Анатомические морфологические физиологические и биохимические функции человека реферат

Обновлено: 05.07.2024

Известно, что к 70 годам инволюции подвергается до 40% нефронов (даже при отсутствии первичной патологии почек), на 30—40% снижается дезинтоксикационная функция печени, у 48—60% лиц пожилого и старческого возраста развивается анемия, обусловленная жировым перерождением костного мозга. Наличие вредных привычек (курение, регулярное употребление алкоголя) усугубляет выраженность возрастных функциональных изменений органов и систем. В связи с изменениями объемов водных пространств организма (> 20%) и снижением основного обмена (50—60%) существенно изменяется фармакокинетика лекарственных препаратов. Все это заставляет существенно корректировать традиционные методы анестезии у пациентов пожилого и старческого возраста.
По этой причине целесообразно коснуться наиболее значимых аспектов клинической морфофизиологии стареющего организма.

Нарушается синаптическая передача, снижается продукция нейротрансмиттеров. Вследствие этого позднее пробуждение больного нередко ошибочно трактуется анестезиологами, как передозировка анестетиками.

В процессе старения снижается объем циркулирующей крови (ОЦК) на 10— 30%, отмечается сгущение крови, гипопротеинемия. Уменьшается гидратация тканей, водный сектор внеклеточного пространства. Увеличивается дефицит клеточного К+, снижается концентрация Na+ в крови.

Изменения дыхательной системы при старении. На фоне уменьшения общей массы тела (возрастная дистрофия скелетной мускулатуры) снижается эффективность работы диафрагмы и межреберных мышц. Повышается ригидность грудной клетки, дыхание становится преимущественно абдоминальным.

Морфологические изменения бронхов и легочной ткани заключаются в дегенеративно-дистрофических изменениях эластических волокон, частичной атрофии альвеол (альвеолокапиллярный фиброз), атрофии слизистой оболочки бронхов, снижении активности мерцательного эпителия и дренажной функции бронхов, снижении продукции сурфактанта (нестабильность альвеол, вероятность возникновения ателектазов), возрастной эмфиземе, пневмосклерозе и в результате — в уменьшении дыхательной поверхности легких.
Все это обусловливает развитие возрастной дыхательной недостаточности различной степени выраженности даже у пациентов, не имеющих исходной патологии бронхолегочного аппарата.

физиология старения организма

Возрастные морфофункциональные изменения паренхиматозных органов. Для печени характерно уменьшение массы органа за счет снижения количества общей воды, атрофия паренхимы, жировое перерождение, снижение белковосинтезирующей и детоксикационной функций, нарушение желчевыделения и функции запирательного механизма холедохо-дуоденального соединения, снижение перфузии ткани печени на 12—22%. Все эти факторы обусловливают снижение детоксицирующей функции печени на 15—30%.

В почках у пожилых отмечено склерозирование к 70 годам 30—50% нефронов (старческий нефросклероз), увеличение экскреции Na+, снижение на 30— 40% скорости клубочковой фильтрации, уменьшение до 30—40% реабсорбции в дистальных отделах почечных канальцев, снижение диуреза до 25—40 мл/час. Ослабление выделительной функции почек (на 20—40%) крайне важно учитывать при использовании медикаментозных средств, элиминируемых почками.

Желудочно-кишечный тракт отличает повышение рН желудочного сока, частое развитие кишечного дисбактериоза, появление склонности к запорам, снижение тонуса пищеводного жома кардии, возникновение эзофагиального рефлюкса, высока вероятность регургитации, развивается недостаточность островков Лангерганса за счет склерозирования ткани поджелудочной железы, способствующих развитию сахарного диабета II типа.

Кроветворение и иммунитет характеризуются снижением иммунитета (инволютивное уменьшение титра естественных изоагглютининов до 70%), активности фагоцитов, накоплением в крови циркулирующих активных комплексов, увеличением популяции В-лимфоцитов в крови на фоне снижения числа Т-лимфоцитов, снижением количества лимфоцитов в периферической крови на 20—30%, увеличением количества циркулирующих иммуноглобулинов IgG, IgA на 20—30%, снижением уровня IgM, IgE (на 15—20%), постепенной инволюцией вилочковой железы (Т-иммунодефицит), замещением красного костного мозга жировой тканью (к 70 годам — на 30—40%), угнетением гемопоэза, уменьшением числа эритроцитов до 4 млн., частое развитие тромбоцитопении, лейкопении, склонностью к тромбообразованию за счет угнетения фибринолиза.

Сложные процессы, происходящие в стареющем организме человека, сказываются самым неблагоприятным образом на проявлениях и симптомах возникающего заболевания, нарушают метаболические процессы в нем, снижают естественные защитные механизмы, процесс восстановления нарушенных функций в органах и системах.

Длительно существующие хронические заболевания и их проявления нередко удерживают на себе внимание пациента и отвлекают его от основных признаков, имеющих прямое отношение к причине госпитализации.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Все органы в организме каждого человека функционально взаимосвязаны друг с другом. Выделяют несколько систем в человеческом организме. К таким системам относятся следующие: опорно-двигательная, дыхательная, сердечнососудистая, нервная, выделительная, эндокринная, лимфатическая, пищеварительная и др. Актуальность данной темы заключается в том, что в процессе совершенствования функциональных возможностей человеческого организма улучшается протекание процессов торможения и возбуждения, что и является основополагающим для увеличения быстроты, ловкости, а также экономности затрат энергии при исполнении сложных движений.

Цель данного реферата – изучение анатомо-морфологических особенностей и основных физиологических функций организма.

Задачи, поставленные для достижения цели, заключаются в следующем:

1) изучение функциональных систем организма;

2) рассмотрение костной системы;

3) изучение мышечной системы.

Предмет реферата – анатомо-морфологические особенности и основные физиологические функции организма.

Объект – функциональные системы организма, костная система, мышечная система.

Степень изученности темы данного реферата достаточно высока. Реферат состоит из введения, трёх глав, заключения, списка литературы.

1 Анатомо-морфологическое строение организма

Организм человека как целостная, сложно устроенная, саморегулирующаяся система, состоит из органов и тканей.

Клетка – функциональная единица организма, обеспечивающая структурное и функциональное единство тканей, размножение, рост и передачу наследственных свойств организма [2].

У взрослого человека число клеток в организме достигает порядка 100 триллионов. Клетки разнообразны по форме, различны по размеру, но все имеют общие биологические признаки строения – ядро и цитоплазму, которые заключены в клеточную оболочку.

Межклеточное вещество – это продукт жизнедеятельности клеток. Оно состоит из основного вещества и расположенных в нем волокон соединительной ткани.

Ткань – это совокупность клеток и межклеточного вещества, имеющих общее происхождение, одинаковое строение и функции [2].


  • эпителиальную;

  • соединительную;

  • мышечную;

  • нервную.

К соединительной ткани относят рыхлую, плотную, хрящевую и костную ткань, а также кровь.

К мышечной ткани относят группу тканей организма, обладающих свойствами сократимости. Различают гладкую, поперечно-полосатую и сердечную ткань. Поперечно-полосатая ткань сокращается по желанию человека, гладкая – произвольно (сокращение внутренних органов, кровеносных сосудов и т.п.) [4].

Нервная ткань является основным структурным компонентом нервной системы человека. Состоит из нервных клеток или нейронов, важнейшей функцией которых является генерирование и проведение нервных импульсов.

Орган – это часть целостного организма, обусловленная в виде комплекса тканей, сложившегося в процессе эволюционного развития и выполняющего определенные специфические функции [2].

Функциональная система – совокупность органов, выполняющих общую для них функцию.

Основные функциональные системы организма: костная; мышечная; сердечно-сосудистая; дыхательная; пищеварительная; выделительная; нервная; эндокринная; сенсорная.

Пищеварительная система - осуществляет переваривание пищи путём её физической и химической обработки, всасывание продуктов расщепления через слизистую оболочку в кровь и лимфу и выведение не переработанных остатков. Условно выделяют три отдела пищеварительной системы. Передний отдел включает органы ротовой полости, глотку и пищевод. Здесь осуществляется, в основном, механическая переработка пищи. Средний отдел состоит из желудка, тонкой и толстой кишок, печени и поджелудочной железы. В этом отделе осуществляется преимущественно химическая обработка пищи, всасывание продуктов её расщепления и формирование каловых масс [5].

Опорно-двигательная система (синонимы: опорно-двигательный аппарат, костно-мышечная система, локомоторная система, скелетно-мышечная система) — комплекс структур, образующих каркас, придающий форму организму, дающий ему опору, обеспечивающий защиту внутренних органов и возможность передвижения в пространстве.

Кровеносная система - система органов, которая обеспечивает циркуляцию крови в организме человека и животных. Благодаря циркуляции крови кислород, а также питательные вещества доставляются органам и тканям тела, а углекислый газ, другие продуктыметаболизма и отходы жизнедеятельности выводятся. Циркуляция крови в сердечно-сосудистой системе у позвоночных животных и человека дополняется лимфооттоком от органов и тканей организма по системе сосудов, узлов и протоков лимфатической системы, впадающих в венозную систему в месте слияния подключичных вен. В состав сердечно-сосудистой системы входит сердце — орган, который заставляет кровь двигаться, нагнетая её в кровеносные сосуды — полые трубки различного калибра, по которым она циркулирует. Все функции кровеносной системы строго согласованы благодаря нервно-рефлекторной регуляции, что позволяет поддерживать гомеостаз в условиях постоянно изменяющихся условий внешней и внутренней среды.

2 Костная и мышечная системы

У человека 206 костей (85 парных и 36 непарных), которые в зависимости от формы и функций делятся на:

· трубчатые (кости конечностей);

· губчатые (выполняют в основном защитную и опорную функции – ребра, грудина, позвонки и др.);

· плоские (кости черепа, таза, поясов конечностей);

· смешанные (основание черепа).

Снаружи кость покрыта тонкой оболочкой – надкостницей, плотно соединяющейся с веществом кости. Надкостница имеет два слоя: наружный плотный слой насыщен сосудами (кровеносными и лимфатическими) и нервами, а внутренний костеобразующий – особыми клетками, которые способствуют росту кости в толщину. Надкостница покрывает кость почти на всем ее протяжении, за исключением суставных поверхностей. Рост костей в длину происходит за счет хрящевых частей, расположенных на краях.

В каждой кости содержатся все виды тканей, но преобладает костная, представляющая разновидность соединительной ткани. В состав кости входят органические и неорганические вещества. Неорганические вещества (65–70% сухой массы кости) – это в основном фосфор и кальций. Органические (30–35 %) – это клетки кости, коллагеновые волокна [1].

Эластичность и упругость костей зависит от наличия в них органических веществ, а твердость обеспечивается минеральными солями.

На рост и формирование костей существенное влияние оказывают социально-экономические факторы: питание, характер физической нагрузки, окружающая среда и т.д.

Все кости человека соединены посредством суставов, связок и сухожилий.

Суставы – подвижные соединения, область соприкосновения костей в которых покрыта суставной сумкой из плотной соединительной ткани. Суставная жидкость уменьшает трение между поверхностями при движении, эту же функцию выполняет и гладкий хрящ, покрывающий суставные поверхности.

Сухожилия соединяют скелетные (произвольно сокращающиеся) мышцы с костями. Соединительная ткань сухожилий находится на обоих концах мышцы (в местах прикрепления).

Связки– плотные волокнистые структуры, соединяющие две кости. Они помогают стабилизировать сустав и предотвращают неестественные движения, позволяя в то же время совершать движения в нормальных условиях [8].

Скелет человека делится на скелет головы, туловища и конечностей.

Скелет головы называется черепом, который имеет сложное строение. В черепе находится мозг и некоторые сенсорные системы: зрительная, слуховая, обонятельная.

Непосредственно с туловищем череп соединяется с помощью двух первых шейных позвонков. Скелет туловища состоит из позвоночного столба и грудной клетки. Позвоночный столб состоит из 33-34 позвонков и имеет пять отделов: шейный (7 позвонков); грудной (12 позвонков); поясничный (5 позвонков); крестцовый (5 сросшихся позвонков); копчиковый (сросшиеся 4-5 позвонков).

Соединение позвонков осуществляется с помощью хрящевидных, эластичных межпозвоночных дисков и суставных отростков. Межпозвоночные диски увеличивают подвижность позвоночника. Чем больше их толщина, тем выше гибкость.

В основной скелет входит и грудная клетка, которая выполняет защитную функцию для внутренних органов и состоит из грудины, 12 пар ребер и их соединений. Ребра представляют собой плоские дугообразно-изогнутые длинные кости, которые при помощи гибких хрящевидных концов прикрепляются подвижно к грудине. Все соединения ребер очень эластичны, что имеет важное значение для обеспечения дыхания.

Любая двигательная, в том числе и спортивная, деятельность совершается при помощи мышц, за счет их сокращения.

Существует три вида мускулатуры:

Гладкие мышцы расположены в стенках кровеносных сосудов и некоторых внутренних органах. Они сужают или расширяют сосуды, продвигают пищу по желудочно-кишечному тракту, сокращают стенки мочевого пузыря. Их работа не зависит от воли человека.

Поперечно-полосатые мышцы – это все скелетные мышцы, которые обеспечивают многообразные движения тела. Их работа находится под волевым контролем.

Сердечная мышца состоит из поперечно-полосатых мышечных волокон, как и гладкие мышцы, сердечная мышца работает без участия воли человека.

Основой мышц являются белки, составляющие 80-85% мышечной ткани. Главное свойство мышечной ткани – сократимость. Она обеспечивается благодаря мышечным белкам – актину и миозину.

Мышца имеет волокнистую структуру. Каждое волокно – это мышца в миниатюре. Совокупность этих волокон и образует мышцу в целом. Мышечное волокно в свою очередь состоит из миофибрилл.

Различают красные мышечные волокна и белые мышечные волокна. Они содержатся в мышцах в разных пропорциях.

Красные мышечные волокна имеют большой запас гликогена и липидов, обладают способностью к длительному напряжению и выполнению продолжительной динамической работы.

Белые мышечные волокна сокращаются быстрее красных волокон, но не способны к длительному напряжению.

К мышце подходят и от нее отходят (принцип рефлекторной дуги) многочисленные нервные волокна. Двигательные нервные волокна передают импульсы от головного и спинного мозга, приводящие мышцы в рабочее состояние; чувствительные волокна передают импульсы в обратном направлении, информируя центральную нервную систему о деятельности мышц.

Каждую мышцу пронизывает разветвленная сеть капилляров, по которым поступают необходимые для жизнедеятельности мышц вещества и выводятся продукты обмена.

Скелетные мышцывходят в структуру опорно-двигательного аппарата, крепятся к костям скелета и при сокращении приводят в движение отдельные звенья скелета.

Они участвуют в удержании положения тела и его частей в пространстве, обеспечивают движения при ходьбе, беге, жевании, глотании, дыхании и т.д., вырабатывая при этом тепло. Скелетные мышцы обладают способностью возбуждаться под влиянием нервных импульсов. Возбуждение проводится до сократительных структур (миофибрилл), которые, сокращаясь, выполняют двигательный акт – движение или напряжение [4].

У человека насчитывается около 600 мышц и большинство из них парные. В каждой мышце различают активную часть (тело мышцы) и пассивную (сухожилие).

Мышцы, действие которых направлено противоположно, называются антагонистами, однонаправлено – синергистами. Одни и те же мышцы в различных ситуациях могут выступать в том и другом качестве.

По функциональному назначению и направлению движений в суставах различают мышцы сгибатели и разгибатели, приводящие и отводящие, сфинктеры (сжимающие) и расширители.

На основе анатомического признака мышцы разделяют на мышцы туловища, головы, шеи, верхних и нижних конечностей.

Мышцы туловища включают мышцы грудной клетки, спины и живота. Мышцы грудной клетки участвуют в движениях верхних конечностей, а также обеспечивают дыхательные движения. Мышцы спины участвуют в поддержании вертикального положения тела, при сильном напряжении вызывают прогибание туловища назад. Брюшные мышцы поддерживают давление внутри брюшной полости, участвуют в некоторых движениях тела, в процессе дыхания.

Мышцы головы и шеи – мимические, жевательные, приводящие в движение голову и шею.

Мышцы верхних конечностей обеспечивают движение плечевого пояса, плеча, предплечья и приводят в движение кисть и пальцы.

Мышцы нижних конечностей обеспечивают движения бедра, голени и стопы. Многие мышцы бедра, голени и стопы принимают участие в поддержании тела человека в вертикальном положении.

3 Сердечно-сосудистая и дыхательная системы

Гуморальная регуляция осуществляется внутренней системой транспортировки через кровь и систему кровообращения, к которой относится сердце, кровеносные сосуды, лимфатические сосуды и органы, вырабатывающие особые клетки – форменные элементы.

Кровь – соединительная ткань, циркулирующая в кровеносной системе и обеспечивающая жизнедеятельность клеток и тканей организма. Она состоит из плазмы и взвешенных в ней форменных элементов: эритроцитов, лейкоцитов, тромбоцитов и других веществ.

Эритроциты – красные кровяные клетки, заполнены особым белком гемоглобином, который способен образовывать соединения с кислородом и транспортировать его из легких к тканям, а из тканей переносить углекислый газ к легким, осуществляя, таким образом, дыхательную функцию.

Лейкоциты – белые кровяные тельца, выполняют защитную функцию, уничтожая инородные тела и болезнетворные микробы.

Тромбоциты – кровяные пластинки, основная функция которых – обеспечение свертываемости крови. Кровь свертывается вследствие разрушения тромбоцитов и превращения растворимого белка плазмы фибриногена в нерастворимый фибрин [3].

Лимфа – прозрачная жидкость, циркулирующая в лимфатической системе человека, химический состав которой близок к составу плазмы крови. В лимфе меньше белков (3%), чем в плазме крови (6,5%) и вязкость её невелика. Она обладает способностью свёртываться, хотя и медленнее, чем кровь. Лимфа содержит клетки крови, среди которых особенно много лимфоцитов и очень мало эритроцитов.

Лимфоциты – разновидность белых кровяных клеток человека, имеющих шарообразную форму, овальное ядро, окруженное богатой рибосомами цитоплазмой.

Сердце – главный орган кровеносной системы, представляет собой полый мышечный орган, совершающий ритмические сокращения, благодаря которым происходит кровообращение в организме. Сердце – автономное, автоматическое устройство. Однако его работа корректируется многочисленными прямыми и обратными связями, поступающими от различных органов и систем организма. Сердце связано с центральной нервной системой, которая оказывает на его работу регулирующее воздействие.

Сердечно-сосудистая системасостоит из большого и малого кругов кровообращения. Левая половина сердца обслуживает большой круг кровообращения, правая – малый круг.

Деятельность сердца заключается в ритмичной смене сердечных циклов, состоящих из трех фаз: сокращения предсердий, сокращения желудочков и общего расслабления сердца.

Пульс – волна колебаний, распространяемая по эластичным стенкам артерий в результате гидродинамического удара порции крови, выбрасываемой в аорту под большим давлением при сокращении левого желудочка. Частота пульса соответствует частоте сокращений сердца.

У человека существуют три типа кровеносных сосудов: артерии, вены, капилляры. Артерии и вены отличаются друг от друга направлением движения крови в них.

Артерия – это любой сосуд, несущий кровь от сердца к органу.

Вена – это сосуд, несущий кровь от органа к сердцу, независимо от состава крови (артериальная или венозная) в них.

Капилляры – тончайшие сосуды, через них вещества, растворенные в плазме крови, просачиваются в тканевую жидкость, из которой переходят в клетки. Продукты обмена клеток проникают в обратном направлении из тканевой жидкости в кровь.

Кровяное давление создается силой сокращения желудочков сердца и упругостью стенок сосудов.

Оно измеряется косвенным путем в плечевой артерии по методу Короткова. Различают максимальное (или систолическое) давление, которое создается во время сокращения левого желудочка (систолы), и минимальное (или диастолическое) давление, которое отмечается во время расслабления левого желудочка (диастолы).

Дыхательная система включает в себя носовую полость, гортань, трахею, бронхи и легкие. В процессе дыхания из атмосферного воздуха через альвеолы легких в организм постоянно поступает кислород, а из организма выделяется углекислый газ.

Легкие располагаются в герметически закрытой полости грудной клетки. Они покрыты тонкой гладкой оболочкой – плеврой, такая же оболочка выстилает изнутри полость грудной клетки.

Дыхание – это целый комплекс физиологических и биохимических процессов, в реализации которых участвует не только дыхательный аппарат, но и система кровообращения.

Механизм дыхания имеет рефлекторный (автоматический) характер. В покое обмен воздуха в легких происходит в результате дыхательных ритмических движений грудной клетки. Расширение полости грудной клетки осуществляется в результате деятельности дыхательной мускулатуры.

Внешнее дыхание – это процесс, при котором кислород из атмосферного воздуха переходит в кровь, а углекислый газ из крови – в атмосферный воздух.

Тканевое (внутреннее) дыхание – это процесс потребления клетками кислорода и выделение ими углекислоты как результат биохимических реакций, связанных с образованием энергии, чтобы обеспечить процессы жизнедеятельности организма.

Показателями работоспособности органов дыхания являются дыхательный объем, частота дыхания, жизненная емкость легких, легочная вентиляция, потребление кислорода и др.

Дыхательный объем – это объем воздуха, проходящий через легкие за один дыхательный цикл (вдох, выдох). У нетренированных людей дыхательный объем в состоянии покоя находится на уровне 350–500 мл.

Частота дыхания – это количество дыхательных циклов в минуту. Один цикл состоит из вдоха, выдоха и дыхательной паузы. Средняя частота дыхания в покое 15–18 циклов в минуту.

Жизненная емкость легких (ЖЕЛ) – это максимальный объем воздуха, который может выдохнуть человек после максимального вдоха. ЖЕЛ в значительной степени зависит от возраста, пола, роста, окружности грудной клетки, физического развития. У мужчин ЖЕЛ колеблется в пределах 3200–4200 мл, у женщин 2500–3500 мл [6].

Легочная вентиляция – это объем воздуха, который проходит через легкие за минуту. Величина легочной вентиляции определяется умножением величины дыхательного объема на частоту дыхания. Легочная вентиляция в покое находится на уровне 5000–9000 мл.

Заключение


Анатомия - раздел биологии и конкретно морфологии, изучающий строение тела организмов и их частей на уровне выше клеточного [7]. В анатомию входят: скелет человека(кости туловища, кости головы(череп), кости верхних конечностей, кости нижних конечностей), соединения костей(соединение костей туловища, соединение костей туловища и головы, соединения костей верхних конечностей, соединения костей нижних конечностей), мышцы тела человека(спины, головы, шеи, груди и живота..),внутренние органы(пищеварительная система, дыхательная система, половая система..), сердечнососудистая система(сердце, перикард, артерии шеи и головы, артерии верхних и нижних конечностей..), нервная система(спиной мозг, головной мозг, черепные нервы…), органы чувств(органы зрения, органы слуха и равновесия).

Диапазон заболеваний, при которых могут возникнуть неот­ложные состояния, весьма велик, однако при всем многообразии этиологических факторов их патогенез неизменно включает такие патофизиологические сдвиги, как гипоксия, расстройства гемоди­намики и особенно микроциркуляции, печеночная и почечная не­достаточности, нарушение водно-солевого обмена и кислотно-ще­лочного состояния (КЩС), гемостаза и др. Исходя из этого бес­спорного положения, для правильного понятия патогенеза неотлож­ных состояний необходимо знать анатомо-физиологические основы жизненно важных функций организма.

Основной функцией легких является обмен О2 и СО2 между внешней средой и организмом. Это достигается сочетанием венти­ляции, диффузии газов через альвеолярно-капиллярную мембрану и легочного кровообращения.

Процесс дыхания условно можно подразделить на три этапа.

1. Первый этап включает в себя доставку кислорода из внешней среды в альвеолы.

2. Вторым этапом дыхания является диффузия О2 через альвеоляр­но-капиллярную мембрану ацинуса и транспортировка его к тка­ням; движение СО2 осуществляется в обратном порядке.

3. Третий этап дыхания заключается в утилизации кислорода при биологическом окислении субстратов и образовании, в конечном итоге, энергии в клетках.

Примечание. Регуляция дыхания осуществляется центральной и пе­риферической нервной системой. В кровеносных сосудах находятся хеморецепторы, реагирующие на концентрацию продуктов обмена, парциаль­ное напряжение кислорода и углекислого газа и реакцию внутренней сре­ды организма (рН). Через них осуществляется регуляция объема вентиля­ции, частоты, глубины, длительности вдоха и выдоха, силы сокращений дыхательных мышц.

Первый этап. Адекватность первого этапа зависит от многих факторов, начиная с функции верхних дыхательных путей: очище­ние, согревание, увлажение воздуха. Эффективность очищения вды­хаемого воздуха зависит от количества и качественного состояния макрофагов, содержащихся в слизистых оболочках; они фагоцити­руют и переваривают минеральные и бактериальные частицы. Внут­ренняя поверхность верхних дыхательных путей выстлана реснитча­тым псевдомногослойным эпителием. Его основная функция — эва­куация мокроты из верхних дыхательных путей; в норме из трахеи и бронхов за сутки удаляется до 100 мл мокроты, при некоторых видах патологии до 100 мл/час.

Для нормальной функции верхних дыхательных путей важное значение имеет состояние кашлевого рефлекса. При его нарушении не происходит своевременного освобождения верхних дыхательных путей от слизи и патологического секрета.

Кашель состоит из трех фаз:

—голосовая щель раскрыта, дыхательный объем (ДО) достигает жиз­ненной емкости легких (ЖЕЛ);

—голосовая щель закрыта, альвеолярные ходы раскрываются, аль­веолы и дыхательные пути образуют герметичную систему;

Различают верхние (полость носа, рта, глотки и гортани) и ниж­ние (трахея, бронхи) дыхательные пути. Емкость верхних дыхатель­ных путей называется анатомическим мертвым пространством, оно приблизительно равно 150 см 3 или 2,2 см 3 на 1 кг массы. Воздух, заполняющий анатомическое мертвое пространство, в газообмене не участвует. Вентиляция легких зависит от дыхательного обмена и частоты дыханий в 1 мин. Основные параметры вентиляции легких представлены в табл. 1.

Таблица 1. Нормальные величины функциональных проб легких.

Величина вдоха определяется разницей между силой сокраще­ния дыхательных мышц и эластичностью легких. Эластичность лег­ких зависит от поверхностного натяжения жидкости, покрывающей альвеолы и эластичности самой легочной ткани. Вентилируемость легких во время вдоха (по значимости): нижний отдел, передний, задний, верхушка. Работа дыхания увеличивается при заболеваниях легких, сопровождающихся повышением эластичного и неэластич­ного сопротивлений. Этот факт необходимо учитывать при прове­дении искусственной вентиляции легких (ИВЛ).

Примечание. Современная диагностическая аппаратура позволяют в течение 10—15 мин. определить все данные спирограммы, оценить проходимость бронхов на всех уровнях, скорость потока воздуха и вязкость мокроты. Кроме этого, прибор дает заключение о наличии в легких рестрикции или обструкции.

Вторым этапом дыхания является диффузия кислорода через АЦИНУС и транспортировка его к тканям; движение углекислого газа осуществляется в обратном порядке. Ацинус является структурной единицей легких. Он состоит из дыхательной бронхиолы и альвеол. Диффузия кислорода осуществляется за счет парциальной разности его содержания в альвеолярном воздухе и венозной крови, после чего незначительная часть О2 растворяется в плазме, а большая часть свя­зывается с гемоглобином, содержащимся в эритроцитах, и в таком виде транспортируется к органам и тканям. Соседние альвеолы сообщаются между собой порами межальвеолярных перегородок. Через них возможна незначительная вентиляция альвеол с закупоренными слизью хода­ми, например, при астматическом статусе.

Примечание. Фукция альвеолярно-капиллярной мембраны не огра­ничивается только диффузией газов. Она влияет на химический состав крови, участвует в процессах регуляции свертывающей системы крови и др.

Внутренняя поверхность альвеол покрыта сложным белковым по­верхностно-активным веществом — СУРФАКТАНТОМ. Сурфактантный комплекс препятствует спадению терминальных бронхиол, играет важ­ную роль в регуляции водного баланса, осуществляет противоотечную функцию, оказывает защитное действие за счет противоокислительной активности. Предполагается участие сурфактанта в процессах диффузий О2 и СО2 через альвеолярно-капиллярный барьер за счет регулирующего влияния на динамику перикапиллярной, интерстициальной и альвео­лярной жидкости. Сурфактант очень чувстви­телен к различным эндо- и экзогенным факторам: снижение кровообра­щения, вентиляции, уменьшение парциального напряжения кислорода в артериальной крови (ра О2 ) вызывают уменьшение его количества, в результате чего нарушается стабильность поверхности альвеол, что мо­жет осложниться возникновением ателектазов.

Третий этап дыхания заключается в утилизации кислорода в цик­ле Кребса. Молеку­лярной основой клеточного дыхания является окисление углерода до углекислого газа и перенос атома водорода на атом кислорода с после­дующим образованием молекулы воды. Данный путь получения энер­гии (аэробный) в организме является ведущим и наиболее эффектив­ным. Так, если из 1 молекулы глюкозы при анаэробном окислении образуется только 2 молекулы АТФ, то при аэробном окислении из нее образуется 38 молекул АТФ. В нормальных условиях 96—98% всей энер­гии, вырабатываемой в организме, образуется в условиях аэробного окисления и только 2—4% приходится на анаэробное. Отсюда ясна исключительная роль адекватного снабжения организма кислородом.

Сосудистое русло легких состоит из 2-х систем: легочной и брон­хиальной. Давление в легочной артерии в среднем равно 17—23 мм рт. ст. Общая поверхность стенок капилляров составляет 30—60 м 2 , а при физической нагрузке увеличивается до 90 м 2 . Диастолическое давление в левом желудочке равно 0,2 мм рт. ст. Нормальный кро­воток в системе легочной артерии зависит от величины венозного возврата крови в сердце, сократительной способности миокарда, функционирования клапанов, тонуса артериол и прекапиллярных сфинктеров. В зависимости от конкретных условий, емкость малого круга может значительно меняться, т. к. он относится к системе сосудов с низким давлением.

Взаимосвязь между внешней средой и различными анатомо-физиологическими структурами организма обеспечивает сердечно­сосудистая система (ССС). Рассмотрим основные составляющие ССС: Кровь; Сердце; Сосуды.

Кровь

Основные показатели крови: плотность 1,055—1,065, вязкость в 5—6 раз больше, чем у воды, объем приблизительно равен 8% массы тела (5—6 л). Гематокрит: мужчины — 0,45—0,48, женщины — 0,42—0,45. Эритроциты: основная функция— транспорт кислорода к тканям. Лейкоциты: основная функция — фагоцитоз, иммунные процессы, пирогенные реакции.

Плазма крови представляет собой коллоидно-электролитно-белковый раствор, в котором взвешены форменные элементы. Она имеет большое значение в осуществленнии гемо- и гидродинамики.

Плазма составляет большую часть ОЦК. Содержащийся в ней белок обеспечивает значительную часть коллоидно-осмотического давления крови. Белки плазмы, особенно альбумины, связывают лекарственные вещества, токсины и транспортируют их к местам разрушения.

Для крови характерно увеличение вязкости в зависимости от градиента скорости. В свою очередь, от вязкости зависит еще одно свойство крови — текучесть, величина, обратная вязкости. Вязкость возрастает при сахарном диабете (на 20%), при коматозных состоя­ниях, коронарной недостаточности, дегидратации, шоке и т. д.

При этом основной причиной снижения текучести является увеличение гематокрита и возрастание концентрации глобулинов и фибриноге­на. Уменьшение вязкости наблюдается при гипертермии, лечении антикоагулянтами, декстранами. Кроме этого, текучесть крови за­висит от физико-химических свойств форменных элементов (их кон­центрации, взаимодействия между собой и сосудистой стенкой).

Кислородно-транспортная функция крови

Кровь осуществляет свою кислородно-транспортную функцию благодаря наличию в ней гемоглобина, разности парциального дав­ления газов на этапе их транспортировки и ряда некоторых других факторов.

Таблица. Парциальное давление дыхательных газов на различных участках их транспортировки у здоровых людей в покое

103 40 100 40 100>40 40 3 ~. Эта реакция происходит во всех водных секторах и эритроцитах. Далее углекислота диффундирует через клеточные мембраны и попадает в венозную кровь. В состоя­нии покоя за 1 мин. в тканях образуется и выделяется легкими при­мерно 180 мл СО2. Часть углекислого газа физиче­ски растворена в плазме крови. не более 6—7% от его суммарного количества. Примерно 3—10% углекислого газа из тканей к легким транспортируется в виде карбаминовой формы.

Основное количество углекислого газа (более 80%) транспор­тируется из тканей к легким в форме бикарбоната, важнейшая роль в этом механизме принадлежит гемоглобину и его способности к процессам оксигенации и деоксигенации. Оксигенированный гемо­глобин (НЪО2 ) является более сильной кислотой, чем деоксигенированный, благодаря этому обеспечивается связывание СО2 в ткане­вых капиллярах и освобождение его в легочных.

Показатели газов крови

Исследование рО2 и рСО2 проводят при помощи анализаторов микрометодом Аструпа. Каждый такой прибор оборудован микро-ЭВМ, и все расчеты содержания кислорода в крови осуществляются в автоматическом режиме.

SaO2 — насыщение кислородом артериальной крови

ра О2 — парциальное напряжение кислорода в артериальной крови

Приведенные данные касаются лиц молодого и среднего возраста. С возрастом происходит снижение рСО2 и SaO2

Сердце

Основные электрофизиологические характеристики сердца: воз­будимость, сократимость, проводимость, автоматизм. Функция серд­ца, как насоса, зависит от состояния эндокарда, миокарда, перикар­да, состояния клапанного механизма, ЧСС и ритма.

Основной путь выработки энергии для сердца — аэробный. Одно из важнейших свойств сердца — возбудимость, которая обусловлена периодическим изменением трансмембранного потенциала. Сумма этих изменений в виде биотоков регистрируется на ЭКГ.

Ведущий показатель адекватной работы сердца — ударный объем (УО; синоним — систолический объем, норма: 60—80 мл) и производ­ная от него величина: минутный объем сердца (МОС); равен УО • ЧСС, норма 5-6 л).

Сосуды

Привязка кровотока к органам и тканям осуществляется при помощи пяти видов кровеносных сосудов:

1. Сосуды-буферы, или артерии.

2. Сосуды-емкости, или вены.

3. Сосуды распределения (сопротивления) — это артериолы и венулы.

4. Сосуды обмена — капилляры.

Структурной единицей системы микроциркуляции является КАПИЛЛЯРОН, состоящий из артериолы, венулы, капилляров и артерио-венозного анастомоза.

Тонус артериол в головном мозге и сердце регулируется через хеморецепторы, реагирующие на рН, ра СО2 , а в других органах и системах еще и симпатической нервной системой.

Движущая сила обмена веществ на уровне капилляров — гид­родинамическое (ГД) и коллоидно-осмотическое давление (КОД).

Лимфатическая система обеспечивает постоянство плазмы кро­ви и межклеточной жидкости. Объем лимфы приблизительно 2 л, скорость лимфотока 0,5—1,0 мл/сек.

Печень занимает одно из центральных мест в метаболизме ор­ганизма: регулирует энергетический баланс (вырабатывает 1/7 ко­личества энергии), водно-солевое и кислотно-щелочное состояние, свертывание крови, теплообмен и детоксикацию, образование бел­ка, конъюгацию билирубина и образование желчи. Структурной еди­ницей печени является ГЕПАТОЦИТ. Он представляет из себя об­разование, состоящее из бассейна терминальной артериолы и во­ротной венулы, терминальных желчных протоков и ветвей лимфа­тических капилляров. Гепатоциты периферических отделов печеноч­ных долек накапливают различные вещества, в т. ч. и высокоэргиче-ские соединения, участвуют в детоксикации; гепатоциты централь­ных отделов печеночных долек осуществляют метаболизм билиру­бина и экскрецию в желчные капилляры ряда веществ эндо- и экзо­генного происхождения.

В системе поддержания постоянства объема и состава жидко­стей организма основным эффекторным органом является почка. Структурная единица почек — НЕФРОН. Образуя первичную мочу из плазмы крови, почки избирательно возвращают в кровоток необ­ходимые компоненты и выводят с вторичной мочой избыток воды, солей, Н+ и органические метаболиты, накопление которых вызы­вает интоксикацию. Количество и состав мочи, в отличие от других жидкостей организма, может колебаться в значительных пределах. Процесс образования мочи представляет собой несколько взаимо­связанных между собой процессов: ультрафильтрацию, реабсорбцию, секрецию и экскрецию. Продуктом ультрафильтрации является пер­вичная моча, состав которой отличается от состава плазмы крови, в основном, содержанием белка: в ультрафильтрате его в 1000 раз мень­ше, чем в плазме. На этапе реабсорбции приблизительно 99% пер­вичной мочи всасывается. Окончательный состав мочи формирует­ся благодаря секреции Н + и К + . Фильтрационная функция почек прекращается при давлении в a. renalis, равном 80 и менее мм рт. ст. Среднесуточный объем мочи — 1,5 л, плотность — 1,014-1,021.

Кроме почек, определенную роль в выделительной функции организма играют легкие, кишечник и кожа. Через легкие за сутки с дыханием выделяется 0,4—0,6 л воды. Приблизительно столько же выделяется и через кожные покровы. При повышении температуры тела на 1ºС происходит увеличение потери воды за сутки через легкие в объеме 0,5 л и на столько же возрастает потеря через кожу. С калом за сутки выделяется 150—200 мл воды.

В течение суток организм выделяет в просвет кишечника при­мерно 8—10 л пищеварительных соков (слюна — 1,5 л, желудочный сок — 2,5 л, желчь — 0,5 л, секрет поджелудочной железы — 0,7 л, тонкокишечный сок — 3,0 л) и все обратно всасывает. При патоло­гии ЖКТ (рвота, понос) теряется большое количество пищевари­тельных соков и различных микроэлементов. Регуляция всего соко-обращения осуществляется через периферические рецепторные зве­нья, гипоталамус, нейрогипофиз, надпочечники и выделительные органы. К центральным механизмам сокорегуляции относится жаж­да, осморегуляция, обмен натрия. Жажда возникает в результате обез­воживания клеток и повышения осмотического давления плазмы.

Объем, концентрация электролитов и рН жидкостей являются основными характеристиками внутренней среды, определяющими ус­ловия нормальной деятельности функциональных систем. Организм на 60—65% (40—45 л) состоит из воды. Ее суммарное количество зави­сит от пола, возраста, массы. Вода в организме находится в связанном состоянии. Она участвует в процессах гидратации и образует ряд ком­плексных систем, которые входят в состав клеток и жидкостей. Выде­ляют 3 сектора воды:

Первые два сектора (внутрисосудистый и интерстициальный) образуют внеклеточное пространство.

Организм с большой точностью регулирует постоянство осмо­тической концентрации, уровня электролитов и взаимосвязи вод­ных секторов.

Химические вещества. Одни химические вещества — электро­литы — диссоциируют на ионы, другие — неэлектролиты — ионов не образуют (мочевина, креатинин). Ионы несут на себе положи­тельный или отрицательный заряд, в целом же вся внутренняя среда организма электронейтральна. Катионы и анионы обеспечивают один из компонентов осмотического давления тела — биоэлектрический потенциал мембран, катализируют обмен веществ, являются кофак­торами ферментов, определяют рН, участвуют в энергетическом об­мене и процессах гемокоагуляции. Одним из наиболее стабильных параметров внутренней среды является осмотическое давление Оно зависит от концентрации осмотически активных частиц в растворе и определяется их количеством, независимо от массы, заряда и раз­мера. Во внутриклеточном секторе осмотическое давление опреде­ляется концентрацией калия, фосфата и белка, во внеклеточном — содержанием Na + , СI¯ и белка. Осмотическое давление тем больше, чем больше этих частиц. Клеточные мембраны полупроницаемы, они свободно пропускают воду, но не пропускают другие молекулы, поэтому вода всегда идет туда, где концентрация молекул больше. В норме обмен ионами, водой и субстратами окисления подчинен про­цессу получения энергии и выведению метаболитов.

Нормальная функция клетки зависит от постоянства объема, состава и рН жидкости. Регуляторные механизмы, контролирующие нормальный объем, осмотическую концентрацию, ионный состав и Н + , взаимосвязаны. Поддержание постоянства КЩС внутренней среды осуществляется через систему буферов, легкие, почки и дру­гие органы. Принцип саморегуляции организмом КЩС заключает­ся в том, что при избыточном закислении внутренней среды проис­ходит усиленное выведение ионов водорода, а при ощелачивании — их задержка.

2. Сумин С.А. Неотложные состояния. - 2-е изд., стереотип. - М.: Фармацевтический мир, 2000.

3. Анестезиология и реанимация. под редакцией О. А. Долиной.М.: Медицина, 2002 г.

1. Роль физической культуры и спорта в развитии общества.
2. Физическая культура и спорт как действенные средства сохранения и укрепления здоровья человека.
3. Деятельностная сущность физической культуры в сфере учебного и профессионального труда.
4. Основные положения организации физического воспитания в вузе.
5. Организм человека как единая саморазвивающаяся и саморегулирующаяся биологическая система.
6. Анатомические, морфологические, физиологические и биохимические функции человека.
7. Природные и социально-экологические факторы, воздействующие на организм и жизнедеятельность человека.
8. Взаимосвязь физической и умственной деятельности человека.
9. Неблагоприятное воздействие гипокинезии и гиподинамии на организм человека.
10. Обеспечение устойчивости и совершенствование организма человека к физической и умственной деятельности средствами физической культуры.
11. Физиологические механизмы и закономерности совершенствования отдельных систем организма человека под воздействием направленных физических упражнений.
12. Особенности функционирования центральной нервной системы человека.
13. Двигательная функция и повышение уровня адаптации и устойчивости организма человека к различным условиям внешней среды.
14. Обмен веществ и работа сердечно-сосудистой системы, дыхательной системы, опорно-двигательного аппарата человека.
15. Функциональные возможности и проявления здоровья человека в различных сферах жизнедеятельности.
16. Взаимосвязь физкультурно-спортивной деятельности и общекультурного развития студентов.
17. Составляющие здоровый образ жизни человека.
18. Сущность и значение использования психопрофилактики и психогигиены в жизнедеятельности человека.
19. Физическое самовоспитание и самосовершенствование как необходимое условие здорового образа жизни человека.
20. Объективные и субъективные факторы обучения и реакция на них организма студента.
21. Степень влияния факторов физиологического, физического, психического характера на работоспособность студентов.
22. Объективные и субъективные признаки усталости, утомления и переутомления, их причины и профилактика.
23. Особенности использования учебных и самостоятельных занятий в специальном учебном отделении для повышения работоспособности студентов.
24. Методические принципы физического воспитания.
25. Общая и специальная физическая подготовка при занятиях физическими упражнениями и спортом.
26. Формы, методы организации и проведения самостоятельных занятий физическими упражнениями и спортом.
27. Планирование объема и интенсивности физических упражнений с учетом умственной учебной деятельности студентов.
28. Контроль и самоконтроль за эффективностью проведения самостоятельных занятий физическими упражнениями и спортом.
29. Студенческий спорт и его организационные особенности.
30. Социально-экономическая необходимость психофизической подготовки человека к труду.
31. Профессионально-прикладная физическая подготовка студентов на учебных занятиях и во внеурочное время.
32. Влияние форм и видов труда специалистов на содержание профессионально-прикладной физической подготовки.
33. Профилактика профессиональных заболеваний и травматизма средствами физической культуры.

Читайте также: