Аналоговые вычислительные машины реферат

Обновлено: 05.07.2024

Электронная вычислительная машина, компьютер - комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач

По принципу действия вычислительные машины делятся на три больших класса аналоговые (АВМ), цифровые (ЦВМ) и гибридные (ГВМ).

Критерием деления вычислительных машин на эти три класса является форма представления информации, с которой они работают

Цифровые вычислительные машины (ЦВМ) - вычислительные машины дискретного действия, работают с информацией, представленной в дискретной, а точнее, в цифровой форме.

Гибридные вычислительные машины (ГВМ) - вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме; они совмещают в себе достоинства АВМ и ЦВМ. ГВМ целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.

Наиболее широкое применение получили ЦВМ с электрическим представлением дискретной информации - электронные цифровые вычислительные машины, обычно называемые просто электронными вычислительными машинами (ЭВМ), без упоминания об их цифровом характере.

Аналоговые вычислительные машины (АВМ) - вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения)

Аналоговые вычислительные машины весьма просты и удобны в эксплуатации; программирование задач для решения на них, как правило, нетрудоемкое; скорость решения задач изменяется по желанию оператора и может быть сделана сколь угодно большой (больше, чем у ЦВМ), но точность решения задач очень низкая (относительная погрешность 2-5 %). На АВМ наиболее эффективно решать математические задачи, содержащие дифференциальные уравнения, не требующие сложной логики.

Аналоговая вычислительная машина (АВМ), вычислительная машина, в которой каждому мгновенному значению переменной величины, участвующей в исходных соотношениях, ставится в соответствие мгновенное значение другой (машинной) величины, часто отличающейся от исходной физической природой и масштабным коэффициентом. Каждой элементарной математической операции над машинными величинами, как правило, соответствует некоторый физический закон, устанавливающий математические зависимости между физическими величинами на выходе и входе решающего элемента (например, законы Ома и Кирхгофа для электрических цепей, выражение для эффекта Холла, лоренцовой силы и т. д.).

К первому аналоговому вычислительному устройству относят обычно логарифмическую линейку, появившуюся около 1600. Графики и номограммы — следующая разновидность аналоговых вычислительных устройств — для определения функций нескольких переменных; впервые встречаются в руководствах по навигации в 1791. В 1814 английский учёный Дж. Герман разработал аналоговый прибор — планиметр, предназначенный для определения площади, ограниченной замкнутой кривой на плоскости. Планиметр был усовершенствован в 1854 немецким учёным А. Амслером. Его интегрирующий прибор с катящимся колесом привёл позднее к изобретению английским физиком Дж. Томсоном фрикционного интегратора. В 1876 другой английский физик У. Томсон применил фрикционный интегратор в проекте гармонического анализатора для анализа и предсказывания высоты приливов в различных портах. Он показал в принципе возможность решения дифференциальных уравнений путём соединения нескольких интеграторов, однако из-за низкого уровня техники того времени идея не была реализована.

Первая механическая вычислительная машина для решения дифференциальных уравнений при проектировании кораблей была построена А. Н. Крыловым в 1904. В основу её была положена идея интеграфа — аналогового интегрирующего прибора, разработанного польским математиком Абданк-Абакановичем (1878) для получения интеграла произвольной функции, вычерченной на плоском графике.

Дальнейшее развитие механических интегрирующих машин связано с работами американского учёного В. Буша, под руководством которого была создана чисто механическая интегрирующая машина (1931), а затем её электромеханический. вариант (1942). В 1936 русский инженер Н. Минорский предложил идею электродинамического аналога. Толчок развитию современных АВМ постоянного тока дала разработка Б. Расселом (1942—44, США) решающего усилителя.

Большое значение имели работы советского математика С. А. Гершгорина (1927), заложившие основы построения сеточных моделей. В 1936 в СССР под руководством И. С. Брука были построены механический интегратор и электрический расчётный стол для определения стационарных режимов энергетических систем. В 40-х гг. была начата разработка электромеханического ПУАЗО на переменном токе и первых электронных ламповых интеграторов (Л. И. Гутенмахер). Работы, проведённые под руководством Гутенмахера (1945—46), привели к созданию первых электронных аналоговых машин с повторением решения. В 1949 в СССР под руководством В. Б. Ушакова, В. А. Трапезникова, В. А. Котельникова, С. А. Лебедева был построен ряд АВМ на постоянном токе. Эти работы положили начало развитию современной аналоговой вычислительной техники в СССР.

АВМ в основном применяется при решении следующих задач. Контроль и управление. В системах автоматического управления АВМ пользуются, как правило, для определения или формирования закона управления, для вычисления сводных параметров процесса (кпд, мощность, производительность и др.). Если задано математическое выражение, определяющее связь сводного параметра или управляющего воздействия с координатами объекта, АВМ служат для решения соответствующего уравнения. Результат вычислений поступает либо на исполнительный механизм (замкнутая система), либо к оператору. В последнем случае АВМ работает как информационное устройство. Например, АВМ широко распространены для оценки экономической эффективности энергетических систем, и те же АВМ могут управлять исполнительными механизмами, т. е. служить автоматическими регуляторами. Когда закон управления заранее не определён, а заданы лишь некоторый критерий оптимальности и граничные условия, АВМ применяются в системах поиска оптимального управления и служат математической моделью объекта.

Экспериментальное исследование поведения системы с аппаратурой управления или регулирования в лабораторных условиях. С помощью АВМ воспроизводится та часть системы, которая по каким-либо причинам не может быть воспроизведена в лабораторных условиях. Связь АВМ с аппаратурой управления или регулирования в основном осуществляется преобразующими устройствами, в которых машинные переменные изменяются по масштабу и форме представления.

Анализ динамики систем управления или регулирования. Заданные уравнения объекта решаются в выбранном масштабе времени с целью нахождения основных параметров, обеспечивающих требуемое протекание процесса. Особо важны быстродействующие АВМ, с помощью которых в ускоренном масштабе времени можно решать некоторые итеративные задачи, задачи оптимизации, а также реализовать Монте-Карло метод , требующий многократного решения стохастических дифференциальных уравнений. Здесь АВМ резко сокращает время проведения расчётов и делает наглядными результаты.

Решение задач синтеза систем управления и регулирования сводится к подбору по заданным техническим условиям структуры изменяемой части системы, функциональных зависимостей требуемого вида и значений основных параметров. Окончательный результат получается многократным повторением решения и сопоставлением его с принятым критерием близости. Задачи этого типа часто сводятся к отысканию экстремума некоторого функционала.

Решение задач по определению возмущений или полезных сигналов, действующих на систему. В этом случае по дифференциальным уравнениям, описывающим динамическую систему, по значениям начальных условий, известному из эксперимента характеру изменения выходной координаты и статистическим характеристикам шумов в измеряемом сигнале определяется значение возмущения или полезного сигнала на входе. АВМ может также служить для построения приборов, автоматически регистрирующих возмущения и вырабатывающих сигнал управления в зависимости от характера и размера возмущений.

АВМ состоят из некоторого числа решающих элементов, которые по характеру выполняемых математических операций делятся на линейные, нелинейные и логические. Линейные решающие элементы выполняют операции суммирования, интегрирования, перемены знака, умножения на постоянную величину и др. Нелинейные (функциональные преобразователи) воспроизводят нелинейные зависимости. Различают решающие элементы, предназначенные для воспроизведения заданной функции от одного, двух и большего числа аргументов. Из этого класса обычно выделяют устройства для воспроизведения разрывных функций одного аргумента (типичные нелинейности) и множительно-делительные устройства (см. Перемножающее устройство ). К логическим решающим элементам относятся устройства непрерывной логики, например предназначенные для выделения наибольшей или наименьшей из нескольких величин, а также устройства дискретной логики, релейные переключающие схемы и некоторые др. специальные блоки. Для связи устройств непрерывной и дискретной логики широко пользуются гибридными логическими устройствами (например, компараторами). Все логические устройства обычно объединяются в одном, получившем название устройства параллельной логики. Оно снабжается своим наборным полем для соединения отдельных логических устройств между собой и с остальными решающими элементами АВМ.

В зависимости от физической природы машинных величин различают механические, пневматические, гидравлические, электромеханические и электронные АВМ. Наиболее распространены электронные АВМ, отличающиеся значительно более широкой полосой пропускания, удобством сопряжения нескольких машин между собой и с элементами аппаратуры управления. Эти машины собираются из готовых радиотехнических узлов и полуфабрикатов. Решающие элементы АВМ строятся в основном на базе многокаскадных электронных усилителей постоянного тока с большим коэффициентом усиления в разомкнутом состоянии и глубокой отрицательной обратной связью. В зависимости от структуры и характера входной цепи и цепи обратной связи операционный усилитель выполняет линейную или нелинейную математическую операцию или комбинацию этих операций.

Вследствие неидеальности работы отдельных решающих элементов, неточности установки их коэффициентов передачи и начальных условий, решение, найденное с помощью АВМ, имеет погрешности. Результирующая погрешность зависит не только от перечисленных первичных источников, но и от характера и особенностей решаемой задачи. Как правило, погрешность увеличивается с ростом числа решающих (особенно нелинейных) элементов, включенных последовательно. Практически можно считать, что погрешность при исследовании устойчивых нелинейных систем автоматического управления не превышает нескольких %, если порядок набираемой системы дифференциальных уравнений не выше 10-го.

По структуре различают АВМ с ручным и с автоматическим программным управлением. В первом случае решающие элементы перед началом решения соединяются между собой в соответствии с последовательностью выполнения математических операций, задаваемых исходной задачей. В машинах с программным управлением последовательность выполнения отдельных математических операций меняется в процессе решения задачи в соответствии с заданным алгоритмом решения. Изменение в ходе решения порядка выполнения отдельных операций обусловливает прерывистый характер работы машины: период решения сменяется периодом останова (для выполнения требуемых коммутаций). При таком режиме АВМ должна снабжаться аналоговым запоминающим устройством.

Наличие памяти и дискретность характера работы машины дают возможность организовать многократное использование отдельных решающих элементов и тем сократить их число, не ограничивая класса решаемых задач, правда, за счёт снижения быстродействия.

Значительный интерес представляют машины: с большой частотой повторения решения (30—1000 гц) в связи с созданием систем автоматического управления, а также с необходимостью организации поиска оптимальных в некотором смысле структур и параметров систем управления.

Повышение эффективности АВМ связано с внедрением в аналоговую технику цифровых методов, в частности цифровых дифференциальных анализаторов , у которых отдельные решающие элементы выполняют математические операции над приращениями переменных, представленных в одном из цифровых кодов, с передачей результатов от элемента к элементу по принципам АВМ. Применение цифровых дифференциальных анализаторов, особенно последовательных, для специальных АВМ, не требующих высокого быстродействия, снижает общий объём аппаратуры, хотя в остальных случаях они по всем техническим показателям и возможностям существенно уступают цифровым вычислительным машинам. Гораздо большими возможностями обладают гибридные вычислительные системы , у которых исходные величины представлены одновременно в цифровой и аналоговой форме.

Классификация ЭВМ по этапам создания

По этапам создания и используемой элементной базе ЭВМ условно делятся на поколения:

1-е поколение, 50-е гг.: ЭВМ на электронных вакуумных лампах;

2-е поколение, 60-е гг.: ЭВМ на дискретных полупроводниковых приборах (транзисторах);

3-е поколение, 70-е гг.: ЭВМ на полупроводниковых интегральных схемах с малой и средней степенью интеграции (сотни - тысячи транзисторов в одном корпусе); Интегральная схема - электронная схема специального назначения, выполненная в виде единого полупроводникового кристалла, объединяющего большое число диодов и транзисторов.

4-е поколение, 80-е гг.: ЭВМ на больших и сверхбольших интегральных схемах - микропроцессорах (десятки тысяч - миллионы транзисторов в одном кристалле);

5-е поколение, 90-е гг.: ЭВМ с многими десятками параллельно работающих микропроцессоров, позволяющих строить эффективные системы обработки знаний; ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных команд программы;

6-е и последующие поколения: оптоэлектронные ЭВМ с массовым параллелизмом и нейронной структурой - с распределенной сетью большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейронных биологических систем.

Каждое следующее поколение ЭВМ имеет по сравнению с предшествующим существенно лучшие характеристики. Так, производительность ЭВМ и емкость всех запоминающих устройств увеличиваются, как правило, больше чем на порядок.

Классификация ЭВМ по назначению

По назначению ЭВМ можно разделить на три группы: универсальные (общего назначения),проблемно-ориентированные и специализированные

Универсальные ЭВМ предназначены для решения самых различных инженерно-технических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах.

Характерными чертами универсальных ЭВМ являются:

  • высокая производительность;
  • разнообразие форм обрабатываемых данных: двоичных, десятичных, символьных, при большом диапазоне их изменения и высокой точности их представления;
  • обширная номенклатура выполняемых операций, как арифметических, логических, так и специальных;
  • большая емкость оперативной памяти;
  • развитая организация системы ввода-вывода информации, обеспечивающая подключение разнообразных видов внешних устройств.

Проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам; они обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами.

К проблемно-ориентированным ЭВМ можно отнести, в частности, всевозможные управляющие вычислительные комплексы.

Специализированные ЭВМ используются для решения узкого круга задач или реализации строго определенной группы функций. Такая узкая ориентация ЭВМ позволяет четко специализировать их структуру, существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы.

К специализированным ЭВМ можно отнести, например, программируемые микропроцессоры специального назначения; адаптеры и контроллеры, выполняющие логические функции управления отдельными несложными техническими устройствами, агрегатами и процессами; устройства согласования и сопряжения работы узлов вычислительных систем.

Классификация ЭВМ по размерам и функциональным возможностям

По размерам и функциональным возможностям ЭВМ можно разделить на сверхбольшие (суперЭВМ), большие, малые, сверхмалые (микро ЭВМ).

Функциональные возможности ЭВМ обусловливают важнейшие технико-эксплуатационные характеристики:

  • быстродействие, измеряемое усредненным количеством операций, выполняемых машиной за единицу времени;
  • разрядность и формы представления чисел, с которыми оперирует ЭВМ;
  • номенклатура, емкость и быстродействие всех запоминающих устройств;
  • номенклатура и технико-экономические характеристики внешних устройств хранения, обмена и ввода-вывода информации;
  • типы и пропускная способность устройств связи и сопряжения узлов ЭВМ между собой (внутри машинного интерфейса);
  • способность ЭВМ одновременно работать с несколькими пользователями и выполнять одновременно несколько программ (многопрограммность);
  • типы и технико-эксплуатационные характеристики операционных систем, используемых в машине;
  • наличие и функциональные возможности программного обеспечения;
  • способность выполнять программы, написанные для других типов ЭВМ (программная совместимость с другими типами ЭВМ);
  • система и структура машинных команд;
  • возможность подключения к каналам связи и к вычислительной сети;
  • эксплуатационная надежность ЭВМ;
  • коэффициент полезного использования ЭВМ во времени, определяемый соотношением времени полезной работы и времени профилактики.

Некоторые сравнительные параметры названных классов современных ЭВМ показаны в

Описание предшественников аналоговых и цифровых управляющих машин и средств моделирования процессов и систем - машины для централизованного контроля и аналоговых вычислительных машин. Рассмотрение их роли в истории систем автоматического управления.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 10.05.2017
Размер файла 4,6 M

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1 Машины централизованного контроля

1.2 Машина централизованного контроля МАРС-200Р

1.3 Машина централизованного контроля ЭЛРУ-2

2 Аналоговые вычислительные машины

2.1 Организация АВМ

2.2 Линейные блоки АВМ

2.3 Способы реализации нелинейных зависимостей в АВМ

2.4 Реализация операций умножения и деления в АВМ

2.5 Советские аналоговые вычислительные машины

2.6 Зарубежные аналоговые вычислительные машины

2.7 Преимущества и недостатки цифровых и аналоговых вычислительных машин на 1960 год

Список использованных источников

Современную эпоху можно с полной уверенностью назвать эпохой представления информации, в том числе и о технологических процессах, в дискретной форме. И успехи цифровых вычислительных машин несомненны. Тем не менее стоит отметить, что окружающий мир это мир информации в аналоговой форме. Цель данной работы заключается в том, чтобы продемонстрировать два ныне практически несуществующих, но тем не менее сыгравших значительную роль как в истории систем автоматического управления, так и в истории вычислительной техники вообще, типа систем - машины для централизованного контроля, которые были предшественниками аналоговых и цифровых управляющих машин и аналоговые вычислительные машины - основное средство моделирования процессов и систем с начала 50-х по середину 70-х годов прошлого века

1 Машины централизованного контроля

Машины для централизованного контроля выпускались промышленностью и применялись на промышленных предприятиях с конца 50-х годов и до тех пор пока управление производством при помощи аналоговых и цифровых вычислительных машин не вышло из стадии опытов, машины централизованного контроля представляли собой самое современное и самое сложное из технических средств арсенала контрольно-измерительных приборов и устройств автоматики.

В дальнейшем машины централизованного контроля были вытеснены универсальными и специализированными управляющими вычислительными машинами, обладающими большей гибкостью и возможностями по контролю и управлению. Тем не менее, на ряде производств, где существенным фактором является простота и дешевизна установленной аппаратуры, машины централизованного контроля успешно применялись до середины 70-х годов.

Далее кратко рассмотрим структуру данного типа управляющих машин. Типовые структуры машин централизованного контроля сложились в связи с теми функциями, которые возлагались на эти машины по мере их развития.

К основным функциям машин централизованного контроля относились обнаружение и сигнализацию отклонений контролируемых параметров от заданных значений, вычисление показателей, цифровую регистрацию и измерение по вызову оператора. В соответствии с основными функциями в составе машин выделялись укрупненные функциональные устройства: обнаружения отклонений, вычисления, регистрации и измерения.

Общей характерной чертой машин централизованного контроля являлось многократное использование одних и тех же устройств и их узлов для однородной обработки контролируемых сигналов в различных точках контроля. Сигналы с контролируемых точек подводились к общим устройствам обработки по очереди. При этом общие устройства как бы обходили точки контроля, отчего машины централизованного контроля называли также машинами обегающего контроля.

Цифровая регистрация и вычисления выполнялись над величинами, представленными в цифровой форме, поэтому в машине централизованного контроля всегда имелся аналого-цифровой преобразователь.

Для того чтобы получить общее представление о роли основных узлов в машине централизованного контроля и о распределении их в устройствах машины, обратимся к структурной схеме (рисунок 1), которую можно рассматривать как весьма типичную для машины оперативного централизованного контроля.

Рисунок 1 - Типовая структурная схема машины централизованного контроля

На вход машины централизованного контроля поступают, как правило, сигналы в аналоговой форме, по большей части в виде постоянного напряжения или тока. Для того чтобы контролируемые аналоговые сигналы можно было обрабатывать в общем узле, их нужно унифицировать, или нормализовать. Унификация обычно заключается в приведении сигнала к шкале с заданной начальной и конечной точками и притом линейной. Иногда операции приведения к заданной шкале и линеаризации выполняются одновременно с цифровым преобразованием аналогового сигнала, иногда же эти функции возлагаются не на цифровой преобразователь, а на отдельные нормализующие схемы. Эти схемы могут быть индивидуальными, так что каждая из них используется только для одной контролируемой точки, либо общими или групповыми - для всех или для группы точек. В первом случае нормализующие схемы НСx1 включаются до входного переключателя ВхП, во втором (HCx2) - после него.

Приведение к заданной шкале сводится к установлению ее начальной и конечной точек; для установления конечной точки применяется масштабирование - изменение масштаба шкалы, т. е. числа единиц измерения контролируемой величины, соответствующих единице сигнала на выходе нормализующей схемы.

Общие узлы обработки в машине централизованного контроля должны обеспечить выполнение основных функций - обнаружения отклонений, цифровой регистрации, вычисления, представления результатов измерения.

Отклонения контролируемых величин от нормы обнаруживаются сравнением их значений с уровнями, ограничивающими зону тех значений, которые условно считаются нормальными. На схеме (рисунок 1) контролируемый сигнал и уровни, с которыми он сравнивается, имеют аналоговую форму, хотя в других случаях применяют и цифровое сравнение. Уровни сравнения вводятся в узел обнаружения отклонений ОО из программного устройства ПрУ, куда они поступают с панели задания программы ЗП, Узел обнаружения отклонений ОО выдает в цифровом виде результат сравнения на световой индикатор СИ: если обнаружено отклонение, оно должно быть показано оператору зажиганием лампочки. Поскольку по большей части на каждую точку контроля отводят отдельный световой индикатор СИ, результат сравнения направляется на индикатор соответствующей точки через выходной переключатель ВыхП. Последний управляется программным устройством ПрУ; он совершает обегание точек синхронно с входным переключателем ВхП. Обычно зажигание светового индикатора отклонения сопровождается включением звукового сигнала.

Нередко входной и выходной переключатели конструктивно объединены в один обегающий переключатель, который коммутирует одновременно еще ряд цепей в нормализующих схемах, цифровом преобразователе, узлах задания программы и так далее.

Так как при обработке бывает выгодно использовать цифровое представление контролируемой величины, сигнал после входного переключателя ВхП или нормализующей схемы НСx2 поступает на цифровой преобразователь ЦП, который выдает цифровой код. В машинах централизованного контроля код, получаемый в цифровом преобразователе - десятичный или двоично-десятичный, причем число десятичных знаков в нем соответствует числу знаков измерения контролируемой величины. В дальнейшем все узлы машины оперируют только сигналами, имеющими цифровую форму.

Цифровой код из преобразователя ЦП используется в печатающем устройстве ПчУ, регистрирующем значения контролируемых величин, в вычислительном устройстве ВУ и в устройстве цифрового указания ЦУ.

Печатающее устройство ПчУ регистрирует значения либо всех, либо определенным образом выбранных контролируемых величин. При регистрации всех величин (или всех уровней сравнения) машина как бы опрашивает все точки контроля, поэтому такая печать называется опросной. Опросная печать может запускаться либо автоматически, в заранее выбранные и введенные в программное устройство ПрУ моменты времени (периодическая регистрация), либо по произвольному вызову оператора. В некоторых машинах предусматривается возможность опросной печати только всех отклонившихся в данный момент величин. Обычно отклонившиеся величины выделяются в ведомости опросной печати красным цветом или отмечаются специальным значком.

Автоматический выбор величин, подлежащих регистрации, заключается в том, что печатающее устройство автоматически запускается при переходе любой контролируемой величиной уровня сравнения и регистрирует только эту величину.

Нередко регистрация переходов ведется в отдельной ведомости вторым печатающим устройством. Импульс запуска регистрации перехода может поступать в печатающее устройство из узла обнаружения отклонений ОО либо со световых индикаторов СИ.

На цифровой указатель ЦУ оператор может вызвать значение контролируемой величины из цифрового преобразователя ЦП или вычисленного показателя - из вычислительного устройства ВУ.

Цифровой код величин, подлежащих вычислительной обработке, поступает в цифровое вычислительное устройство ВУ, которое хранит результаты обработки в своей оперативной памяти и может выдавать их по требованию, поступающему из программного устройства ПрУ, на печатающее устройство ПчУ или на цифровой указатель ЦУ.

Через панель задания программы ЗП оператор может в процессе нормальной эксплуатации ввести уровни сравнения, характеристики шкал измерения контролируемых величин, задать виды контроля для каждой величины, периодичность опросной регистрации, программу вычислительной обработки. Еще более оперативно вводятся требования на вызывные операции - цифрового указания и печати.

Рассмотрим некоторые машины централизованного контроля, разработанные и выпускавшиеся в 50-е и 60-е года прошлого века и широко применявшиеся при управлении производственными процессами

1.2 Машина централизованного контроля МАРС-200Р

Машина была предназначена для оперативного контроля и позиционного регулирования температуры на большом числе однородных технологических установок, например в цехах, где установлены прессы для формовки изделий из резины или пластических масс.

Рисунок 2 - Машина централизованного контроля МАРС-200Р

Машина выполняла следующие функции: обнаруживала выход контролируемой температуры из зоны нормальных значений и сигнализировала об этом выходе; вела двухпозиционное регулирование и осуществляла блокировку; регистрировала в цифровой форме переход через верхний и нижний уровни сравнения (границы зоны номинальных значений), а также нарушение технологического режима на объектах; позволяет измерять и записывать на диаграмме температуру в любой точке контроля по выбору оператора.

1.3 Машина централизованного контроля ЭЛРУ-2

Машина централизованного контроля типа ЭЛРУ-2 (рисунок 3) была разработана Научно-исследовательским институтом счетного машиностроения в 1959 г. и серийно выпускалась Рязанским заводом счетно-аналитических машин с 1961 г.. После некоторых конструктивных усовершенствований, внесенных заводом, машина выпускалась под названием ЭЛРУ-2м. Она была предназначена для контроля сравнительно медленно протекающих непрерывных процессов и отличалась относительно небольшими габаритами и простым устройством.

Рисунок 3 - Машина централизованного контроля ЭЛРУ-2

Машина выполняла функции обнаружения и сигнализации отклонений и опросной цифровой регистрации, позиционного регулирования и диаграммной записи значений избранных величин.

Рисунок 4 - Машина централизованного контроля Зенит-1

2 Аналоговые вычислительные машины

Аналоговая вычислительная машина это вычислительная машина, в которой каждому мгновенному значению переменной величины, участвующей в исходных соотношениях, ставится в соответствие мгновенное значение другой (машинной) величины, часто отличающейся от исходной физической природой и масштабным коэффициентом. Каждой элементарной математической операции над машинными величинами, как правило, соответствует некоторый физический закон, устанавливающий математические зависимости между физическими величинами на выходе и входе решающего элемента.

Аналоговые вычислительные машины иначе называют моделирующими установками или электронными моделями. АВМ, в основном строятся на электрических элементах постоянного тока.

Из теоретических основ электротехники известно, что переходные процессы в линейных электрических цепях описываются с помощью дифференциальных уравнений. Поскольку линейные элементы электрических цепей дешевы и имеют малые габариты, то они получили наиболее широкое распространение при построении АВМ. Таким образом, все независимые переменные (функции) представляются в АВМ с помощью напряжений постоянного тока.

Независимой переменной является машинное время, т.е. время, прошедшее с момента пуска модели.

2.1 Организация АВМ

Существуют различные типы АВМ, имеющие свои особенности. Однако, функциональные узлы большинства АВМ одинаковы по своему назначению. Поэтому в общем виде АВМ может быть представлена следующей структурной схемой (рисунок 5):

Рисунок 5 - Структурная схема аналоговой вычислительной машины

Вычислительные блоки АВМ - основные блоки машины, осуществляющие выполнение математических операций над машинными переменными. Измерительные приборы - используются для измерения вводимых исходных величин и результатов решения. Система питания обеспечивает все необходимые напряжения для питания решающих блоков и других устройств машины. Система управления объединяет все блоки машины в единое целое и обеспечивает их функционирование и управление ими.

Вычислительные, или, как их иначе называют, операционные блоки принято подразделять на линейные, блоки задания коэффициентов и функций времени, нелинейные и специальные операционные блоки.

Каждая аналоговая вычислительная машина характеризуется количеством и ассортиментом вычислительных блоков, а также параметрами этих блоков. Количество и ассортимент блоков определяют возможности машины с точки зрения ее универсальности, или другими словами, того, какие именно задачи можно решать на данной машине. Параметры отдельных вычислительных блоков определяют такие важные характеристики машины, как точность и быстродействие. Кроме того, с эксплуатационной точки зрения машина может характеризоваться удобством набора задач и управления.

2.2 Линейные блоки АВМ

Базовым линейным решающим блоком электронных АВМ является операционный усилитель (ОУ). Операционный усилитель представляет собой усилитель постоянного тока (УПТ) с большим коэффициентом усиления, охваченный глубокой отрицательной обратной связью. С помощью различных комбинаций электрических емкостей и сопротивлений на входе усилителя и в цепи его обратной связи можно реализовать следующие математические операции над непрерывными величинами, представленными в виде напряжений постоянного тока:

- умножение на постоянный коэффициент;

- изменение знака (инвертирование в аналоговом смысле);

- интегрирование (во времени);

- дифференцирование (во времени).

Для реализации всех этих операций, помимо собственно операционных усилителей, количество которых в различных машинах было в пределах от полутора десятков до двух сотен, в линейную часть АВМ входят резисторы (постоянные и переменные) и емкости.

Приборы этой пневмомеханической системы могут работать совместно с электромеханическими датчиками без промежуточных преобразователей. Ввод сигналов этих датчиков выполняется также через уравновешивающийся рычаг.

Один конец рычага удлинен и служит заслонкой, которая при качании рычага действует на чувствительный элемент -- сопло и образует совместно с ним пневматический усилитель с большим коэффициентом усиления. Этот малоинерционный элемент, обладающий высокой чувствительностью, имеет два выхода, из которых один или оба могут быть использованы для обратной связи.

Аналоговый компьютер (Алексаков, 1992) - это вычислительная машина, оперирующая информацией, представленной в виде непрерывных изменений некоторых физических величин. При этом в качестве физических переменных выступают сила тока электрической цепи, угол поворота вала, скорость и ускорение движения тела и т.п. Используя тот факт, что многие явления в природе математически описываются одними и теми же уравнениями, аналоговые вычислительные машины позволяют с помощью одного физического процесса моделировать различные другие процессы.

Файлы: 1 файл

АВМ.doc

Федеральное государственное автономное образовательное

учреждение высшего профессионального образования

Выполнила: Краснова И. А

Преподаватель: Арахисова Ю.Ю.

В зависимости от вида перерабатываемой информации вычислительные машины подразделяют на два основных класса: аналоговые и цифровые.

Аналоговый компьютер (Алексаков, 1992) - это вычислительная машина, оперирующая информацией, представленной в виде непрерывных изменений некоторых физических величин. При этом в качестве физических переменных выступают сила тока электрической цепи, угол поворота вала, скорость и ускорение движения тела и т.п. Используя тот факт, что многие явления в природе математически описываются одними и теми же уравнениями, аналоговые вычислительные машины позволяют с помощью одного физического процесса моделировать различные другие процессы.

1. История вычислительной техники

Одним из самых древних аналоговых приборов считается антикитерский механизм — механическое устройство, обнаруженное в 1902 году на затонувшем древнем судне недалеко от греческого острова Антикитера. Датируется приблизительно 100 годом до н. э. (возможно, до 150 года до н. э.). Хранится в Национальном археологическом музее в Афинах.

Астрологи и астрономы пользовались аналоговым прибором астролябия с IV века до нашей эры вплоть до XIX века нашей эры. Этот прибор использовался для определения положения звезд на небе и вычисления продолжительности дня и ночи. Современным потомком астролябии является планисфера — подвижная карта звёздного неба, используемая в учебных целях.

1622 год, английский математик-любитель Уильям Отред разработал первый вариант логарифмической линейки, устройство, которое можно считать первым аналоговым вычислительным прибором.

1674 год — создана машина Морленда

1814 год - учёный Дж. Герман (Англия) создал планиметр — аналоговое устройство, которое предназначено для нахождения площади, ограниченной замкнутой кривой на плоскости.

1878 год - польский математик Абданк- Абаканович разработал теорию интерграфа — некоего аналогового интегрирующего устройства, позволяющего получить интеграл от произвольной функции, изображённой на плоском графике.

1904 год - российский инженер Алексей Крылов изобрел первую механическую вычислительную машину, решающую дифференциальные уравнения (применялась припроектировании кораблей).

1912 год — создана машина для интегрирования обыкновенных дифференциальных уравнений по проекту российского учёного Алексея Крылова.

1930 год — Ванневар Буш (США) создал механическую интегрирующую машину, применяющийся при расчёте траектории стрельбы корабельных орудий (в 1942 году — создана её электромеханическая версия).

1935 год — выпуск первой советской электродинамической счётно-аналитической машины САМ (модель Т-1). Разработаны механический интегратор и электрический расчётный стол для определения стационарных режимов энергетических систем.

1938 год — немецкий инженер Конрад Цузе вскоре после окончания в 1935 году Берлинского политехнического института построил свою первую машину, названную Z1. Это была полностью механическая программируемая цифровая машина.

1942—1944 годы, США — операционный усилитель постоянного тока, имеющий достаточно высокий коэффициент усиления, что дало возможность конструировать аналоговые компьютеры без движущихся частей, на постоянном токе.

1945—1946 годы, СССР — под руководством Льва Гутенмахера изобретены первые электронные аналоговые машины с повторением решения.

1949 год, СССР — изобретён ряд АВМ на постоянном токе, что положило начало развитию аналоговой вычислительной техники в СССР.

1958 год - Фрэнк Розенблатт разработал первый нейрокомпьютер-перцептрон Марк -1, который не является полностью аналоговым, а скорее относится к гибридным системам.

1960-е годы, аналоговые компьютеры являлись повседневным инструментом ученых для решения множества специфических задач в различных областях науки. В СССР расцвет электронных аналоговых вычислительных машин с их серийным выпуском пришёлся на 1960—1970-е годы.

2. Принцип действия

Представлением числа в механических аналоговых компьютерах служит, например, количество поворотов шестерёнок механизма. В электрических - используются различия в напряжении. Они могут выполнять такие операции, как сложение, вычитание, умножение, деление, дифференцирование, интегрирование и инвертирование. При работе аналоговый компьютер имитирует процесс вычисления, при этом характеристики, представляющие цифровые данные, в ходе времени постоянно меняются.

Результатом работы аналогового компьютера являются либо графики, изображённые на бумаге или на экране осциллографа, либо электрический сигнал, который используется для контроля процесса или работы механизма.

Эти компьютеры идеально приспособлены для осуществления автоматического контроля над производственными процессами, потому что они моментально реагируют на различные изменения во входных данных. Такого рода компьютеры широко используются в научных исследованиях. Например, в таких науках, в которых недорогие электрические или механические устройства способны имитировать изучаемые ситуации.

В ряде случаев с помощью аналоговых компьютеров возможно решать задачи, меньше заботясь о точности вычислений, чем при написании программы для цифровой ЭВМ. Например, для электронных аналоговых компьютеров без проблем реализуются задачи, требующие решения дифференциальных уравнений, интегрирования или дифференцирования. Для каждой из этих операций применяются специализированные схемы и узлы, обычно с применением операционных усилителей. Также интегрирование легко реализуется и на гидравлических аналоговых машинах.

2.1 Базовые элементы АВМ

Все функциональные блоки аналоговых вычислительных машин можно разделить на ряд групп (Максимов Н.В., 2013):

1. линейные - выполняют такие математические операции как интегрирование, суммирование, перемена знака, умножение на константу.

2. нелинейные (функциональные преобразователи) - соответствуют нелинейной зависимости функции от нескольких переменных.

3. логические - устройства непрерывной, дискретной логики, релейные переключающие схемы. Вместе эти устройства образуют устройство параллельной логики.

Универсальные АВМ как правило содержат в своем составе:

    • источник питания
    • контрольно-измерительную аппаратуру
    • управляющее устройство
    • наборное поле
    • блоки суммирования (сумматор)
    • блоки интегрирования (интегратор)
    • блоки дифференцирования (дифференциатор)
    • множительно-делительное устройство
    • блоки нелинейности (функциональный преобразователь)
    • также используются:
    • потенциометр функциональный
    • блок переменных коэффициентов
    • вычислитель индукционный
    • тахогенератор
    • масштабное звено

    2.2 Запоминающее устройство АВМ

    Емкостные запоминающие устройства - динамические запоминающие устройства, основанная на свойстве конденсаторов хранить поданное на него напряжение. Ячейка емкостного ЗУ формируется на обычном интеграторе с различными коммутаторами. Иногда в интегратор для уменьшения времени процесса запоминания вводится операционный усилитель - повторитель. Время хранения информации в таких устройствах ограничено.

    Делитель напряжения - электромеханическое запоминающее устройство в которых запоминаемым величинам углы поворота реостатов. Подобные устройства могут неограниченное время хранить информацию.

    Запоминающая пара - устройство, формирующее задержанную во времени последовательность выбранных уровней входного сигнала. В качестве запоминающей пары часто применяют каскадно соединенные операционные усилители, один из которых работает в режиме отслеживания входного сигнала, а другой в режиме хранения.

    ЗУ на ферритовых сердечниках - основано на свойстве ферромагнетиков сохранять намагниченность. Ячейки таких ЗУ выполняются на ферритовых сердечниках либо на трасфлюксорах и тороидальных сердечниках. Использование трасфлюксоров и тороидальных сердечников уменьшает погрешности одновременно снижая быстродействие.

    Добротность АВМ - обобщенная характеристика аналоговой вычислительной машины, вычисляемая по формуле:

    где Emax - максимально возможное значение машинной переменной, Emin - нижний предел возможного значения машинной переменной. Пределы как правило определяются экспериментально. Числовое значение Emin зависит от уровня помех, ошибок аналоговых функциональных блоков, точности применяемой измерительной аппаратуры. Добротность мощных АВМ превышает d = 103.

    Все АВМ можно разделить на две основных группы:

    Специализированные - предназначены для решения заданного узкого класса задач (или одной задачи);

    Универсальные - предназначены для решения широкого спектра задач.

    3.1 В зависимости от типа рабочего тела

    АВМ механическая - аналоговая вычислительная машина, в которой машинные переменные воспроизводятся механическими перемещениями. При решении задач на АВМ данного типа необходимо, кроме масштабирования переменных, производить силовой расчет конструкции и расчет мертвых ходов. Достоинствами механических АВМ являются высокая надежность и обратимость, позволяющая воспроизводить прямые и обратные математические операции. Недостатки АВМ такого типа -- высокая стоимость, сложность изготовления, большие габариты и вес, а также низкий коэффициент эффективности использования отдельных вычислительных блоков. Механические АВМ применяют при построении высоконадежных вычислительных устройств.

    АВМ пневматическая - аналоговая вычислительная машина в которой переменные представлены в виде величин давления воздуха (газа) в различных точках специально построенной сети. Элементами такой АВМ являются дроссели, емкости и мембраны. Дроссели играют роль сопротивлений могут быть постоянными, переменными, нелинейными и регулируемыми. Пневматические емкости представляют из себя глухие или проточные камеры, давление в которых в следствии сжимаемости воздуха растет по мере из наполнения. Мембраны используются для преобразования давления воздуха. В состав пневматической АВМ могут входить усилители, сумматоры, интеграторы, функциональные преобразователи и множительные устройства, которые соединяются между собой при помощи штуцеров и шлангов. Пневматические АВМ уступают в быстродействии электронным. В среднем подвижные элементы такой АВМ имеют время срабатывания около десятой доли миллисекунды, следовательно они могут пропускать частоты порядка 10 кГц. Такие АВМ отличаются значительными погрешностями, поэтому применяются там где нельзя применять другие типы вычислительных машин: в взрывоопасных средах, в средах с высокими температурами, в автоматических системах химического производства. Из-за низкой стоимости и высокой надежности такие АВМ также применяют в металлургии, теплоэнергетике, газовой промышленности и т. п.

    В 1960-х годах разрабатывались для получения средства дискретных вычислений с высокой радиационной стойкостью. Были разработаны элементы, выполняющие основные логические операции и элементы памяти без механических подвижных элементов.

    Такие элементы очень долговечны, поскольку в них практически отсутствуют подвижные части, и, как следствие, нечему ломаться. В случае засорения каналов логические матрицы легко разбираются и промываются. Работает пневмокомпьютер от промышленной пневмосети. Логические матрицы легко штампуются на термопласт-автоматах из пластика. Для особых случаев матрица может быть изготовлена из тугоплавкой керамики, отлита из чугуна или другого сплава.

    Сейчас пневмокомпьютеры используются в отраслях промышленности, где требуется повышенная вибрационная стойкость, работоспособность в очень широком диапазоне температур или требуется управление пневматическими силовыми устройствами. В последнем случае устраняется необходимость в преобразователях электрического сигнала в перемещение (электро-пневмопреобразователь + позиционер). Это - роботы и автоматика, работающие в металлургии, в горнорудной промышленности. Известны случаи управления элементами авиационных двигателей, автоматикой ракетных систем, силовыми приводами вертолетов и самолетов.

    Существует также целая категория производств, агрегатов и установок, где применение электричества, даже самых низких напряжений, очень нежелательно. Это химия органических соединений, нефтеперегонные заводы, подземная добыча угля и руды. Они до сих пор широко используют пневматическую автоматику.

    АВМ электронная - аналоговая вычислительная машина в которой переменные представляются электрическим напряжением постоянного тока. Получили широкое распространение в связи с высокой надежностью, быстродействием, удобством управления и получения результатов.

    Примером комбинированной АВМ может служить электромеханические АВМ в которых машинными переменными являются механические (обычно угол поворота) и электрические (обычно напряжение) величины. Специфическими для данного типа АВМ являются следующие базовые элементы: вращающиеся трансформаторы, тахогенераторы. АВМ данного типа менее надежны чем механические, из-за наличия скользящих контактов.

    3.2 По конструктивным признакам

    АВМ матричного типа

    АВМ матричного типа (групповая аналоговая машина) - аналоговая машина в которой отдельные простейшие вычислительные блоки жестко соединяются в одинаковые типовые группы. В основном используется для моделирования дифференциальных уравнений. Задачу при этом предварительно необходимо свести к равносильной ей систему дифференциальных уравнений первого порядка. Каждая типовая группа вычислительных элементов используется для моделирования одного уравнения. АВМ матричного типа нуждается в определенного процесса масштабирования, при котором значения коэффициентов одного столбца матрицы должны иметь одинаковый порядок. Набор задач на таких АВМ сводится к установке коэффициентов и начальных условий. Недостатком АВМ этого типа является низкая эффективность использования отдельных блоков. К этому типу АВМ в основном относятся механические АВМ.

    (АВМ), вычислительная машина, в которой каждому мгновенному значению переменной величины, участвующей в исходных соотношениях, ставится в соответствие мгновенное значение другой (машинной) величины, часто отличающейся от исходной физ. природой и масштабным коэффициентом. Каждой элементарной математической операции над машинными величинами, как правило, соответствует нек-рый физический закон, устанавливающий матем. зависимости между физ. величинами на выходе и входе решающего элемента (напр., законы Ома и Кирхгофа для электрических цепей, выражение для эффекта Холла, лоренцовой силы и т. д.).

    Вложенные файлы: 1 файл

    Документ Microsoft Word (8).docx

    АНАЛОГОВАЯ ВЫЧИСЛИТЕЛЬНАЯ МАШИНА

    (АВМ), вычислительная машина, в которой каждому мгновенному значению переменной величины, участвующей в исходных соотношениях, ставится в соответствие мгновенное значение другой (машинной) величины, часто отличающейся от исходной физ. природой и масштабным коэффициентом. Каждой элементарной математической операции над машинными величинами, как правило, соответствует нек-рый физический закон, устанавливающий матем. зависимости между физ. величинами на выходе и входе решающего элемента (напр., законы Ома и Кирхгофа для электрических цепей, выражение для эффекта Холла, лоренцовой силы и т. д.).

    Особенности представления исходных величин и построения отд. решающих элементов в значит, мере предопределяют сравнительно большую скорость работы АВМ, простоту программирования и набора задач, ограничивая, однако, область применения и точность получаемого результата. АВМ отличается также малой универсальностью (алгоритмич. ограниченность) - при переходе от решения задач одного класса к другому требуется изменять структуру машины и число решающих элементов.

    К первому аналоговому вычислительному устройству относят обычно логарифмическую линейку, появившуюся около 1600. Графики и номограммы - следующая разновидность аналоговых вычислительных устройств - для определения функций нескольких переменных; впервые встречаются в руководствах по навигации в 1791. В 1814 англ, учёный Дж. Герман разработал аналоговый прибор - планиметр, предназначенный для определения площади, ограниченной замкнутой кривой на плоскости. Планиметр был усовершенствован в 1857 нем. учёным А. Амслером. Его интегрирующий прибор с катящимся колесом привёл позднее к изобретению англ. физиком Дж. Томсоном фрикционного интегратора. В 1876 другой англ, физик У. Томсон применил фрикционный интегратор в проекте гармонич, анализатора для анализа и предсказывания высоты приливов в различных портах. Он показал в принципе возможность решения дифференц. ур-ний путём соединения нескольких интеграторов, однако из-за низкого уровня техники того времени идея не была реализована.

    Первая механич. вычислит. машина для решения дифференц. ур-ний при проектировании кораблей была построена А. Н. Крыловым в 1904. В основу её была положена идея интеграфа - аналогового интегрирующего прибора, разработанного польским математиком Абданк-Абакано-вичем (1878) для получения интеграла произвольной функции, вычерченной на плоском графике.

    Дальнейшее развитие механич. интегрирующих машин связано с работами амер. учёного В. Буша; под руководством к-рого была создана чисто механич. интегрирующая машина (1931), а затем её электромеханич. вариант (1942). В 1936 рус. инженер Н. Ми-норскнй предложил идею электродинамич. аналога. Толчок развитию совр. АВМ постоянного тока дала разработка Б. Расселом (1942 - 44, США) решающего усилителя.

    Большое значение имели работы сов. математика С. А. Гершгорина (1927), заложившие основы построения сеточных моделей. В 1936 в СССР под рук. И. С. Брука были построены механич. интегратор и элекгрич. расчётный стол для определения стационарных режимов энергетич. систем. В 40-х гг. была начата разработка электромеханич. ПУАЗО на переменном токе и первых электронных ламповых интеграторов (Л- И. Гутенмахер). Работы, проведённые под рук. Гутенмахера (1945 - 46), привели к созданию первых электронных аналоговых машин с повторением решения. В 1949 в СССР под рук. В. Б. Ушакова, В. А. Трапезникова, В. А. Котельникова, С. А. Лебедева был построен ряд АВМ на постоянном токе. Эти работы положили начало развитию совр. аналоговой вычислит, техники в СССР.

    АВМ в основном применяется при решении следующих задач. Контроль и управление. В системах автоматического управления АВМ пользуются, как правило, для определения или формирования закона управления, для вычисления сводных параметров процесса (кпд, мощность, производительность и др.). Если задано матем. выражение, определяющее связь сводного парамегра или управляющего воздействия с координатами объекта, АВМ служат для решения соответствующего уравнения. Результат вычислений поступает либо на исполнит, механизм (замкнутая система), либо к оператору. В последнем случае АВМ работает как информац. устройство. Напр., АВМ широко распространены для оценки экономич. эффективности энергетич. систем, и те же АВМ могут управлять исполнит, механизмами, т. е. служить автоматич. регуляторами. Когда закон управления заранее не определён, а заданы лишь нек-рый критерий оптимальности и граничные условия, АВМ применяются в системах поиска оптим. управления и служат матем. моделью объекта.

    Опережающий анализ, основанный на быстродействии. Многократно решая систему уравнений, описывающих управляемый процесс, учитывая его текущие характеристики, АВМ за короткое время "просматривает" большое число вариантов решений, отличающихся значениями параметров, подлежащих изменению при управлении процессом. Намного опережая ход процесса, АВМ прогнозирует сигналы управления, к-рые могут обеспечить необходимое качество протекания процесса. Найденные машиной значения передаются на регулирующие устройства, напр, в виде положений их уставок, после чего поиск наилучшего варианта продолжается. В режиме опережающего анализа АВМ выполняют функции либо машин-советчиков, когда оператор пользуется результатами полученных на машине расчётов для ручного или полуавтоматич. управления, либо управляющих машин, автоматически учитывающих текущие характеристики процесса и управляющих им по оптим. показателям. Выбор наилучшего режима тех-нологич. процесса осуществляется также самонастраивающимися матем. машинами в режиме опережающего анализа.

    Экспериментальное исследование поведения системы с аппаратурой управления или регулирования в лабораторных условиях. С помощью АВМ воспроизводится та часть системы, к-рая по к.-л. причинам не может быть воспроизведена в лабораторных условиях. Связь АВМ с аппаратурой управления или регулирования в основном осуществляется преобразующими устройствами, в к-рых машинные переменные изменяются по масштабу и форме представления.

    Анализ динамики систем управления или регулирования. Заданные ур-ния объекта решаются в выбранном масштабе времени с целью нахождения осн. параметров, обеспечивающих требуемое протекание процесса. Особо важны быстродействующие АВМ, с помощью к-рых в ускоренном масштабе времени можно решать нек-рые итеративные задачи, задачи оптимизации, а также реализовать Монте-Карло метод, требующий многократного решения стохастич. дифференц. ур-ний. Здесь АВМ резко сокращает время проведения расчётов и делает наглядными результаты.

    Решение задач синтеза систем управления и регулирования сводится к подбору по заданным технич. условиям структуры изменяемой части системы, функцион. зависимостей требуемого вида и значений осн. параметров. Окончат, результат получается многократным повторением решения и сопоставлением его с принятым критерием близости. Задачи этого типа часто сводятся к отысканию экстремума нек-рого функционала.

    Решение задач по определению возмущений или полезных сигналов, действующих на систему. В этом случае по дифференц. ур-ниям, описывающим динамич. систему, по значениям нач. условий, известному из эксперимента характеру изменения выходной координаты и статистич. характеристикам шумов в измеряемом сигнале определяется значение возмущения или полезного сигнала на входе. АВМ может также служить для построения приборов, автоматически регистрирующих возмущения и вырабатывающих сигнал управления в зависимости от характера и размера возмущений. АВМ состоят из нек-рого числа решающих элементов, к-рые по характеру выполняемых матем. операций делятся на линейные, нелинейные и логические. Линейные решающие элементы выполняют операции суммирования, интегрирования, перемены знака, умножения на пост, величину и др. Нелинейные (функцион. преобразователи) воспроизводят нелинейные зависимости. Различают решающие элементы, предназначенные для воспроизведения заданной функции от одного, двух и большего числа аргументов. Из этого класса обычно выделяют устройства для воспроизведения разрывных функций одного аргумента (типичные нелинейности) и множительно-делительные устройства (см. Перемножающее устройство). К логическим решающим элементам относятся устройства непрерывной логики, напр, предназначенные для выделения наибольшей или наименьшей из неск. величин, а также устройства дискретной логики, релейные переключающие схемы и нек-рые др. спец. блоки. Для связи устройств непрерывной и дискретной логики широко пользуются гибридными логич. устройствами (напр., компараторами). Все логич. устройства обычно объединяются в одном, получившем название устройства параллельной логики. Оно снабжается своим наборным полем для соединения отдельных логич. устройств между собой и с остальными решающими элементами АВМ.

    В зависимости от физ. природы машинных величин различают механич., пнев-матич., гидравлич., электромеханич. и электронные АВМ. Наиболее распространены электронные АВМ, отличающиеся значительно более широкой полосой пропускания, удобством сопряжения неск. машин между собой и с элементами аппаратуры управления. Эти машины собираются из готовых радиотехнич. узлов и полуфабрикатов. Решающие элементы АВМ строятся в основном на базе многокаскадных электронных усилителей пост, тока с большим коэфф. усиления в разомкнутом состоянии и глубокой отрицательной обратной связью. В зависимости от структуры и характера входной цепи и цепи обратной связи операционный усилитель выполняет линейную или нелинейную математическую операцию или комбинацию этих операций.

    Вследствие неидеальности работы отд. решающих элементов, неточности установки их коэфф. передачи и нач. условий, решение, найденное с помощью АВМ, имеет погрешности. Результирующая погрешность зависит не только от перечисленных первичных источников, но и от характера и особенностей решаемой задачи. Как правило, погрешность увеличивается с ростом числа решающих (особенно нелинейных) элементов, включённых последовательно. Практически можно считать, что погрешность при исследовании устойчивых нелинейных систем автоматич. управления не превышает неск. %, если порядок набираемой системы дифференц. ур-ний не выше 10-го.

    По структуре различают АВМ с ручным и с автоматич. программным управлением. В первом случае решающие элементы перед началом решения соединяются между собой в соответствии с последовательностью выполнения матем. операций, задаваемых исходной задачей. В машинах с программным управлением последовательность выполнения отд. матем. операций меняется в процессе решения задачи в соответствии с заданным алгоритмом решения. Изменение в ходе решения порядка выполнения отд. операций обусловливает прерывистый характер работы машины: период решения сменяется периодом останова (для выполнения требуемых коммутаций). При таком режиме АВМ должна снабжаться аналоговым запоминающим устройством.

    Наличие памяти и дискретность характера работы машины дают возможность организовать многократное использование отд. решающих элементов и тем сократить их число, не ограничивая класса решаемых задач, правда, за счёт снижения быстродействия.

    Значит, интерес представляют машины с большой частотой повторения решения (30-1000 гц) в связи с созданием систем автоматич. управления, а также с необходимостью организации поиска оптимальных в нек-ром смысле структур и параметров систем управления.

    Повышение эффективности АВМ связано с внедрением в аналоговую технику цифровых методов, в частности цифровых дифференциальных анализаторов, у к-рых отд. решающие элементы выполняют матем. операции над приращениями переменных, представленных в одном из цифровых кодов, с передачей результатов от элемента к элементу по принципам АВМ. Применение цифровых дифференциальных анализаторов, особенно последовательных, для спец. АВМ, не требующих высокого быстродействия, снижает общий объём аппаратуры, хотя в остальных случаях они по всем технич. показателям и возможностям существенно уступают цифровым вычислит, машинам. Гораздо большими возможностями обладают гибридные вычислительные системы, у к-рых исходные величины представлены одновременно в цифровой и аналоговой форме.

    Перспективны для полной автоматизации АВМ такназ. матричные модели. Их осн. недостаток - большое количество аппаратуры - в связи с появлением интегральных схем уже не имеет решающего значения.

    Осн. технич. характеристики нек-рых типов электронных АВМ общего назначения, выпускаемых серийно в СССР, даны в табл. (стр. 570). Первые 5 типов установок - портативные малогабаритные настольные устройства. ИПТ-5 выполнена из отд. блоков - из линейных решающих элементов. Блочную конструкцию имеет также ЭМУ-8, каждый блок к-рой состоит из 4 решающих элементов. Блоки ЭМУ-8 не требуют стабилизованных источников питания. ЛМУ-1 состоит из отд. секций; ИПТ-5 и ЛМУ-1 в сочетании с набором нелинейных блоков позволяют решать также и нелинейные задачи. МН-7 (настольного типа) имеет ограниченный фиксированный состав решающих элементов, что ограничивает её применение. Установки МН-8, МН-14, МН-17, ЭМУ-10 - многосекционные, рассчитанные на решение сложных задач. Так, МН-8 имеет 80 операц. усилителей и 28 нелинейных решающих элементов; МН-14 - 360 усилителей, 92 нелинейных решающих элемента; ЭМУ-10 -48 операц. усилителей, 30 нелинейных решающих элементов. Установки МН-14 и ЭМУ-10 снабжены сменными наборными полями, цифровыми вольтметрами, системой управления, облегчающей набор задачи и установку нач. условий. В МН-14 предусмотрена возможность управления от перфоленты. ЭМУ-10 отличается широкой полосой пропускания осн. решающих элементов и снабжена решающими усилителями с тремя параллельными каналами усиления.

    Читайте также: