Аморфные вещества в природе технике быту реферат

Обновлено: 08.07.2024

Твердые тела могут существовать в двух существенно различных состояниях, отличающихся своим внутренним строением, и, соответственно, свойствами. Это кристаллическое и аморфное состояние твердых тел монокристаллом или просто кристаллом. В других случаях тело представляет собой множество мелких кристалликов, причудливо сросшихся между собой, например, кусок рафинада. Такие тела называютполикристаллическими.

Наличие естественных граней у монокристаллов ведет к четко выраженному различию в физических свойствах тела по различным направлениям. Это может относиться к механической прочности, тепло- и электропроводности, упругости и т.д. Но не всегда все свойства зависят от направления - кубический кристалл меди обладает одинаковой электропроводностью по всем направлениям, но разной упругостью.

В поликристаллах принято говорить о средних значениях физических величин, поскольку вдоль любого выбранного направления найдутся отдельные кристаллы, как угодно ориентированные внутри тела.

Второй вид твердого состояния твердых тел - аморфное состояние. В этом состоянии невозможно обнаружить даже малые области, в которых наблюдалась бы зависимость физических свойств от направления. Некоторые вещества могут находиться в любом из этих двух состояний.

Например, если расплавить кристаллический кварц (температура плавления около 1700° С), то при охлаждении он образует плавленый кварц сдругими физическими свойствами,одинаковыми по всем направлениям. Аморфное состояние - неустойчивое состояние твердых тел. Будучи предоставлены сами себе, они стремятся со временем перейти в кристаллическую форму, хотя этот процесс может занимать годы и даже десятилетия.

Упругость и прочность

Если наблюдать деформации твердых тел, то можно заметить, что после снятия деформирующего воздействия некоторые тела при некорых условиях восстанавливают свою первоначальную плотность, а другие остаются в деформированном виде. Деформации, которые полностью исчезают с исчезновением деформирующего воздействия, называются упругими. Деформации, не исчезающие по снятии деформирующих сил, называют пластическими.

Строго говоря, если подвергать тело деформации достаточно долго, упругая деформация перейдет в пластическую. Соответственно, вещества, у которых это время перехода достаточно велико (например, годы) называют упругими веществами. Если же время перехода деформации от упругой к пластической составляет порядка секунд или долей секунд, то такие вещества называют пластичными.

Переход деформации от упругой к пластической зависит и от величины самой деформации. При некоторой величине деформации переход от упругости к пластичности осуществляется практически мгновенно. Это предел упругости. Чем выше температура, тем ниже предел упругости для данного вещества.

При упругой деформации деформирующая сила и величина деформации пропорциональны. Это закон Гука. Математически он выражается формулой:

где Е - модуль продольной упругости (модуль Юнга), S - площадь поперечного сечения, L - длина образца в нерастяженном состоянии, k=ES/L - жесткость тела.

Как правило, все виды деформации в твердом теле сводятся к двум - растяжению (или сжатию) или сдвигу.

Растяжение возникает при действии двух равных и противоположно направленных сил.

При одностороннем (продольном) растяжении тело удлиняется и несколько уменьшается в поперечных размерах. При одностороннем сжатии наоборот, тело расширяется в поперечнике.

Если ввести понятия относительного продольного растяжения или сжатия (e=DL/L), и нормального напряжения (s=F/S), то s=eE.

Изгиб - деформация, сводящаяся врастяжениям и сжатиям в различных частях тела. Если, например, изогнуть продольную металлическую пластину, то одна ее сторона растянется, а другая сожмется.

Сдвиг - деформация, обусловленная действием двух равных и противоположно направленных моментов сил. Сдвиг возникает, например, если к верхней части лежащего бруска приложена горизонтальная сила, перекашивающая брусок. При этом горизонтальные слои бруска сдвигаются относительно друг друга. При сдвиге:

где G - модуль поперечной упругости (модуль сдвига). Особый случай сдвига - кручение. Это деформация, имеющая место в твердом теле, если оно находится под действием двух противоположно направленных моментов, приложенных к противоположным концам тела.

Всякое жидкое вещество при охлаждении теряет свойство текучести и переходит в твердое состояние. Известны два различных вида затвердевания:

1) кристаллизация вещества. В этом случае в жидкости, охлажденной до определенной температуры, появляются мельчайшие кристаллы, т. е. области упорядоченно расположенных и прочно связанных между собой частиц (молекул, атомов, ионов). Кристаллы являются центрами кристаллизации, которые при дальнейшем отводе теплоты от вещества разрастаются за счет присоединения к ним частиц из жидкой фазы и охватывают весь объем вещества;

2) затвердевание вследствие сравнительно быстрого повышения вязкости жидкости с понижением температуры. Известны две разновидности этого процесса. У некоторых веществ (воск, битум, смолы) кристаллизация совсем не наблюдается; они называются аморфными телами.

Другие вещества (стекло, например) способны кристаллизоваться, но вязкость у них быстро возрастает с понижением температуры, что затрудняет перемещение молекул, необходимое для формирования и роста кристаллов, и вещество успевает затвердевать до наступления кристаллизации. Такие вещества называются стеклообразными.

Таким образом, кристаллическими называют тела, в которых атомы и молекулы расположены в правильном геометрическом порядке, а аморфными - в которых атомы и молекулы расположены беспорядочно. Стеклообразные тела также относятся к разряду аморфных, так как внутри них нет кристаллов.

Процесс кристаллизации не совершается мгновенно, а требует определенного времени. Иногда одно и то же вещество может затвердевать как в кристаллической, так и в аморфной форме. Например, если расплавленный доменный шлак охлаждать медленно, то он затвердевает в кристаллической форме, а если охлаждать быстро, выливая расплав в холодную воду, то шлак затвердевает в аморфной форме. При быстром охлаждении (например, расплавленного кварца) может произойти затвердевание без кристаллизации с сохранением хаотического (неупорядоченного) расположения атомов. Так образуется аморфное вещество - в данном случае кварцевое стекло. При этом свойства материала существенно различаются.

Аморфные тела можно рассматривать как сильно охлажденные жидкости с очень высоким коэффициентом вязкости. У них наблюдаются слабо выраженные свойства текучести. Например, куски воска или битума, находящиеся в воронке, со временем принимают ее форму. Поэтому, строго говоря, твердыми следует называть только кристаллические тела.

Отсюда следуют основные различия в свойствах кристаллических и аморфных тел. Если наблюдать процесс плавления и затвердевания кристаллических и аморфных тел, то можно заметить, что кристаллические тела имеют точку плавления Гпл, при которой вещество находится в устойчивом состоянии в обеих фазах - в твердой и жидкой, аморфные же тела, постепенно размягчаясь при нагревании, не имеют определенной температуры, соответствующей переходу твердой фазы в жидкую ( 5). Участок АВ на кривой а соответствует процессу плавления кристаллического тела. На этом участке температура тела не изменяется, хотя теплота от нагревателя к нему по-прежнему подводится.

Установлено, что при температуре плавления внутренняя энергия Ux частиц кристаллов меньше внутренней энергии U2 расплава. Это значит, что при температуре плавления 7^ энергия упорядоченного движения частиц в кристалле меньше энергии теплового движения частиц в расплаве. Поэтому, для того чтобы перевести в жидкое состояние кристаллическое вещество при температуре плавления, нужно сообщить ему дополнительно энергию AU = U2 - U\. Увеличение внутренней энергии происходит за счет передачи кристаллу некоторого количества теплоты.

Теплота, затрачиваемая на переход единицы массы вещества из кристаллического состояния в жидкое при температуре плавления, называется удельной теплотой плавления

Обратный процесс - кристаллизация - может происходить только в случае, если от системы (жидкая фаза - кристалл) отводится энергия, так как при кристаллизации выделяется такое же количество теплоты Q, какое было поглощено при плавлении данного кристаллического тела.

На графике для аморфных тел нет горизонтального участка, а наблюдается лишь точка перегиба С. Температура, соответствующая этой точке, условно называется температурой размягчения аморфного тела. Удельная теплота плавления у аморфных тел отсутствует, подвод теплоты сопровождается плавным повышением температуры, постепенным увеличением энергии теплового движения молекул, что соответствует повышению текучести жидкости и уменьшению ее вязкости.

Таким образом, с энергетической стороны имеет место принципиальное различие между кристаллическими и аморфными телами, состоящее в том, что процесс плавления и затвердевания кристаллических тел сопровождается определенным тепловым эффектом. У аморфных же тел этого теплового эффекта нет.

Различие в строении кристаллических и аморфных веществ определяет и различие в их свойствах. Так, аморфные вещества, обладая большим запасом свободной энергии, химически более активны, чем кристаллические вещества такого же состава. Например, расплав доменного шлака, используемый для получения шлакопортландцемента, охлаждают по специальному ускоренному режиму для получения гранулированного шлака стеклообразного строения, обладающего повышенной химической активностью. Аморфное строение имеют горные породы, применяемые в качестве активных минеральных добавок к цементам (туфы, пемзы, опоки, трепелы, диатомиты), смолы, пластмассы и др.

Большая реакционная способность аморфного кремнезема, как будет показано ниже, может вызывать законную тревогу у строителя (вследствие коррозии в щелочах) и использоваться для пользы дела, например в случае применения трепела в гип-соцементнопуццолановых вяжущих.

Прочность аморфных веществ, как правило, ниже прочности кристаллических, поэтому для получения материалов повышенной прочности специально проводят кристаллизацию стекол, например при получении ситаллов и шлакоситаллов, стекло-кремнезита.

Физические свойства твердого тела можно разделить на две категории: одна из них включает такие свойства, как плотность, удельная теплоемкость, которые не связаны с выбором какого-либо направления внутри твердого тела; свойства же другой категории - механическая прочность, модуль деформаций, термический коэффициент расширения, коэффициент теплопроводности и другие - могут быть различными для разных направлений в твердом теле.

Изотропией называют независимость определенных физических свойств твердого тела от направления. Напротив, под анизотропией понимают зависимость свойств макроскопически однородного тела от направления по отношению к осям координат, связанным с самим телом. Волокнистые и слоистые материалы, древесина обладают различными свойствами в различных направлениях, т. е. являются анизотропными. Напротив, жидкости и материалы в аморфном состоянии обладают одинаковыми свойствами во всех направлениях как изотропные материалы, например стекло. Кристаллические вещества в микрообъеме анизотропны (например, кварц), в макрообъеме - изотропны (например, гранит).


СОВРЕМЕННЫЕ ПРОБЛЕМЫ ШКОЛЬНОГО ОБРАЗОВАНИЯ




ЗАГАДОЧНЫЕ АМОРФНЫЕ ВЕЩЕСТВА


Автор работы награжден дипломом победителя III степени

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Задачи:

- выяснить, что представляют собой аморфные вещества;

- рассмотреть их внешнее и внутреннее строение, физические свойства;

- найти информацию о природных источниках, о применении и использовании аморфных веществ;

- провести с полученным аморфным веществом серию опытов.

Толковый словарь русского языка Д.Н. Ушакова.

Толковый словарь русского языка С.И. Ожегова, Н.Ю. Шведовой.

Новый толково-словообразовательный словарь русского языка Т.Ф. Ефремовой.

Привлекал Интернет-ресурсы при сборе материала.

Основная часть

- Толковый словарь русского языка Д.Н. Ушакова:

- Толковый словарь русского языка. С.И. Ожегова, Н.Ю. Шведовой:

1. Не имеющий кристаллического строения.

- Новый толково-словообразовательный словарь русского языка Т. Ф. Ефремовой:

1. Не имеющий кристаллического строения (о твердом теле).

2. Лишенный четкости и определенности; расплывчатый.

Глава 2. Строение аморфных веществ

Можно ли отнести найденные мною характеристики из художественной литературы к самим аморфным веществам? Как должны выглядеть эти вещества снаружи (т.е. их внешний вид) и изнутри (т.е. их внутреннее строение)?

Я стал искать видео- и фотоматериалы, где запечатлены аморфные вещества. Оказалось, что их много в природе: смола, янтарь, жемчуг, каучук, пемза. Аморфные вещества встречаются в быту: парафин (свечи), стекло, поливинилхлорид (наши любимые пластиковые окна), канифоль (для пайки), пластилин (для лепки). В пищевой промышленности: шоколад, жевательная

резинка, мёд, мармелад, зефир, пищевой пластилин (марципан). В медицине - силикон, гели, вазелин.

Увидел, что амфотерные вещества могут быть разными по цвету, консистенции, они представляют собой нечто бесформенное.

А как выглядят аморфные вещества изнутри? Прочитав соответствующие книги и внимательно изучив иллюстрации, посмотрев Интернет-ресурсы, выяснил следующее: частицы, из которых состоят аморфные вещества, располагаются совершенно беспорядочно и находятся на близком расстоянии друг к другу:

Сравнил с расположением частиц в кристаллических твердых веществах, увидел, что в кристаллах частицы расположены упорядоченно, образуя некий каркас – кристаллическую решетку:

Такое беспорядочное расположение частиц не может не наложить отпечаток на физические свойства аморфных веществ.

Глава 3. Физические свойства аморфных веществ

У аморфных веществ имеются следующие физические свойства:

Не имеют постоянной температуры плавления (при нагревании размягчаются).

В качестве доказательства приводится опыт с шоколадом. Плитка шоколада, находящаяся в теплой руке человека через 5 минут размягчается.

Обладают текучестью (при более длительном воздействии температуры превращаются в текущую массу).

В качестве доказательства можно привести пример видеоопыта, взятого из коллекции ЦОРов: изменение формы стеклянной трубочки при нагревании её над пламенем газовой горелки.

Самопроизвольно переходят в кристаллическое состояние.

В качестве доказательства приводится опыт с застывающей карамельной массой.

Изотропны, то есть проявляют одинаковые физические свойства по всем направлениям.

Из выше изложенного материала можно сделать вывод: аморфное состояние вещества не подразумевает поддержания какой-либо определенной температуры (при низких показателях тела застывают, при высоких – плавятся).

Глава 4. Экспериментальные находки

Чем больше я узнавал об аморфных веществах, тем сильнее становилось желание самому их получить, тем более, ресурсы Интернета предоставляют массу способов получения аморфных веществ в домашних условиях.

Я попробовал все рецепты и хочу поделиться своими экспериментальными находками.

- натрий тетраборат (его можно купить в аптеке, стоит недорого);

- пищевой краситель, гуашь, зеленка (что-либо одно из перечня);

- пластиковую ёмкость (для смешивания инградиентов);

- перчатки для рук;

- деревянную палочку, либо карандаш

Шаг первый. В ёмкость выдавливаем клей ПВА:

Шаг второй. Добавляем краситель. Все смешиваем тщательно деревянной палочкой:

Шаг третий. Появился однородный цвет, в массу выливаем натрия тетраборат:

Шаг четвертый. Смесь снова перемешиваем до тех пор, пока она не загустеет:

Эта игрушка может менять свой цвет и свойства при изменении температуры.

Если сделать из него какую-нибудь фигурку, оставить её ненадолго, то через некоторое время она просто растечётся по горизонтальной поверхности стола.

Заключение

Считаю, что тема моей исследовательской работы достаточно актуальна. Актуальность обусловлена тем, что современная жизнь человека без аморфных веществ была бы немыслима. Ведь они широко используются и в быту, и в науке, и в технике и других областях. Ни одна отрасль промышленности не обходится без пластмасс, смол, каучуков и резины на их основе. Трудно представить современный автомобиль, из которого

убраны все детали, изготовленные из полимеров. Такой автомобиль представляет металлический не окрашенный каркас, в котором половина оборудования отсутствует, нет шин, аккумулятора, такой автомобиль, конечно же, не поедет. Повседневная жизнь также немыслима без изделий из аморфных полимеров: от полиэтиленовой пленки до посуды. Жевательная резинка, мармелад, шоколад – любимое лакомство всех – и детей и взрослых. А если возьмём производство лекарств, медицинских трансплантатов, то тут уж точно не обойтись без аморфных полимерных материалов.

Список литературы

Кобеко П.П. Аморфные вещества. Москва. 1952. - 433 с.

Марон А.Е., Марон Е.А. Физика. 8 класс. Дидактические материалы к учебнику А.В. Перышкина. – М.: Дрофа, 2016. - 128 с.

Росин И.В., Томина Л.Д. Общая и неорганическая химия (комплект из 2 книг). – М.: Юрайт, 2012. - 1816 с.

Фролов Ю.Г. Курс коллоидной химии. Поверхностные явления и дисперсные системы. – М.: Альян, 2009. - 464 с.

Физика твердого тела. Лабораторный практикум. Том II. Физические свойства. – М.: Высшая школа, 2001. - 484 с.

Интернет-источники

В пластиковую ёмкость вылить клей ПВА.

Размешать с помощью деревянной палочки клей ПВА до однородной массы, чтобы избежать сгустков и камков.

По каплям аккуратно добавить любой краситель.

Тщательно перемешать данные ингредиенты до получения ровного цвета аморфной массы.

Добавить к полученной однородной массе натрия тетраборат.

Тщательно размешивать смесь, пока не загустеет.

Поместить смесь в целлофановый пакет, немного размяв её, чтобы она стала эластичной, мягкой.

Submit to our newsletter to receive exclusive stories delivered to you inbox!


Пармезан Черница

Лучший ответ:


Суррикат Мими

Аморфные тела – это твердые тела, которые не имеют кристаллической структуры. К ним относятся стекла (искусственные и вулканические), смолы (естественные и искусственные), клеи, сургуч, эбанит, пластмассы и т. п.
Аморфные тела при расщеплении не образуют кристаллических граней. В таких телах частицы находятся рядом друг с другом и не имеют строгой упорядоченности. Поэтому они либо очень вязкие, либо очень густые. Вязкость аморфных тел — непрерывная функция температуры. При внешних воздействиях аморфные тела одновременно упругие, как твердые тела, и текучие, как жидкости. Если воздействие было недолгим, то при сильном ударе они раскалываются на куски как твердые тела. Если же воздействие было очень долгим, то они текут. Так, например, если смолу положить на твердую поверхность, то она начнет растекаться. Причем чем выше будет ее температура, тем быстрее она будет растекаться. Если мелкими частями аморфного тела заполнить какой-либо сосуд, то через некоторое время эти части сольются в одно целое и примут форму сосуда. Это характерно, например, для смолы. Аморфные тела не имеют определенной точки плавления. Вместо нее они обладают температурным интервалом размягчения. При нагревании они постепенно переходят в жидкое состояние. Аморфные вещества могут быть в двух состояниях: стеклообразном или расплавленном. Первое состояние может быть вызвано низкой температурой, второе – высокой. От температуры зависит и вязкость аморфных тел: чем ниже температура, тем выше вязкость, и наоборот. Также аморфные тела изотропны. Физические свойства для них по всем направлениям одинаковы. В естественных условиях они не обладают правильной геометрической формой. Исследования показали, что их структура аналогична структуре жидкостей. Аморфные вещества могут переходить в кристаллическое состояние самопроизвольно. Это связано с тем, что в кристаллическом состоянии внутренняя энергия вещества меньше, чем в аморфном. Примером этого процесса может служить помутнение стекол со временем.




Вы можете из нескольких рисунков создать анимацию (или целый мультфильм!). Для этого нарисуйте несколько последовательных кадров и нажмите кнопку Просмотр анимации.

Субстанции, не имеющие в структуре так называемого дальнего порядка, свойственного твердым телам, называются аморфными веществами.

Аморфные вещества

Свойства аморфных веществ

Отличием таких субстанций от веществ, имеющих кристаллическую структуру, является отсутствие строгого порядка нахождение атомов. Такая конструкция не является устойчивой и, постепенно видоизменяясь, имеет склонность к переходу в кристаллическую.

Ведь именно выраженные отличия их от твердых субстанций и диктуют необходимость выделять их в отдельный класс.

От твёрдых тел они отличаются такими особыми качествами:

Примеры аморфных тел

  • Текучесть. Долго находящееся без движения аморфное тело способно менять свою конфигурацию. При этом вещество, из которого состоит тело, под действием силы тяжести перемещается в нижнюю его часть. Визуально такой эффект можно наблюдать в виде утолщения нижней части стекла, долго простоявшего вертикально в оконном проеме. Такой эффект связывают с тем, что вещество в виде потеков постепенно перемещается вниз.
  • Изотропность. Этот термин означает, что физические свойства их абсолютно идентичны, независимо от их направленности. Здесь имеются в виду механические, электрические, оптические и тепловые свойства.
  • Отсутствие постоянной температуры плавления. Переход из одной фазы в другую осуществляется постепенно. Это происходит в результате размягчения аморфного тела.

Разные состояния субстанций

В свою очередь, некоторые кристаллические тела способны при определенных условиях переходить в аморфное состояние, меняя в результате свои строение и физические свойства. В зависимости от состояния такие вещества могут относиться к разным классам (к какому именно — зависит от внешних условий).

Что такое аморфные тела

В качестве примера можно выбрать кварц, представляющий собой оксид кремния, который приобретает аморфные свойства при нагревании до температуры 1700 градусов и плавлении. После охлаждения свойства вещества меняются: оно приобретает меньшую плотность, чем до нагревания, и отличается от кристаллического кварца по ряду других качеств.

В качестве примера такого феномена можно привести постепенное помутнение стекла по прошествии большого количества времени.

Изменение оптических свойств материала связано с тем, что внутри слоя появляются мелкие, невидимые глазу кристаллики, обладающие другими оптическими параметрами, отличающимися от прозрачной среды.

В докладе по физике на тему о таких веществах и их свойствах необходимо перечислить примеры таких субстанций.

К стабильно аморфным телам относят субстанции, которые не склонны твердеть с образованием кристаллических граней (в случае отсутствия выраженных анизотропных воздействий — высокого давления или электрического поля). К этой группе веществ относят:

Плавление аморфных тел

  • парафин;
  • воск;
  • сургуч;
  • шоколад;
  • стекло;
  • смолу;
  • плексиглас;
  • каучук;
  • разновидности пластика.

Несколько особняком стоит отдельный класс соединений, обладающих одновременно свойствами кристаллических структур и аморфных тел. Может показаться странным, но таким телам присущи и анизотропия, и текучесть. Такое состояние принято называть жидкокристаллическим.

Как правило, с точки зрения химической структуры, жидкокристаллические субстанции являются органическими соединениями, имеющими нитевидную или пластинообразную конфигурацию молекул.

Именно такие структуры, обладающие комбинированными свойствами, являются основой для жидкокристаллических экранов и нашли применение при производстве электронной техники. Этим же термином стала называться и техника, снабженная таким экраном.

Читайте также: