Звездное небо изменение видов звездного неба в течение суток года кратко

Обновлено: 08.07.2024

Есть иволги в лесах, и в гласных долгота
В тонических стихах единственная мера,
Но только раз в году бывает разлита
В природе длительность
Как в метрике Гомера.
Как бы цезурою зияет этот День:
Уже с утра покой
И трудные длинноты,
Волы на пастбище,
И золотая лень
Из тростника извлечь богатство
целой ноты.
О. Мандельштам

Тема: Изменение вида звездного неба в течение года.

Цель: Познакомится с экваториальной системой координат, видимым годичным движениям Солнца и видам звездного неба (изменением в течение года), научится работать по ПКЗН.

Задачи:
1. Обучающая: ввести понятия годичного(видимого) движение светил: Солнца, Луны, звезд, планет и видов звездного неба; эклиптика; зодиакальные созвездия; точки равноденствия и солнцестояния. Причина "запаздывания" кульминаций. Продолжить формирование умения работать с ПКЗН- отыскание на карте эклиптики, зодиакальных созвездий, звезд по их координатам.
2. Воспитывающая: содействовать формированию навыка выявления причинно-следственных связей; только тщательный анализ наблюдаемых явлений дает возможность проникнуть в сущность казалось бы очевидных явлений.
3. Развивающая: используя проблемные ситуации, подвести учащихся к самостоятельному выводу, что вид звездного неба не остается одинаковым в течении года; актуализируя имеющиеся у учащихся знания работы с географическими картами, сформировать умения и навыки работы с ПКЗН (нахождение координат).

Знать:
1-й уровень (стандарт) - географические и экваториальные координаты, точки в годичном движении Солнца, наклон эклиптики.
2-й уровень - географические и экваториальные координаты, точки в годичном движении Солнца, наклон эклиптики, направления и причины смещения Солнца над горизонтом, зодиакальные созвездия.

Уметь:
1-й уровень (стандарт) - устанавливать по ПКЗН на различные даты года, определять экваториальные координаты Солнца и звезд, находить зодиакальные созвездия.
2-й уровень - устанавливать по ПКЗН на различные даты года, определять экваториальные координаты Солнца и звезд, , находить зодиакальные созвездия, пользоваться ПКЗН.

Оборудование: ПКЗН, небесная сфера. Географическая и звездная карта. Модель горизонтальных и экваториальных координат, фото видов звездного неба в разное время года. CD- "Red Shift 5.1" (путь Солнца, Смена времен года). Видеофильм "Астрономия" (ч.1, фр. 1 "Звездные ориентиры").

Межпредметная связь: Суточное и годовое движение Земли. Луна – спутник Земли (природоведение, 3-5 кл). Природно-климатические закономерности (география, 6 кл). Движение по окружности: период и частота (физика, 9 кл)

I. Опрос учащихся (8 мин). Можно тест по Небесной сфере Н.Н. Гомулиной, или:
1. У доски:
1. Небесная сфера и горизонтальная система координат.
2. Движение светила в течение суток и кульминация.
3. Перевод часовой меры в градусную и обратно.
2. 3 человека по карточкам:
К-1
1. В какой стороне неба находится светило, имеющее горизонтальные координаты: h=28°, А=180°. Каково его зенитное расстояние? (север, z=90°-28°=62°)
2. Назовите три созвездия, видимые сегодня в течение суток.
К-2
1. В какой стороне неба находится звезда, если ее координаты горизонтальные: h=34 0 , А=90 0 . Каково ее зенитное расстояние? (запад, z=90°-34°=56°)
2. Назовите три яркие звезды, видимые у нас в течение суток.
К-3
1. В какой стороне неба находится звезда, если ее координаты горизонтальные: h=53 0 , А=270 о . Каково ее зенитное расстояние? (восток, z=90°-53°=37°)
2. Сегодня звезда в верхней кульминации в 21 ч 34 м . Когда ее следующее нижняя, верхняя кульминация? (через 12 и 24 часа, точнее через 11 ч 58 м и 23 ч 56 м )
3. Остальные (самостоятельно в парах, пока отвечают у доски)
а) Перевести в градусную меру 21 ч 34 м , 15 ч 21 м 15 с . отв=(21 . 15 0 +34 . 15 ' =315 0 +510 ' =323 0 30', 15 ч 21 м 15 с =15 . 15 0 +21 . 15 ' +15 . 15 " =225 0 + 315' + 225"= 230 0 18'45")
б) Перевести в часовую меру 05 о 15', 13 о 12'24". отв= (05 о 15'=5 . 4 м +15 . 4 c =21 м , 13 о 12'24"=13 . 4 м +12 . 4 c +24 . 1/15 c =52 м +48 c +1,6 c =52 м 49 c ,6)

II. Новый материал (20 мин) Видеофильм "Астрономия" (ч.1, фр. 1 "Звездные ориентиры").

Положение точки на Земле однозначно определяется географическими координатами (φ, λ)

б) Положение светила на небе (небесной среде) также однозначно определяются - в экваториальной системе координат, где за точку отсчета взят небесный экватор. (экваториальные координаты введены впервые Яном Гавелия (1611-1687г, Польша), в каталоге на 1564 звезды составленном в 1661-1687гг) - атлас 1690г с гравюрами и сейчас используется (титул учебника).
Так как координаты звезд не меняются столетиями, поэтому данная система используются для создания карт, атласов, каталогов [списков звезд]. Небесный экватор- плоскость, проходящая через центр небесной сферы перпендикулярно оси мира.

Точки Е-востока, W -запада – точки пересечения небесного экватора с точками горизонта. (Напоминаются точки N и S).
Все суточные параллели небесных светил расположены параллельно небесному экватору (их плоскость перпендикулярна оси мира).

Экваториальные координаты:
δ (дельта) – склонение светила – угловое расстояние светила от плоскости небесного экватора (аналогична φ).
α (альфа) – прямое восхождение - угловое расстояние от точки весеннего равноденствия (γ) вдоль небесного экватора в сторону противоположную суточному вращению небесной сферы (по ходу вращения Земли), до круга склонения (аналогична λ , измеряемой от гринвичского меридиана). Измеряется в градусах от 0 о до 360 о , но обычно в часовой мере.
Понятие прямого восхождения было известно ещё во времена Гиппарха, который определял расположение звёзд в экваториальных координатах в 2-ом столетии до н. э., Но Гиппарх, и его преемники составляли свои каталоги звёзд в эклиптической системе координат. С изобретением телескопа, для астрономов стало возможно наблюдать астрономические объекты с большей детализацией. К тому-же, с помощью телескопа можно было длительное время удерживать объект в поле зрения. Самым лёгким способом оказалось применение экваториальной монтировки для телескопа, которая позволяет телескопу вращаться в той же плоскости, что и экватор Земли. Поскольку экваториальная монтировка стала широко применяться в телескопостроении, экваториальная система координат, была принята.
Первым каталогом звёзд, в котором использовалось прямое восхождение и склонение для определения координат объектов, был в 1729г опубликованный "Atlas Coelestis" звездного неба на 3310 звезд (нумерация используется и сейчас) Джона Флемстида

в) Годичное движение Солнца. Есть светила [Луна, Солнце, Планеты] экваториальные координаты которых меняются быстро. Эклиптика - видимый годовой путь центра солнечного диска по небесной сфере. Наклонена к плоскости небесного экватора в настоящее время под углом 23 о 26', точнее под углом: ε = 23°26’21",448 — 46",815 t — 0",0059 t² + 0",00181 t³, где t — число юлианских столетий, протёкших от начала 2000. Эта формула справедлива для ближайших столетий. В более продолжительных отрезках времени наклон эклиптики к экватору колеблется относительно среднего значения с периодом приблизительно 40000 лет. Кроме того, наклон эклиптики к экватору подвержен короткопериодическим колебаниям с периодом 18,6 лет и амплитудой 18",42, а также более мелким (см. Нутация).
Видимое движение Солнца по эклиптике - отражение действительного движения Земли вокруг Солнца (доказано лишь в 1728г Дж. Брадлеем открытием годичной аберрации).

Небесные явления, возникающие вследствие данных космических явлений


Итак, Земля делает один оборот вокруг своей оси за 23 часа 56 минут. 24 часа – средние солнечные сутки – время оборота Земли относительно центра Солнца.

III. Закрепление материала (10 мин)
1. Работа по ПКЗН (по ходу изложения нового материала)
а) нахождение небесного экватора, эклиптики, экваториальных координат, точек равноденствия и солнцестояния.
б)определение координат например звезд: Капелла (α Возничего), Денеб (α Лебедя) (Капелла - α=5 ч 17 м , δ=46 о ; Денеб - α=20 ч 41 м , δ=45 о 17')
в) нахождение звезд по координатам: (α=14,2 ч , δ=20 о ) - Арктур
г) найти, где находится Солнце сегодня, в каких созвездиях осенью. (сейчас четвертая неделя сентября - в Деве, начало сентября - во Льве, в ноябре пройдет Весы и Скорпион)
2. Дополнительно:
а) Звезда кульминирует в 14 ч 15 м . Когда ее следующая нижняя, верхняя кульминация? (через 11 ч 58 м и 23 ч 56 м , то есть в 2 ч 13 м и 14 ч 11 м ).
б) ИСЗ пролетел по небу из начальной точки с координатами (α=18 ч 15 м , δ=36 о ) в точку с координатами (α=22 ч 45 м , δ=36 о ). Через какие созвездия пролетел ИСЗ.

IV. Итог урока
1. Вопросы:
а) Какова необходимость введения экваториальных координат?
б) Чем замечательны дни равноденствия, солнцестояния?
в) Под каким углом плоскость экватора Земли наклонена к плоскости эклиптики?
г) Можно ли рассматривать годовое движение Солнца по эклиптике как доказательство обращения Земли вокруг Солнца?

Домашние задание: § 4, вопросы задание для самоконтроля (стр. 22), стр. 30 (пп. 10-12).
Практическая работа №1 (желательно раздать всем учащимся на год этот список работ с пояснениями).
Можно дать задание "88 созвездий" (по одному созвездию каждому ученику). Ответить на вопросы:

  1. Как называется это созвездие?
  2. В какое время года его лучше всего наблюдать на нашей (данной) широте?
  3. К какому типу созвездий оно относится: невосходящее, незаходящее, заходящее?
  4. Это созвездие северное, южное, экваториальное, зодиакальное?
  5. Назовите интересные объекты этого созвездия и укажите их на карте.
  6. Как называется самая яркая звезда созвездия? Каковы ее основные характеристики?
  7. Пользуясь подвижной картой звездного неба, определите экваториальные координаты наиболее ярких звезд созвездия.

Урок оформили члены кружка "Интернет-технологии" - Прытков Денис (10 кл) и Поздняк Виктор (10 кл), Изменен 23.09.2007 года



Знакомство со звездным небом

Световое загрязнение

Итак, какие же возможности есть у любителя астрономии в наши дни?

Прежде всего, как и у древних греков, римлян и арабов, у них над головой раскинулся величественный купол небес. Правда, звезды на нем все труднее наблюдать из-за уличного освещения. В городах зачастую доступны глазу лишь самые яркие звезды и планеты, ну и, конечно, Солнце с Луной.

Из-за светового загрязнения сегодня 60% жителей Европы и почти 80% жителей Северной Америки не могут видеть светящуюся полосу Млечного Пути — проекцию на небе диска нашей Галактики.

Однако на территории России еще есть места, где можно увидеть и Млечный Путь, и звезды 6 величины. В целом же, для проведения наблюдений нужно стараться отъехать хотя бы на 20–30 км от города.

Небесная сфера и карты звездного неба

Со времен древних греков в науке принято деление неба на созвездия. В настоящее время решением Международного астрономического союза небо разделено на 89 участков, носящих имена 88 созвездий (два участка, принадлежащих созвездию Змея, разделены созвездием Змеемосец). Чуть больше половины из них известны со времен античности и носят в основном мифологические названия. Остальные появились в XVI–XIX вв. Какие-то из созвездий содержат заметные рисунки, образованные яркими звездами, в других неопытный наблюдатель вообще может не разглядеть ни одной звезды. Но созвездия покрывают собой всю площадь неба: нет ни одного, даже самого маленького участка на нем, который не входил бы в какое-то созвездие.

Для наблюдений любителю астрономии необходимы карты звездного неба. Они бывают разных типов. На некоторых из них показаны линии, соединяющие яркие звезды созвездий. Такие карты призваны помочь начинающему любителю лучше ориентироваться на небе. Другие карты не содержат этих линий, но на них нанесены границы созвездий (то есть участки небесной сферы, которые они занимают), а также небесные координаты. На них могут быть обозначены звезды, которые тусклее тех, что видны невооруженным глазом, а также туманности, галактики и звездные скопления. Такие карты предназначены для наблюдений с помощью телескопа или другого оптического прибора.

Чтобы отыскать на карте, а затем на небе нужную нам звезду или другой объект и навести на него телескоп, необходимо знать систему небесных координат.

Существуют две системы небесных координат: горизонтальная и экваториальная.

В горизонтальной системе координат положение светила отсчитывается относительно плоскости горизонта. Основные точки в этой системе координат — стороны света (север, юг, восток и запад), зенит (точка над головой наблюдателя) и надир (точка под ногами). Положение светила относительно сторон света называют азимутом, а положение относительно горизонта — высотой. И то и другое измеряется в угловых градусах.


Горизонтальная система координат

Однако при видимом вращении небесной сферы высота и азимут светил непрерывно меняется, поэтому такая система непригодна для составления карт. Для этого используется экваториальная система координат. Основная плоскость в ней — плоскость небесного экватора, проекция на небесную сферу земного экватора. Проекции земных полюсов на небесную сферу называются полюсами мира. Вблизи северного полюса мира находится Полярная звезда, которая достаточно ярка — она имеет 2 звездную величину. Вблизи же южного полюса мира нет таких ярких светил; направление на него можно определить по созвездию Южный Крест, которое расположено намного дальше от него, чем Полярная звезда от Северного.

Кроме того, на небесной сфере есть эклиптика — большой круг, по которому происходит годичное движение Солнца по зодиакальным созвездиям. Эклиптика представляет собой своеобразную проекцию земной орбиты на небесной сфере.

Аналог земной широты называется склонением и отсчитывается от небесного экватора к полюсам мира. Аналог земной долготы отсчитывается от точки весеннего равноденствия — одной из двух точек, где эклиптика пересекается с небесным экватором.


Экваториальная система координат

Изменение вида звездного неба в зависимости от места, времени суток и года

Как мы уже знаем, из-за вращения Земли вокруг своей оси звезды непрерывно движутся по небосклону, описывая окружности вокруг полюсов мира. Если смотреть на их вращение с полюсов Земли, то полюс мира окажется у нас над головой, в зените, а звезды будут двигаться параллельно горизонту, не заходя за него. Наблюдателю будет доступно только одно полушарие небесной сферы — звезды другого никогда не восходят над горизонтом.

На экваторе Земли картина совсем иная. Через зенит проходит линия небесного экватора, а оба полюса мира лежат на линии горизонта в точках севера и юга. Все звезды восходят и заходят, двигаясь по небу под прямым углом к горизонту. По мере вращения небесной сферы в течение года на экваторе мы можем видеть над горизонтом все звезды обоих небесных полушарий.

В средних географических широтах Земли картина промежуточная между полюсом и экватором. Полюс мира виден на высоте, равной географической широте места (скажем, для Москвы это 56°). Небесный экватор наклонен к горизонту и приподнимается над ним тем выше, чем ближе местность к географическому экватору, и тем больше звезд другого полушария мы можем видеть. Часть звезд на небе восходят и заходят, а часть, расположенная близко к полюсу мира, в так называемой околополярной зоне, не заходят. Граница зоны незаходящих звезд уменьшается по мере приближения к экватору и опускания полюса мира к горизонту.

Помимо вращения вокруг своей оси, Земля движется по орбите вокруг Солнца, которое тоже видно на фоне звездного неба. Конечно, днем мы не можем видеть звезды возле Солнца, но на потемневшем небе те из них, которые расположены ближе всего к нему, первыми заходят ранним вечером и последними восходят перед рассветом.

Но по мере движения Земли каждый день Солнце немного смещается на небе, и звезды видно уже немного в другом месте. За сутки оно проходит по эклиптике путь примерно в 1 угловой градус. Чтобы повернуться на такой угол, Земле требуется 4 минуты. И значит, звезды восходят и заходят каждые сутки на 4 минуты раньше, при этом вечерние звезды приближаются к Солнцу, а утренние — отдаляются от него. (На языке астрономов: звездные сутки на 4 минуты короче солнечных).

Все это приводит к тому, что каждые 2 недели время восходов и заходов звезд смещается на 1 час, а за месяц — на 2 часа. В одно и то же время суток одни созвездия сместятся к западу, другие придут на их место с востока. В итоге через 12 месяцев, после завершения оборота Земли вокруг Солнца, картина звездного неба завершает годичный цикл изменения.

С чего начинать знакомство с созвездиями

Новичку может показаться, что распознать среди множества звезд фигуры созвездий очень трудно. К тому же многие карты звездного неба искажают их очертания из-за специфики картографических проекций. Но отчаиваться ни в коем случае не надо, опыт приходит со временем, и однажды, после нескольких неудачных попыток, вы увидите то, что искали — и будете удивляться, как можно было это так долго не находить…

Конечно, лучше придерживаться определенного алгоритма знакомства с созвездиями, начиная с самых ярких, заметных и известных, которые могут быть ориентирами и опорными пунктами для поиска других.

Большая Медведица служит отличным ориентиром для поиска других звезд и созвездий. Наиболее известен способ, как с ее помощью можно найти Полярную звезду — продолжив внешнюю сторону Ковша. Однако, как показано на схеме, с помощью этой примечательной фигуры из звезд можно найти еще много других созвездий.


Способы нахождения созвездий с помощью Ковша Большой Медведицы

Следующий шаг — найти созвездия, которые видны в вечернее время в южной части неба в определенные сезоны года. Осенью выделяются созвездия Пегас и Андромеда, которые вместе тоже напоминают Ковш, но более крупный, чем у Большой Медведицы. Разглядев его, можно искать созвездия Овен и Персей, а потом — более слабые: Рыбы, Треугольник, Кит…

На весеннем небе главное созвездие — Лев с ярким Регулом. Найдя его, нетрудно затем отыскать другие яркие светила — Арктур из Волопаса и Спику, сияющую в Деве. Затем можно приступить к поиску остальных, намного более тусклых созвездий — Рак, Ворон, Чаша, Гидра, Малый Лев, Секстант, Волосы Вероники.

Летом и осенью в южной части неба выделяются три яркие звезды: Вега, Денеб, Альтаир. Это главные звезды созвездий Лира, Лебедь и Орел, но вместе их называют Осенне-летним треугольником. С него и нужно начинать знакомство с летним небом, а затем искать остальные летние созвездия — Северную Корону, Геркулес, Змееносец со Змеей, Скорпион, Стрелец, Козерог, Водолей, Лисичка, Дельфин, Стрела, Щит…

Полезные ссылки

В Интернете можно найти онлайн-карты звездного неба, показывающие его вид как на текущий момент, так и на любой день и час в прошлом или будущем. Одна из таких карт находится вот тут.

Для более полного знакомства с небом, а также для удобства, можно установить на компьютер, телефон или планшет программу-планетарий. Например, среди начинающих любителей астрономии популярен бесплатный планетарий Stellarium. Эта программа позволяет смоделировать множество явлений и реалистично показать их. Существуют и другие виртуальные планетарии с самыми разными функциями и возможностями, и каждый может выбрать для себя тот, который отвечает его запросам.

Оптические приборы для астрономических наблюдений

Время древних астрономов с угломерными инструментами давно прошло, и любителю астрономии, если он не хочет ограничиваться чтением книг, просмотром фильмов и поиском созвездий по карте, необходим оптический прибор.

Если вы увлеклись астрономией лишь недавно и не имели до того опыта наблюдений, оптимальным вариантом первого прибора для вас станет не крупный телескоп, а бинокль. Он легче и компактнее телескопа и прекрасно подойдет для общего знакомства с небом, Млечным Путем, яркими туманностями и звездными скоплениями, крупными деталями на поверхности Луны. Также с помощью бинокля можно наблюдать и кометы.

Покупая бинокль, обращайте внимание прежде всего на его апертуру (диаметр объектива) и увеличение. Например, бинокль с маркировкой 6×50 — это бинокль с апертурой 50 мм и увеличением 6 крат. Бывают очень большие бинокли с большим увеличением, например 20×100, но их невозможно использовать, держа в руках, по причине большой тяжести и дрожания изображения (дрожь в руках из-за тяжелого бинокля многократно усиливается большим увеличением). Поэтому использовать такие громоздкие инструменты можно только со штативом. Оптимальные параметры бинокля для обзоров неба и наблюдений с рук — 7×50 или 8×56.

Конечно, по-настоящему увлеченный любитель вряд ли ограничится одним биноклем, и телескоп закономерно будет следующим этапом.

Любительские телескопы чаще всего принадлежат к двум первым исторически появившимся типам — рефракторам и рефлекторам.

Рефракторы удобны в пользовании благодаря прочной конструкции трубы и ее герметичности, не часто требуют настройки и обслуживания, дают контрастное и четкое изображение, что важно при наблюдении планет. Но есть у рефракторов и недостатки. Из-за того, что световые лучи разных участков спектра по-разному преломляются в стекле, изображение в них страдает хроматической аберрацией, то есть окрашено по краям в разные цвета (за исключением дорогих моделей, так называемых апохроматов). Кроме того, модели с большим диаметром объектива стоят дороже, чем такого же размера телескопы других систем.

Изготовить зеркало проще, чем линзу такого же диаметра, поэтому рефлекторы в среднем стоят дешевле, чем рефракторы. Кроме того, зеркало легче, чем линза, а значит, и вес телескопа будет меньше. Свободны они и от хроматической аберрации, так как лучи в них не преломляются, а отражаются. Но у рефлекторов тоже есть недостатки. Изображение в них менее контрастное, чем в рефракторах, из-за потерь света при его отражении на маленьком вторичном зеркале, которое к тому же и не пускает часть света в трубу. Конструкция трубы не герметична, а это значит, что внутрь легко попадает пыль и грязь. Зеркальное покрытие со временем тускнеет. У рефлекторов наблюдается и аберрация, но другого типа — сферическая (объекты по краям поля зрения выглядят более размытыми, чем в центре). Кроме того, конструкция рефлектора чаще требует юстировки (настройки оптики).

Существуют оптические схемы, в которых применяются и линзы, и зеркала. Среди любителей известны, например, системы Шмидта-Кассегрена и Максутова-Кассегрена, в которых перед зеркалом установлены корректирующие линзы. Они свободны от многих недостатков и рефракторов, и рефлекторов, кроме того, имеют короткую герметичную трубу, удобную для транспортировки, но, как правило, стоят дороже как рефракторов, так и рефлекторов.

Подробнее читайте:
Позднякова, Ирина. Любительская астрономия: люди, открывшие небо / И. Ю. Позднякова. — Москва: Издательство АСТ, 2018. — 334, [2] с. : ил. — (Библиотека Гутенберга).

Нам учитель по Астрономии задал 37 вопросов (на зачёт) в который входит один такой вопрос "Звёздное небо. Изменение видов звёздного неба в течении суток, года" Нам сказали что не нужно слишком сильно углубляться в вопрос а просто обьяснить самое главное (вот так ещё не понял это самое главное - так как информации на данный вопрос очень много) может быть кто то сможет объяснить мне этот вопрос. Заранее спасибо :)

"Звёздное небо. Изменение видов звёздного неба в течении суток, года"

Звёздное небо делает 1 оборот примерно за сутки (точнее за 23 часа 56 минут) вокруг северного полюса мира (рядом с которым находится Полярная звезда, и поэтому она почти стоит на месте) против часовой стрелки (если смотреть на полярную звезду). Это что касается суток.

Что касается года, то если ты зафиксируешь положение звезд в полночь, то через полгода в полночь всё небо будет повернуто на 180 градусов (относительно всё той же полярной звезды)

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Изменение вида звездного неба в течение суток

Описание презентации по отдельным слайдам:

Изменение вида звездного неба в течение суток

Изменение вида звездного неба в течение суток

Небесная сфера – это воображаемая сфера сколь угодно большого радиуса, в цент.

Небесная сфера – это воображаемая сфера сколь угодно большого радиуса, в центре которой находится наблюдатель.
Свойства небесной сферы:

центр небесной сферы выбирается произвольно. Для каждого наблюдателя – свой центр, а наблюдателей может быть много.

угловые измерения на сфере не зависят от ее радиуса.

На небесную сферу проецируются звезды, Солнце, Луна, планеты.

На небесной сфере рассматривают лишь угловые расстояния. Угловое расстояние.

На небесной сфере рассматривают лишь угловые расстояния.
Угловое расстояние между двумя точками сферы – это угол между лучами, исходящими в направлении двух этих точек из глаза наблюдателя.
Приняты следующие единицы угловых расстояний:

радиан – центральный угол, соответствующий дуге, длина которой равна ее радиусу. В 1 радиане 57°17´45".

градус – центральный угол, соответствующий 1/360 части окружности. Один дуговой градус 1° = 60´, одна дуговая минута 1´ = 60";

час – центральный угол, соответствующий 1/24 части окружности.
1h = 15°, 1h = 60m, 1m = 60s.

1 минута в часовой мере равна 15 дуговым минутам, 1 секунда в часовой мере равна 15 дуговым секундам: 1m = 15´, 1s = 15".

Один радиан, десять градусов и один час

Плоскость, проходящая через центр небесной сферы и перпендикулярная отвесной.

Плоскость, проходящая через центр небесной сферы и перпендикулярная отвесной линии называется математическим (истинным) горизонтом.

Отвесная линия пересекает поверхность небесной сферы в двух точках: в верхней.

Отвесная линия пересекает поверхность небесной сферы в двух точках: в верхней Z – зените и в нижней Z' – надире.

Звезды в течение суток описывают круги с центром недалеко от Полярной звезды.

Звезды в течение суток описывают круги
с центром недалеко от Полярной звезды.
Наблюдаемое суточное вращение небесной сферы – кажущееся явление, отражающее действительное вращение земного шара вокруг оси.
Вращение звездного неба в течение суток.
Обсерватория в Мауна-Кеа, Гавайи.
Вращение Земли вызывает у наблюдателя иллюзию вращения небесной сферы.
Любой наблюдатель видит лишь половину
небесной сферы, другая половина от него
заслоняется земным шаром.

Ось видимого вращения небесной сферы называется осью мира. Ось мира пересека.

Ось видимого вращения небесной сферы называется осью мира.
Ось мира пересекает небесную сферу в точках Р и Р' – полюсах мира.

Притяжение Солнца и Луны заставляет земную ось прецессировать так же, как пре.

Притяжение Солнца и Луны заставляет земную ось прецессировать так же, как прецессирует ось наклонившегося быстро вращающегося волчка под действием силы тяжести.

Ось Земли вращается относительно далеких звезд, делая полный оборот примерно.

Ось Земли вращается относительно далеких звезд, делая полный оборот примерно за 26 тысяч лет (т.н. платонический год). При этом она описывает окружность радиусом 23,5° с центром в созвездии Дракона.
13 тысяч лет назад полюс мира указывал на Вегу.
Дальше титул Полярной поочередно присваивался
π, η и τ Геркулеса, звездам Тубан и Кохаб.
α Малой Медведицы стала полярной звездой примерно в 1100 году, а ближе всего к ней полюс пройдет в 2100 году.
Приблизительно в 3200 году полярными станут звезды созвездия Цефей, затем они уступят первенство Денебу и Веге.

Расстояние Полярной звезды от северного полюса мира в настоящее время чуть ме.

Расстояние Полярной звезды от северного полюса мира в настоящее время чуть меньше 1’.
Вблизи северного полюса мира в настоящее время находится
 Малой Медведицы – Полярная звезда.

Большой круг небесной сферы, проходящий через зенит, северный полюс мира, над.

Большой круг небесной сферы, проходящий через зенит, северный полюс мира, надир и южный полюс мира называется небесным меридианом
Плоскости математического горизонта и небесного меридиана пересекаются по прямой NS, называемой полуденной линией (в этом направлении отбрасывают тень предметы, освещаемые Солнцем, в полдень).
Точка N - точка севера.
Точка N – точка севера.
Точка S – точка юга.

Небесным экватором называется большой круг, перпендикулярный оси мира. Небесн.

Небесным экватором называется большой круг, перпендикулярный оси мира.
Небесный экватор
пересекается с
математическим
горизонтом в точках
востока E и запада W.

Прохождение светила через небесный меридиан называется кульминацией. В верхн.

Прохождение светила через небесный меридиан называется кульминацией.
В верхней кульминации высота светила h максимальна,
в нижней кульминации – минимальна.
Промежуток между кульминациями светил равен 12 часам (половине суток).
Звезды бывают заходящими и восходящими на данной широте места наблюдения, а также невосходящими и незаходящими.
Например, в России не видны звезды созвездия Южный Крест – это созвездие, на наших широтах невосходящее. А созвездия Дракона, Малой Медведицы – незаходящие созвездия.
Для наблюдателя, находящегося на Северном полюсе, над горизонтом находятся звезды только северного полушария неба. Они вращаются вокруг Полярной звезды и не заходят за горизонт.
Наблюдатель, находящийся на Южном полюсе, видит только звезды южного полушария.
На экваторе могут наблюдаться все звезды, расположенные и в северном, и в южном полушариях неба.

Видимое движение звезд на разных широтах

Видимое движение звезд на разных широтах

Горизонтальная система координатВертикал – это большой полукруг небесной сфер.

Горизонтальная система координат
Вертикал – это большой полукруг небесной сферы, проходящий через зенит, надир и точку, в которой в данный момент находится светило.
Высота светила (h) – это угловое расстояние светила от горизонта (измеряется в градусах, минутах и секундах в интервале от 0 до 90о).
Азимут (A)– это угловое расстояние вертикала светила от точки юга (измеряется в градусах, минутах и секундах в интервале от 0 до 360о).

Астрономия является одной из древнейших наук. Предметом изучения астрономии является огромное количество объектов, от метеорных песчинок, которые сгорают в атмосфере Земли до необъятных просторов Вселенной. В зависимости от изучаемой области астрономии, её разделяют на отдельные части. Одним из разделов в курсе общей астрономии является Сферическая астрономия или как её ещё называют Астрометрия. Она изучает положение и вращение Земли, движение небесных объектов, путём измерения углов на небе, для чего необходимы длительные наблюдения небесных тел. Главными целями Сферической астрономии является:

- Установление систем небесных координат;

- Получение параметров, характеризующих наиболее полно закономерности вращения Земли.

Сферическая астрономи я , разрабатывает математические методы определения видимых положений и движений небесных тел с помощью различных систем координат, а также теорию закономерных изменений координат светил со временем.


Главными элементами Сферической астрономии ещё с древности считаются:

Звёзды и их расположение на небе. Невооружённым глазом в ночном небе в одном полушарии, мы можем увидеть 3000 звёзд, а в обоих полушариях 6000 звёзд.


Созвездия – звёзды, объединённые в одну группу, для удобства ориентира в небе и навигации на Земле. Зачастую, имеющие свои названия из слагаемых легенд за умозаключительную схожесть с мифическими персонажами. Все небо разделено на 88 созвездии, которые можно найти по характерному для них расположению звезд. Созвездия находят, мысленно соединяя их ярчайшие звезды прямыми линиями в некую фигуру. В каждом созвездии яркие звезды издавна обозначали греческими буквами, самую яркую α (альфа), далее β (бета), γ и т.д. по алфавиту в порядке убывания яркости звезд. Например, Полярная - это α Малой Медведицы. Зная α Большой Медведицы, можно без особого труда отыскать Малую Медведицу. Если зрительно провести прямую линию от β к α Большой Медведицы, они укажут на полярную звезду. Самые яркие звезды северного полушария: α созвездия Лиры – звезда Вега, α Волопаса – Арктур, а в южном полушарии и на всем небе α Большого Пса – Сириус. К наиболее ярким звездам летнего периода относят: белые звезды: Вега в созвездии Лиры, Альтаир в созвездии Орла и Денеб в созвездии Лебедь, видны летом и осенью – так называемый летний треугольник.


Зодиакальные созвездия – созвездия, которые находятся на линии годичного движения Солнца – эта линия называется эклиптика. В каждом из них, Солнце находится около месяца. Сегодня принято считать, что зодиакальных созвездий 12, но на самом деле Солнце в своём движении пересекает 13 созвездий. 13 созвездие называется Змееносец и находится между созвездиями Скорпион и Стрелец, но для удобства оно было убрано из числа зодиакальных.

Все звезды кажутся одинаково далёкими от нас, но истинное расстояние до них различно, и определить его можно только путем очень точных измерений и расчетов. Из-за осевого вращения Земли, звезды нам кажутся перемещающимися по небу, но при внимательном наблюдении можно заметить, что Полярная звезда почти не меняет своего положения относительно горизонта. Другие же звезды описывают в течении суток полный круг с центром вблизи Полярной. Это можно легко проверить, проведем небольшой опыт. Необходимо закрепить на штативе фотоаппарат, навести его на полярную звезду, и поставить длительную выдержку. В результате, мы получим фото, на котором увидим концентрические дуги – следы путей звезд. Общий центр этих дуг – точка, которая остается неподвижной при суточном движении звезд, условно называется северным полюсом мира. Диаметрально противоположная ему точка называется южным полюсом мира. Вращение звёзд происходит с Востока на Запад.


История астрономии

С тех самых пор, когда люди стали объединяться в группы, возникало множество проблем и вопросов, связанных с окружающим миром и природными явлениями, которые, так или иначе, влияли на жизнь человека. Вплоть до XIX века, астрономия была ограничена рамками познаний лишь в пределах Солнечной системы, объекты, находившиеся за её пределами и тем более за пределами нашей Галактики, были недосягаемы для изучения, и представления о них были лишь умозаключительными. Историческое развитие в астрономии заключается в том, что она формировалась, как наука вместе с изменяющейся в разные периоды общественной жизнью и культурой. В каждой народности были свои культура, мифы и обычаи, свои первооткрыватели, которые вносили вклад, делая открытия и давая объяснения тем или иным событиям, связанным с проявлениями природы и окружающего мира. Астрономия была необходима для охотников и мореплавателей, знание о расположении звёзд давало возможность для ориентации и навигации. Но для этого были необходимы длительные и регулярные наблюдения за светилами. Несмотря на то, что знание древних египтян о небесных светилах отставало от вавилонских, в задаче счёта времени жрецы Египта ушли вперёд. С развитие земледелия, возникает календарь (Рис.2), в котором год состоял из 12 месяцев, а месяц из 30 дней с добавочными 5 днями. Впоследствии этот календарь был положен в основу юлианского календаря, созданного в эпоху Древнего Рима.


Египтяне установили продолжительность года и создали систему летоисчисления.


Длительные наблюдения светил помогли создать календарь, но привели к вопросу, который долгое время не находил ответа, что же находится в центре Земля или Солнце? Вопрос повис на многие столетия.

К VI в. до н.э. развитие культуры и науки в Европе способствовали созданию философских школ. Так известный древнегреческий философ и математик Пифагор (570-490 г. до н.э.) основал религиозно-философскую школу пифагорейцев. Он связывал сущность мира с соотношениями между числами. Пифагор считал, что Земля шарообразна и находится в центре, а Солнце, Луна и планеты вращаются вокруг неё. Т.е. он был приверженцем геоцентрической системы мира.




Классик персидской литературы Омар Хайям (1048 – 1122 гг. н.э.), автор знаменитых четверостиший – рубай, был астрономам. По его предложению был введён на Востоке один из самых точных календарей с високосными годами. Ошибка календаря была ничтожно малой – сутки за 4 500 лет.



Знаменитый датский астроном Тихо Браге (1546-1601 гг. н.э.)– был искуснейшим наблюдателем дотелескопического периода. Каждую ясную ночь он проводил наблюдения, и это позволило ему составить очень точный звёздный каталог и собрать обширные данные наблюдений планеты Марс. Как лучший наблюдатель дотелескопической эры Тихо Браге достиг необходимой точности для обнаружения строгих закономерностей в движении планет.

Читайте также: