКСТРАКТОР

Принцип работы

Тарельчатая колонная (рис. 15) состоит из колонны, по высоте которой расположены ситчатые или перфорированные тарелки 1, имеющие отверстия для прохода дисперсной фазы, переливные трубки 2 для перетока тяжелой фазы, также имеется гидрозатвор 3.

Сплошная фаза I, как более тяжелая, движется сверху, перетекая от тарелки к тарелке по переливным трубам. Противотоком к ней диспергируется более легкая фаза II, которая собирается под тарелкой, образуя сплошной слой. Гидростатическим давлением слоя жидкость преодолевает сопротивление отверстий тарелки и вновь диспергируется, взаимодействуя со сплошной фазой. И так от тарелки к тарелке. Для регулирования границы раздела фаз в аппарате используется гидрозатвор.

Диспергировать можно и более тяжелую фазу. В этом случае она будет образовывать сплошной слой уже на тарелке и под действием гидростатического давления продавливаться через отверстия, дробиться и взаимодействовать со сплошной фазой.

ПУЛЬСАЦИОННЫЙ ЭКСТРАКТОР


Принцип работы

В пульсационной колонне (рис. 16) степень диспергирования увеличивается за счет дополнительного подвода механической энергии. Экстрактор состоит из колонны, в которой расположены ситчатые тарелки 1, у которых отсутствуют переливы. Возвратно-поступательное движение жидкостям сообщает поршневой насос 2 (или механический, пневматический и др. пульсатор).

Тяжелая сплошная фаза I движется сверху вниз. Более легкая дисперсная фаза II осуществляет движение снизу вверх. При взаимодействии фаз осуществляется их пульсация поршневым насосом или пульсатором. Пройдя по высоте колонны, каждая фаза отстаивается в отстойниках и отводится из колонны.

Пульсацию жидкостям можно сообщить посредством вибрации перфорированных тарелок, укрепленных на общем штоке, которому сообщается возвратно-поступательное движение. Такие аппараты чаще называют вибрационными экстракторами.

Читайте также: