Значение метеоритов для науки кратко

Обновлено: 05.07.2024

— Дмитрий Дмитриевич, откуда к нам на Землю прилетают метеориты?

— Очень интересный вопрос. Владимир Иванович Вернадский, который основал науку метеоритику, считал, что метеориты — галактические странники. Но, к сожалению, это не так. Гипотеза Вернадского не подтвердилась. Сейчас известно, что метеориты в основном приходят к нам из пояса астероидов, находящегося между Марсом и Юпитером. Существует фантастическая гипотеза, что пояс астероидов — это остатки не образовавшейся из-за гравитационных воздействий планеты Фаэтон, хотя, расчётные модели не подтверждают эту версию. Так или иначе, пояс астероидов сформировался в космосе примерно 4,5–4.4 млрд. лет назад. Для нас это, конечно, ценное свидетельство условий рождения Солнечной системы. Состав хондритовых метеоритов, что примечательно, в общем не отличается от состава Солнца. У нашего светила есть внешняя оболочка, фотосфера, состав которой мы хорошо знаем из спектроскопических наблюдений и которая не изменялась с момента образования этой звезды. Оказывается, вещество, из которого состоят примитивные метеориты, соответствуют веществу фотосферы Солнца. Из него все мы образовались.

— Выходит, мы в какой-то степени дети Солнца?

— Возможно, это так, хотя и не совсем. Все достаточно тяжёлые атомы (за исключением водорода и некоторых лёгких элементов) на нашей Земле образовались в звёздах. Так что можно утверждать, что мы созданы из звёздной пыли. Наше Солнце — это звезда примерно 3-го поколения, она состоит из вещества, оставшегося после взрыва сверхновых.

Вообще изучение метеоритов напоминает работу криминалиста. Возясь в разных деталях, мы постепенно расшифровываем всю историю возникновения данной породы, восстанавливаем историю возникновения Солнечной системы, Земли и планет. Исследования метеоритов дают нам в этом смысле очень много. Мы до сих пор не знаем точно, каков был строительный материал Земли, но догадываемся, что это были так называемые энстатитовые хондриты.

Badykov.jpg


Дмитрий Дмитриевич Бадюков, кандидат геолого-минералогических наук, руководитель лаборатории метеоритики ГЕОХИ РАН. Фото Наталии Лесковой.

Мы знаем, что Земля не могла образоваться из углистых хондритов — тех, которые образовались изначально из протопланетного облака, когда возникло наше Солнце. В первые моменты своего существования вокруг него носился диск пыли, из которого и сформировались эти изначальные примитивные углистые хондриты. Их вещество до сих пор не изменялось, и мы можем расшифровывать, какие тогда были парциальные давления газов, какие протекали окислительно-восстановительные процессы и могла ли там возникнуть органика.

В нашей лаборатории изучаются проблемы возникновения самых первых частиц, образовавшихся в Солнечной системе и несущих информацию о наиболее ранних стадиях образования твёрдого вещества, а также по истории формирования астероидов — немых свидетелей самых первых этапов формирования Земли. Это широчайший круг задач. Кстати, наша лаборатория курирует коллекцию метеоритов Российской академии наук, поддерживает её в порядке и ежегодно пополняет новыми метеоритами и образцами. Эта коллекция старейшая в мире и является культурным достоянием России.

— Почему тогда Земля не могла возникнуть из углистых хондритов, если их с самого начала было много?

— Моделируя формирование Земли из углистых хондритов, мы должны получить планету, где содержится значительно больше железа и у которой будет массивная атмосфера (типа Венеры, а то и гораздо хуже). Другое дело энстатитовые хондриты, хотя они весьма редки и составляют всего около двух процентов от всех упавших на Землю метеоритов.

Существует ещё гипотеза гетерогенной аккреции, согласно которой приращение массы нашей планеты происходило путем слипания материала разного состава — сначала железо-никелевого ядра, а потом уже силикатной оболочки, хотя изотопные данные свидетельствуют против этого. Здесь я вспоминаю, как был рецензентом статьи академика Алексея Александровича Маракушева, на которую дал отрицательный отзыв. В ней утверждалось, что планета типа Юпитера образовалась вблизи Солнца. Тогда, с моей точки зрения, образование газового гиганта в горячей области казалось невероятным. А сейчас найдены газовые гиганты среди экзопланет (т. е. планет в других звёздных системах), которые вращаются в непосредственной близи от своих звёзд.

— Какая из этих гипотез возникновения Земли лично вам кажется наиболее убедительной?

— Я до сих пор считаю это загадкой. В этом смысл науки: множество наших предположений оказываются ошибочными. Но остальное — это истина, ради которой мы и работаем.

— А кроме углистых и энстатитовых хондритов какие ещё метеориты прилетают к нам на Землю?

— Их не так уж много: железные, железно-каменные, ахондриты, палласиты. Палласиты представляют собой железно-никелевую матрицу с вкраплениями кристаллов минерала оливина. Названы в честь академика П. С. Палласа, описавшего его как самородное железо. Палласиты встречаются редко и интересны тем, что, вероятно, представляют собой ядра астероидов. Изучая такие метеориты, мы можем узнать, как возникли эти астероиды, являются ли они продуктами ударных столкновений либо дифференциации. Железные метеориты и ахондриты несут нам информацию о процессах возникновения и становления астероидов.

Pingualuit.jpg


Пингуалуит (Cratère des Pingualuit)хорошо сохранившийся ударный кратер, расположенный на севере Канады. Образовался примерно полтора миллиона лет назад. В отличие от молодых кратеров (таких как "знаменитый" Аризонский кратер возрастом около 50 тысяч лет), старые метеоритные кратеры практически неразличимы с поверхности и их обнаружение возможно либо по спутниковым снимкам либо по данным геофизических исследований. Фото: TerraMODIS, Nasa.gov.

— И удавалось ли вам обнаружить что-то особенное?

— Я занимался одним из крупнейших массовых вымираний — мел-палеогеновым, исследовал тонкий слой, который связан с глобальной катастрофой, произошедшей 65,5 миллионов лет назад. Мы обнаружили в этом слое космогенное вещество и, самое главное, ударно-метаморфизованный кварц. Что это такое? Под воздействием ударной волны кварц, очень чувствительный минерал, даёт структурные нарушения. Такие элементы никогда нигде не встречаются, кроме как при ударном преобразовании вещества: при давлениях в ударной волне, превышающих 100 тысяч атмосфер. В результате того события на нашей планете вымерли все динозавры, а также и масса других животных. Одна из гипотез говорит, что это могло быть связано с множественным выпадением астероидов. В частности возраст Болтышского кратера, относительно небольшого метеоритного кратера (всего примерно 20 км в диаметре, расположен на Украине), как раз составляет 65,5 млн. лет.

— А сейчас нам на голову может упасть что-то крупное?

— В основном на нас падают хондриты, их выпадает примерно 50 тонн в год. Это очень мало, примерно всего один железнодорожный вагон. И преимущественно это мелкие метеориты. Последний крупный случай — Челябинский метеорит, имевший около 20 метров в диаметре и массу около 700 кг. При этом я уверен, что около двух тонн до сих пор где-то валяется. Это случилось в 2013 году, и, скорее всего, нам следует ждать прилёта аналогичного крупного метеорита лет через пять-шесть. Ещё одно интересное падение случилось в селе Озёрки в Липецкой области в 2018 году. Там была немного смешная история. Метеорит упал на сельскохозяйственные поля, засеянные соей. Хозяин разрешил нам там ходить, только просил не топтать эти грядки. Но потом набежала масса любителей поисков метеоритов, и они вытоптали ему все посевы. Фермер был в отчаянии.

— Так метеорит-то в итоге вы нашли? Было в нём что-то интересное или всё-таки зря вытоптали посевы?

— Да, я нашёл его сам. Здесь больше интересен именно сам факт падения. Он может указать нам возраст метеорита — как долго он болтался в Солнечной системе. Оказалось, что прежде чем упасть на Землю, он провёл в космосе 12 миллионов лет. Обломки, из которых происходил этот метеорит, вращаются по эллиптической орбите вокруг Солнца, и иногда их орбита пересекается с земной. Тогда они могут выпадать на Землю. Но, повторюсь, сам метеорит ничего особенного собой не представляет.

Fig1b.jpg


Сбор микрометеоритов на восточной окраине ледникового щита Северного острова Новой Земли близ истоков р. Снежная. На фото Дмитрий Бадюков.

— Сейчас существует целое научное направление бактериальная палеонтология — которая пытается в том числе находить следы внеземной жизни на метеоритах и кометах. Удавалось ли вам обнаружить нечто подобное на изучаемых метеоритах?

— Академик Алексей Юрьевич Розанов, научный руководитель Палеонтологического института РАН, говорит, что находит. Мне же никогда ничего подобного видеть не доводилось. У нас в лаборатории есть специалисты высочайшего класса, которые на хорошем микроскопическом оборудовании изучают вещество метеоритов, но никогда нам признаки органики не встречались. Морфология проявления жизни очень специфична, её ни с чем другим спутать нельзя.

— Академик Розанов уверен, что жизнь прилетела к нам из космоса. Бывший научный руководитель вашего института академик Эрик Михайлович Галимов был уверен, что она зародилась в недрах Земли. А какой точки зрения придерживаетесь вы?

— Я считаю верной гипотезу панспермии (гипотеза о возможности переноса живых организмов или их зародышей через космическое пространство прим.ред.). Само образование Вселенной в результате Большого взрыва подразумевает зарождение и распространение жизни.

— И на чем основано это утверждение?

— Это вера. Я верю, что все химические и физические процессы формирования мира имели в своей основе идею образования жизни.

— Не только на Земле?

— Конечно. Вы знаете, раньше думали, что Солнце обращается вокруг Земли. Потом оказалось, что это Земля вращается вокруг Солнца. Затем стали наблюдать другие звёзды, но считали, что планет у них нет. Но вот выяснилось, что экзопланет существует множество, в том числе и землеподобных. Обнаружение жизни — лишь вопрос времени и научного развития. Жизнь разлита по Вселенной, и я уверен, что когда-нибудь это подтвердится.

— Однако вы её признаков на метеоритах пока не видите. Может быть, надо искать на ледяных кометах, где у органики больше шансов сохраниться? Но, насколько я знаю, кометное вещество в наших руках пока не побывало.

— Это не так. Во-первых, к кометам отправлялись космические миссии. Во-вторых, ещё одним предметом наших исследований является космическая пыль, которая, как и метеориты, также выпадает из космоса, причём в значительно больших количествах. Её собирают во льдах Антарктиды, Гренландии, Новой Земли и других ледниках. Чем она интересна? Она коренным образом отличается по составу от потока метеоритов. 90 процентов в её составе — углистые хондриты, близкие, но отличающиеся от метеоритных по типу.

Fig2.jpg


Электронно-микроскопические изображения полированных срезов силикатных микрометеоритов. а), б) Непереплавленные микрометеориты, испытавшие незначительный нагрев при пролёте в атмосфере и сохранившие первоначальную структуру; а) микрометеорит с тонкозернистой структурой, близкий к углистым хондритам; б)микрометеорит с “грубозернистой” структурой, характерной для кристаллизации из расплава; в), г) —микрометеориты, испытавшие более сильный нагрев в атмосфере, но сохранившие отчасти первичные минералы с высокой температурой плавления; д) е) — космические шарики, образованные в результате полного плавления исходного вещества при торможении в атмосфере с различными новообразованными структурами. Космические шарики —твёрдые остатки от “падающих звёзд”.

Тут, как говорится, теряя в одном, мы находим в другом. Чем хорош метеорит? Это камни довольно больших размеров. Мы можем его распилить и подвергнуть анализу. Космическая пыль —частички размером 1-2 миллиметра максимум. Распилить их сложно, хотя наша техника позволяет и это.

Но всё дело в том, что поток космической пыли выполняет роль своего рода пылесборника. Если, например, вы возьмете пыль из этой комнаты, то сможете установить, куда, где, когда я ходил и что делал, то есть восстановить всю историю моего путешествия и обстоятельства того, как, когда оно началось и где кончилось.

—А космическая пыль тоже, как и метеориты, родом из Солнечной системы?

— Вещество Солнечной системы обладает определённым изотопным составом. Он известен, и получается, что космическая пыль в массе своей тоже родом из Солнечной системы. Хотя я считаю, что космическая пыль может прилетать не только из Солнечной системы. При этом надо понимать, что невозможно поймать на лету частицу, прилетевшую из внесолнечного пространства. Гиперболическая скорость, с которой такие тела входят в земную атмосферу, должны быть не менее 72 километров в секунду — огромная скорость! Правда, некоторые специалисты сумели зафиксировать пролёт таких частиц со скоростью около 300 километров в секунду. И это, по всей видимости, галактическая космическая пыль, но поймать и исследовать такие частицы пока никто не смог, поэтому и их состава мы пока не знаем.

— Но каким образом всё это связано с исследованием комет?

— В том-то и дело, что связано напрямую. У нас есть три основных источника космической пыли — астероиды, пояс Койпера и облако Оорта. Поэтому, скорее всего, космическая пыль — это и есть то самое кометное вещество, которое может дать нам многие ответы, в том числе на вопросы происхождения и распространения жизни по Солнечной системе и дальше. Хотя многие учёные считают, что космическая пыль не имеет отношения к кометному веществу, а прилетела из пояса астероидов. Скорее всего, правы обе стороны. Часть космической пыли прилетает из пояса астероидов, но часть — это кометное вещество. Иначе говоря, мы имеем в наших коллекциях твёрдое вещество комет, хотя и не уделяем этому достаточного внимания.

chelyaba.jpg


След от Челябинского метеорита, обломки которого упали в районе озера Чебаркуль 15 февраля 2013 года. Метеорит относится к классу обыкновенных хондритов LL5. Самый большой осколок массой около 500 кг хранится в Государственном историческом музее Южного Урала. Фото: Alex Alishevskikh/Wikimedia Commons.

— Сейчас астробиологи рассчитывают, что на спутниках планет-гигантов в подповерхностных океанах может существовать жизнь. Как вы считаете, может ли она таиться и в космической пыли, которую вы сейчас исследуете?

— Вряд ли. Мелкие частицы пыли подвергаются воздействую жёсткого космического излучения, и никакая органика там уцелеть не может. Другое дело, если это, например, километровое космическое тело, тогда в его ядре вполне может содержаться органика. Но примитивная жизнь, каким-то образом попавшая на Землю, это ещё полдела. Как она смогла развиться во всем её разнообразии — отдельный и не менее сложный вопрос.

— Дмитрий Дмитриевич, как бы вы ответили, зачем нужно всё это изучать?

— Фундаментальная наука бесценна. Зачем, например, нам знать, что Земля обращается вокруг Солнца? При навигации это бесполезная информация. Зачем нам знание того, как устроена Солнечная система? А что находится дальше, за ней? А ещё дальше? Откуда мы, зачем пришли на Землю? Это всё вопросы, от которых человечество избавиться не сможет, и ответы на них будет искать всегда. Всё это и делает нас людьми.

— Могут ли эти знания каким-то образом повлиять на наше будущее? Может быть, мы научимся предсказывать космические катастрофы и предотвращать их?

— Да, и это важная часть научного знания, которое всегда приносит практические плоды. Мы можем установить спутниковое наблюдение, создать глобальную сеть, с помощью которых будет проводиться мониторинг возможных космических опасностей.

Но если случится глобальная катастрофа, такая как произошла во время мел-палеогенового вымирания, то это будет, конечно, очень непростая задача. Сможет ли человечество преодолеть эту ситуацию? Не знаю. Шансов мало, учитывая то, как безалаберно ведёт себя человечество сейчас.

Вот вы спрашиваете — зачем нам всё это изучать? Если не изучать, не задаваться этими вопросами, не финансировать научные исследования, то мы, конечно, не выживем. Жизнь в любом случае уцелеет. Солнце ещё будет светить 4,5 млрд лет. Но останемся ли мы под этим солнцем или вымрем, как динозавры, — большой вопрос. Время подумать у нас ещё есть. Но тянуть я бы не советовал.

Первая научная работа, утверждавшая космическое происхождение метеоритов, появилась в 1794 г. Её автор, немецкий физик Эрнст Хладни, сумел дать единое объяснение трём загадочным явлениям: пролётам по небу огненных шаров, падениям на Землю оплавленных кусков железа и камня после пролётов и находкам странных оплавленных железных глыб в разных местах Земли. Согласно Хладни, всё это связано с поступлением на Землю космического вещества.

Кстати сказать, одной из таких необычных железных глыб была многопудовая "крица", вывезенная российским академиком Петром Симоном Палласом из Сибири и положившая начало национальной коллекции метеоритов России. Эта железная глыба со включёнными в неё зёрнами минерала оливина получила имя "Палласово железо" и впоследствии дала название целому классу железокаменных метеоритов - палласиты.

Этот метеорит никто не наблюдал при падении. Его космическая природа установлена на основании изучения вещества. Такие метеориты называют находками, и они составляют около половины мировой коллекции метеоритов. Другая половина - падения, "свежие" метеориты, поднятые вскоре после того, как они упали на Землю. К ним относится метеорит Пикскилл, с которого начался наш рассказ о космических пришельцах. Падения имеют для специалистов больший интерес, чем находки: о них можно собрать некоторую астрономическую информацию, а вещество их не изменено земными факторами.

Метеоритам принято давать имена по географическим названиям мест, соседствующих с местом падения или находки. Чаще всего это название ближайшего населённого пункта (например, Пикскилл), но выдающимся метеоритам присваивают более общие имена. Два самых крупных падения XX в. произошли на территории России: Тунгусское и Сихотэ-Алинское.

Сихотэ-Алинский метеоритный дождь

12 февраля 1947 г. на Дальнем Востоке, в западных отрогах Сихотэ-Алинского хребта, в уссурийскую тайгу упало около 100 т космического вешества. Эта масса состояла из смеси железоникелевых кристаллов разного размера, не очень прочно сцепленных между собой. В воздухе она распалась на тысячи кусков, и на землю обрушился настоящий железный дождь. Наиболее крупные обломки весили по несколько тонн. Достигнув земли с большой скоростью, они ударились о грунт и образовали более 100 кратеров и воронок. Самый большой кратер имел диаметр 26,5 м и глубину 6 м. При ударе эти глыбы еще раз разбились на сильно деформированные осколки. Более мелкие продукты атмосферного дробления полностью потеряли в воздухе свою космическую скорость и упали на снег в виде оплавленных синеватых кусков металла, сохраняя все особенности своей структуры. Их до сих пор находят неглубоко в почве в районе падения.

Тунгусский метеорит




Во времена первых тунгусских экспедиций, руководимых энтузиастом метеоритики Леонидом Алексеевичем Куликом, ещё мало было известно о том, как происходит удар очень крупного метеорита о поверхность планеты. Вулканическая гипотеза происхождения лунных кратеров имела большее число сторонников, чем общепризнанная ныне ударно-метеоритная. А в США бурили дно Аризонского метеоритного кратера, надеясь обнаружить многотонную металлическую глыбу. Сегодня ясно, что мгновенная остановка в грунте огромного тела переводит в тепло колоссальную энергию его движения, происходят испарение "ударника" и самый настоящий взрыв, порождающий круглый метеоритный кратер. При этом крупных осколков метеорита может и не сохраниться. Но ведь на Тунгуске и кратера тоже нет!

Теперь мы знаем, что даже весьма крупные космические тела, влетающие в атмосферу Земли, не всегда достигают её поверхности. В 70-80-х гг. в США действовала так называемая Прерийная сеть фотографических камер, призванная фотографировать падения метеоритов. За десять лет работы удалось зафиксировать только одно падение - метеорит Лост-Сити (1970 г.). Однако к удивлению специалистов на плёнках были отмечены и более яркие болиды, чем тот, что закончился падением метеорита. И всё же после них на Землю ничего не упало - всё вещество "расточилось" в атмосфере.

Конец XX века не принёс окончательного решения Тунгусской проблемы. Самой вероятной гипотезой остаётся предположение, что Тунгусское тело представляло собой ядро или часть ядра небольшой старой кометы. Это ядро много раз прошло мимо Солнца и потеряло почти все свои льды. Остались слипшиеся воедино твёрдые частицы, не очень прочно сцепленные между собой. Влетев в атмосферу Земли, под давлением набегающего потока воздуха тело стало быстро разрушаться. На высоте в несколько километров всё оно рассыпалось в пыль, а отделившаяся ударная волна произвела те разрушения, которые зафиксированы на месте падения: она повалила деревья там, где ударила наклонно, и срубила с них сучья там, где ударила вертикально, т.е. в эпицентре.

Вещество метеоритов

Метеориты делятся на три больших класса: железные, каменные и железокаменные.

Железные метеориты состоят в основном из никелистого железа. В земных горных породах естественный сплав железа с никелем не встречается, так что присутствие никеля в кусках железа указывает на его космическое (или промышленное!) происхождение.

Включения никелистого железа есть в большинстве каменных метеоритов, поэтому космические камни, как правило, тяжелее земных. Главные же их минералы - силикаты (оливины и пироксены). Характерным признаком основного типа каменных метеоритов - хондритов - является наличие внутри них округлых образований - хондр. Хондры состоят из того же вещества, что и весь остальной метеорит, но выделяются на его срезе в виде отдельных зёрнышек Их происхождение пока не вполне ясно.

Третий класс - железокаменные метеориты - это куски никелистого железа с вкраплениями зёрен каменистых минералов.

Вообще метеориты состоят из тех же элементов, что и земные горные породы, но сочетания этих элементов, т. е. минералы, могут быть и такими, какие на Земле не встречаются. Это связано с особенностями образования тел, породивших метеориты.

Среди падений преобладают каменные метеориты. Значит, таких кусков больше летает в космосе. Что касается находок, то здесь преобладают железные метеориты: они прочнее, лучше сохраняются в земных условиях, резче выделяются на фоне земных горных пород.

Происхождение метеоритов и их научное значение

Метеориты являются осколками малых планет - астероидов, которые населяют в основном зону между орбитами Марса и Юпитера. Астероидов много, они сталкиваются, дробятся, изменяют орбиты друг друга, так что некоторые осколки при своём движении иногда пересекают орбиту Земли. Эти осколки и дают метеориты.

Организовать инструментальные наблюдения падений метеоритов, с помощью которых можно с удовлетворительной точностью вычислить их орбиты, очень трудно: само явление очень редкое и непредсказуемое. В нескольких случаях это удалось сделать, и все орбиты оказались типично астероидными.

Интерес астрономов к метеоритам был вызван в первую очередь тем, что долгое время они оставались единственными образцами внеземного вещества. Но и сегодня, когда вещество других планет и их спутников становится доступным лабораторному исследованию, метеориты не потеряли своего значения. Вещество, составляющее крупные тела Солнечной системы, подверглось длительному преобразованию: оно плавилось, разделялось на фракции, вновь застывало, образуя минералы, не имеющие уже ничего общего с тем веществом, из которого всё образовалось. Метеориты же являются обломками мелких тел, которые такой сложной истории не прошли. Один из типов метеоритов - углистые хондриты - вообще представляет собой слабоизменённое первичное вещество Солнечной системы. Изучая его, специалисты узнают, из чего образовались крупные тела Солнечной системы, в том числе и наша планета Земля

Падения и находки

Первая научная работа, утверждавшая космическое происхождение метеоритов, появилась в 1794 г. Её автор, немецкий физик Эрнст Хладни, сумел дать единое объяснение трём загадочным явлениям: пролётам по небу огненных шаров, падениям на Землю оплавленных кусков железа и камня после пролётов и находкам странных оплавленных железных глыб в разных местах Земли. Согласно Хладни, всё это связано с поступлением на Землю космического вещества.

Кстати сказать, одной из таких необычных железных глыб была многопудовая "крица", вывезенная российским академиком Петром Симоном Палласом из Сибири и положившая начало национальной коллекции метеоритов России. Эта железная глыба со включёнными в неё зёрнами минерала оливина получила имя "Палласово железо" и впоследствии дала название целому классу железокаменных метеоритов - палласиты.

Этот метеорит никто не наблюдал при падении. Его космическая природа установлена на основании изучения вещества. Такие метеориты называют находками, и они составляют около половины мировой коллекции метеоритов. Другая половина - падения, "свежие" метеориты, поднятые вскоре после того, как они упали на Землю. К ним относится метеорит Пикскилл, с которого начался наш рассказ о космических пришельцах. Падения имеют для специалистов больший интерес, чем находки: о них можно собрать некоторую астрономическую информацию, а вещество их не изменено земными факторами.

Метеоритам принято давать имена по географическим названиям мест, соседствующих с местом падения или находки. Чаще всего это название ближайшего населённого пункта (например, Пикскилл), но выдающимся метеоритам присваивают более общие имена. Два самых крупных падения XX в. произошли на территории России: Тунгусское и Сихотэ-Алинское.

Сихотэ-Алинский метеоритный дождь

12 февраля 1947 г. на Дальнем Востоке, в западных отрогах Сихотэ-Алинского хребта, в уссурийскую тайгу упало около 100 т космического вешества. Эта масса состояла из смеси железоникелевых кристаллов разного размера, не очень прочно сцепленных между собой. В воздухе она распалась на тысячи кусков, и на землю обрушился настоящий железный дождь. Наиболее крупные обломки весили по несколько тонн. Достигнув земли с большой скоростью, они ударились о грунт и образовали более 100 кратеров и воронок. Самый большой кратер имел диаметр 26,5 м и глубину 6 м. При ударе эти глыбы еще раз разбились на сильно деформированные осколки. Более мелкие продукты атмосферного дробления полностью потеряли в воздухе свою космическую скорость и упали на снег в виде оплавленных синеватых кусков металла, сохраняя все особенности своей структуры. Их до сих пор находят неглубоко в почве в районе падения.

Тунгусский метеорит

Во времена первых тунгусских экспедиций, руководимых энтузиастом метеоритики Леонидом Алексеевичем Куликом, ещё мало было известно о том, как происходит удар очень крупного метеорита о поверхность планеты. Вулканическая гипотеза происхождения лунных кратеров имела большее число сторонников, чем общепризнанная ныне ударно-метеоритная. А в США бурили дно Аризонского метеоритного кратера, надеясь обнаружить многотонную металлическую глыбу. Сегодня ясно, что мгновенная остановка в грунте огромного тела переводит в тепло колоссальную энергию его движения, происходят испарение "ударника" и самый настоящий взрыв, порождающий круглый метеоритный кратер. При этом крупных осколков метеорита может и не сохраниться. Но ведь на Тунгуске и кратера тоже нет!

Теперь мы знаем, что даже весьма крупные космические тела, влетающие в атмосферу Земли, не всегда достигают её поверхности. В 70-80-х гг. в США действовала так называемая Прерийная сеть фотографических камер, призванная фотографировать падения метеоритов. За десять лет работы удалось зафиксировать только одно падение - метеорит Лост-Сити (1970 г.). Однако к удивлению специалистов на плёнках были отмечены и более яркие болиды, чем тот, что закончился падением метеорита. И всё же после них на Землю ничего не упало - всё вещество "расточилось" в атмосфере.

Конец XX века не принёс окончательного решения Тунгусской проблемы. Самой вероятной гипотезой остаётся предположение, что Тунгусское тело представляло собой ядро или часть ядра небольшой старой кометы. Это ядро много раз прошло мимо Солнца и потеряло почти все свои льды. Остались слипшиеся воедино твёрдые частицы, не очень прочно сцепленные между собой. Влетев в атмосферу Земли, под давлением набегающего потока воздуха тело стало быстро разрушаться. На высоте в несколько километров всё оно рассыпалось в пыль, а отделившаяся ударная волна произвела те разрушения, которые зафиксированы на месте падения: она повалила деревья там, где ударила наклонно, и срубила с них сучья там, где ударила вертикально, т.е. в эпицентре.

Вещество метеоритов

Метеориты делятся на три больших класса: железные, каменные и железокаменные.

Железные метеориты состоят в основном из никелистого железа. В земных горных породах естественный сплав железа с никелем не встречается, так что присутствие никеля в кусках железа указывает на его космическое (или промышленное!) происхождение.

Включения никелистого железа есть в большинстве каменных метеоритов, поэтому космические камни, как правило, тяжелее земных. Главные же их минералы - силикаты (оливины и пироксены). Характерным признаком основного типа каменных метеоритов - хондритов - является наличие внутри них округлых образований - хондр. Хондры состоят из того же вещества, что и весь остальной метеорит, но выделяются на его срезе в виде отдельных зёрнышек Их происхождение пока не вполне ясно.

Третий класс - железокаменные метеориты - это куски никелистого железа с вкраплениями зёрен каменистых минералов.

Вообще метеориты состоят из тех же элементов, что и земные горные породы, но сочетания этих элементов, т. е. минералы, могут быть и такими, какие на Земле не встречаются. Это связано с особенностями образования тел, породивших метеориты.

Среди падений преобладают каменные метеориты. Значит, таких кусков больше летает в космосе. Что касается находок, то здесь преобладают железные метеориты: они прочнее, лучше сохраняются в земных условиях, резче выделяются на фоне земных горных пород.

Происхождение метеоритов и их научное значение

Метеориты являются осколками малых планет - астероидов, которые населяют в основном зону между орбитами Марса и Юпитера. Астероидов много, они сталкиваются, дробятся, изменяют орбиты друг друга, так что некоторые осколки при своём движении иногда пересекают орбиту Земли. Эти осколки и дают метеориты.

Организовать инструментальные наблюдения падений метеоритов, с помощью которых можно с удовлетворительной точностью вычислить их орбиты, очень трудно: само явление очень редкое и непредсказуемое. В нескольких случаях это удалось сделать, и все орбиты оказались типично астероидными.

Интерес астрономов к метеоритам был вызван в первую очередь тем, что долгое время они оставались единственными образцами внеземного вещества. Но и сегодня, когда вещество других планет и их спутников становится доступным лабораторному исследованию, метеориты не потеряли своего значения. Вещество, составляющее крупные тела Солнечной системы, подверглось длительному преобразованию: оно плавилось, разделялось на фракции, вновь застывало, образуя минералы, не имеющие уже ничего общего с тем веществом, из которого всё образовалось. Метеориты же являются обломками мелких тел, которые такой сложной истории не прошли. Один из типов метеоритов - углистые хондриты - вообще представляет собой слабоизменённое первичное вещество Солнечной системы. Изучая его, специалисты узнают, из чего образовались крупные тела Солнечной системы, в том числе и наша планета Земля

Метеорит - что такое, классификация, виды, список, состав, строение, фото и видео

Космос

На Землю периодически падают метеориты. Небесные объекты в большинстве случаев сгорают в атмосфере, но некоторым удается достигнуть поверхности, тем самым привлекая к себе большое количество внимания. Астрономы непрерывно отслеживают все приближающиеся объекты к Земле и собирают о них сведения.

Что такое метеорит

Метеорит – это космическое тело, не сгоревшее в атмосфере планеты и долетевшее до поверхности. Земля находится в постоянном движении, при этом, она периодически пересекает орбиты небольших твердых тел, в результате чего они падают прямо на ее поверхность. В то время, как космическое твердое тело движется в атмосфере Земли, его считают метеором, но когда его часть долетает до поверхности, она становится метеоритом.

Метеориты представляют собой твердые тела, достигающие всего нескольких метров в радиусе и отличающиеся от астероидов своими размерами. За все время существования Земли на ее поверхность упало огромное количество подобных тел. За первый миллиард лет формирования планеты падения метеоритов были особенно частыми. В современное время поток небесных тел стал значительно слабее, в основном он проявляется в виде пылевых частиц, которые быстро сгорают в атмосфере.

Внешние признаки

Метеорит с ярко выраженной корой плавления

Метеорит с ярко выраженной корой плавления

Среди основных внешних признаков метеорита стоит отметить:

  • кору плавления;
  • регмаглипты;
  • магнитность.

Дополнительно эти космические тела имеют неправильную форму. Встретить округлый или конусообразный метеорит достаточно сложно. Поверхность представляет собой расплавленный и вновь затвердевший слой вещества метеорита. Этот процесс происходит во время его движения в атмосфере, где он нагревается до температуры примерно в 1800 градусов.

Углубления, которые характерны для поверхности метеорита, называются регмаглипты. Возникают они в результате абляционных процессов, во время движения тела через атмосферу. Магнитными свойствами обладают абсолютно все метеориты.

Что происходит при падении метеоритов на Землю

След от падения метеорита в Челябинске

След от падения метеорита в Челябинске

Практически все космические тела имеют высокую скорость движения (при входе в атмосферу она может достигать 72 км/с). Воспламенение и свечение метеорита происходит из-за его трения о воздух. В большинстве случаев, такие твердые тела полностью сгорают до того момента, как столкнуться с поверхностью Земли. Если метеорит имеет крупные размеры, то постепенно его движение замедляется, а он сам остывает. Дальнейшее развитие событий будет зависеть от начальной развитой скорости, массы тела и угла входа в атмосферу.

Интересный факт: на других планетах можно отчетливо увидеть следы падения метеоритов самых разных размеров.

Метеориты имеют несколько названий и видов, а именно:

  • сидеролиты;
  • уранолиты;
  • аэролиты;
  • метеорные камни и пр.

Космические тела называются метеорными до того момента, пока не попадут в атмосферу. Их классификация производится по разным астрономическим признакам. Можно определить метеорит, астероид, космическую пыль и прочее. Если объект стремительно пролетает сквозь атмосферу, оставляя за собой яркий след, его можно называть метеором, либо же болидом. Твердое тело, которое падает на поверхность Земли и оставляет глубокий кратер, называется метеоритом. Таким телам дают имена, в зависимости от местности, куда они упали.

Фотография аэролита

Фотография аэролита

Метеориты каменного вида разделяют на несколько подклассов – хондриты и ахондриты. Первые заслужили свое название за счет своего состава: содержат хондры, которые представляют собой силикатные образования. Ахондриты схожи с земными магматическими породами. Эти метеориты лишены хондр, состоят из вещества, образованного после плавления планетных тел. Дополнительно метеориты можно разделить на упавшие и найденные. Каменные разновидности тел могут так и остаться незамеченными, т.к. напоминают земные породы.

Из чего состоят

Поверхность метеорита после взятия образцов на анализ

Поверхность метеорита после взятия образцов на анализ

Основное количество метеоритов представлено каменным видом. В большинстве случаев – это хондриты (процентное соотношение от всех случаев столкновения с поверхностью достигает 92,8%). Среди общего числа падений ахондриты составляют 7,3%, железные – 5,7%, железо-силикатные – 1,5%. Эти перечисленные виды метеоритов признаны дифференцированными. Это значит, что вещество, из которого состоит небесное тело, попало на него в связи со столкновениями с астероидами и прочими планетными объектами.

Интересный факт: не так давно считалось, что метеориты образуются в результате взрыва крупного небесного тела. За основу бралась гипотетическая планета Фаэтон. Однако, анализ показал, что метеориты созданы из разнообразных частей астероидов.

Виды метеоритов

Зачастую человек представляет себе метеорит в виде объекта из железа. Такие тела достаточно массивные, они имеют интересные формы, которые приобретают во время падения и плавления. Несмотря на то, что распространенная ассоциация связана именно с железом, в реальности существует три разновидности метеоритов.

Железный вид

Железный метеорит

Железный метеорит

Когда-то метеориты из железа были частью ядра планеты или же крупного астероида. Считается, что из последнего образовался Пояс Астероидов, расположенный между Юпитером и Марсом. На Земле такие материалы считаются одними из самых тяжелых, к тому же, они крепко притягиваются к магниту. Метеориты из железа в действительности гораздо массивнее обычных камней. Сравнить вес можно с пушечным ядром или со стальной плитой.

Состав железа в большинстве таких метеоритов достигает 95%, оставшиеся 5% – это никель и прочие микроэлементы. Такие небесные тела делятся на классы по структуре и химическому составу. Принадлежность к определенному типу происходит после изучения основных компонентов сплава – камасита и тэнита. Они имеют интересную и сложную структуру в виде решетки, которая хорошо просматривается в растворе азотной кислоты.

Каменный вид

Каменный метеорит

Каменный метеорит

Одной из самых крупных групп метеоритов являются каменные. Их формирование происходит от астероида или внешней коры планеты. Большинство каменных небесных тел на Земле остаются неопознанными, т.к. имеют большое сходство с привычными для людей породами. Отличить земной материал от метеорита может только опытный человек. Небесное твердое тело отличается черным цветом, который оно приобретает в полете из-за горения.

Каменно-железный вид

Каменно-железный метеорит

Каменно-железный метеорит

Самым редким видом метеоритов является каменно-железный. От общей численности эти небесные тела составляют лишь 2%. Метеориты состоят в равной степени из камней и железа, дополнительно их делят на мезосидериты и палласиты. Каменно-железные небесные объекты были сформированы на границе мантии родительских тел или коры.

Среди частных коллекционеров самыми востребованными экземплярами являются палласиты. Состоят они из матрицы железа и никеля, которая заполнена оливином. Если кристаллы последнего вещества чистые и имеют зеленый оттенок, их расценивают как драгоценные камни – перодоты. Самой маленькой группой каменно-железных метеоритов являются мезосидериты. Такие объекты выглядят достаточно привлекательно, состоят из никеля и силикатов.

Чем метеорит отличается от метеора, болида, кометы и астероида

Фотография кометы NEOWISE

Фотография кометы NEOWISE

Нередко метеорит могут ошибочно назвать болидом, метеором или астероидом. Чтобы понимать классификацию космических тел, нужно изучить их характеристики.

  1. Метеориты – небесные тела, которые смогли преодолеть атмосферу планеты и упасть на ее поверхность.
  2. Метеоры – небольшие осколки космических тел, не превышающие размером несколько сантиметров. Эти частицы входят в атмосферу на большой скорости и ярко сгорают, имитируя падающую звезду.
  3. Болид – это достаточно яркий метеор. За таким огненным шаром можно видеть след дыма. Полет космического тела сопровождается громким шумом, а завершается нередко взрывом.
  4. Кометы – это тела, состоящие изо льда и газа, которые вращаются вокруг Солнца. Когда комета приближается к Солнцу, у нее появляется хвост, длина которого нередко достигает миллионов километров.
  5. Астероиды – прочие инертные космические тела из камня. Большинство их орбит располагаются между Марсом и Юпитером, а их внешний пояс за орбитой Плутона.

Родительские тела метеоритов

Видманштеттеновы фигуры на срезе метеорита

Видманштеттеновы фигуры на срезе метеорита

После изучения химического и других составов метеоритов ученые сделали вывод, что они представляют собой осколки крупных объектов Солнечной системы. Радиус таких родительских тел составляет примерно 200 км. Самые крупнейшие астероиды имеют примерно такой размер. Итог анализа основан на времени остывания метеорита из железа, где получается несколько сплавов с никелем, образующих видманштеттеновы фигуры.

Подразумевается, что каменные метеориты были выбиты из небольших планет, которые не имеют атмосферы и покрыты кратерами, примерно как Луна. Однако, стоит отметить, что метеориты и образцы земного спутника существенно отличаются своим химическим составом. Отсюда можно сделать вывод, что метеориты не прибывали именно с Луны.

Интересный факт: на основе анализа фотографий полета метеоритов ученые сделали вывод, что они пришли из пояса астероидов.

Метеоритные дожди

Изображение метеоритного дождя

Изображение метеоритного дождя

В атмосфере Земли метеорит начинает разрушаться. Множество осколков падает на планету, создавая кратеры. Такое явление принято называть метеоритным дождем, которое некоторые путают с метеорным. Разница заключается в том, что метеоры никогда не достигают поверхности Земли, а вот осколки метеорита могут приносить значительный урон.

Органика в составе метеоритов

Метеориты с углеродом в составе нередко покрыты тонкой коркой в виде стекла, которая образуется при воздействии высоких температур во время падения. Такое покрытие служит неплохой защитой от внешней среды и сохраняет состав небесного тела. Во время многолетних исследований химической структуры метеоритов было установлено, что в них содержатся элементы, очень схожие с теми, которые имеют земное происхождение. В качестве примера стоит привести карбоновую кислоту, углеводород, соединения азота. Говорить точно о том, что такие находки подтверждают наличие внеземной жизни нельзя.

Планета движется по орбите и периодически пересекает траекторию движения мелких твердых тел, которые падают на поверхность. Пока подобное тело находится в земной атмосфере, его называют метеором. После падения он становится метеоритом — диаметр может достигать нескольких метров. Сейчас до Земли они долетают только в виде пыли и крохотных частиц.

Метеорит

Общая информация

Долгое время наука не признавала никаких небесных камней. В конце XVIII века Парижская академия приняла постановления, которое считало теорию о метеоритах лженаучной.

Метеорит это

Ученые изучили образец хондрита, но не смогли подтвердить его космическую природу.

В 1875 году в Африке в районе озера Чад упал метеорит. Его диаметр был десять метров, но информация о необычном объекте пришла в Великобританию с опозданием. Поэтому экспедиция была отправлена только спустя 15 лет. Ученые добрались до находки, но было уже поздно: тело уничтожили слоны, так как им нравилось точить бивни о камень. Воронка была размыта дождями.

Метеориты изучали российские академики:

  • В. И. Вернадский;
  • А. Е. Ферсман;
  • П. Л. Драверт и многие другие.

Существование небесных камней признали только в середине XIX века. В России создан специальный комитет при Академии наук, который занимается сбором и изучением метеоритов. В 2016 году был создан специальный аппарат, который позволил изучать внутреннюю структуру тела.

Летит метеорит

В литературе можно найти одно популярное определение метеорита — это твердое тело космического происхождения, которое упало на поверхность крупного небесного объекта. Его размер может быть от нескольких сантиметров до десятков метров. Крупные экземпляры не долетают до поверхности, сгорают в атмосфере и рассыпаются на разные осколки.

Твердое тело врывается в земную атмосферу со скоростью от 11 до 73 км/сек. Из-за трения начинается горение, поэтому поверхность достигает объект, который потерял в массе. Удар происходит на большой скорости и это позволяет выделяться энергий. Часть метеорита и окружающих его горных пород испаряются.

Процесс сопровождается сильным взрывом и образованием кратеров, размеры которых превышают параметры тела. Породы меняют структуру и состав. В случае небольшой скорости падения значительного выделения энергии не будет, поэтому размер кратера будет сопоставим небесному камню. Сам объект после такого может уцелеть и представлять интерес для ученых.

Прохождение твердых тел через атмосферу вызывает метеоритный дождь. При нем на поверхность падает множество мелких осколков. Не стоит путать это явление с метеорным дождем — он способен нанести значительный ущерб.

Основные классификации

В основе группировок лежат разные признаки. По доминирующему составу выделяют три группы — минеральные (каменные), металлические (железные, или сидериты), смешанные (железокаменные). Такое разделение применялось еще в XIX веке, но оно не имеет особого смысла.

Метеорит что это

Более ценное разделение по химическому составу. По этому критерию можно выделить множество видов метеоритов:

  • хондриты;
  • ахондриты;
  • железокаменные;
  • железные.

Каждая категория подразделяется на множество подгрупп. Подробное изучение разных типов небесных тел позволило выделить несколько признаков. Первый — это кора плавления, которая покрывает объект в виде тонкой скорлупы. Особенно хорошо ее видно на каменных разновидностях.

Второй признак — это то, как выглядит настоящий метеорит. На его поверхности можно обнаружить характерные ямки. Иногда под воздействием воздуха форма обтачивается и выглядит тело как снаряд.

Метеорит определение

Не каждый сможет назвать отличия метеорита от окаменелости. Бывает достаточно визуального осмотра — небесное тело черного цвета, выглядит опаленным, словно покрытым плотной пленкой или коркой. Но в большинстве случаев нужны специальные исследования.

Состав и происхождение

Благодаря тому, что были найдены образцы твердых тел, ученые получили материал для изучения. Не удалось обнаружить новых веществ в составе метеоритов. Чаще всего в них находят восемь компонентов — железо, никель, сера, магний, кремний, алюминий, кальций и кислород. Есть и другие вещества, но они находятся в очень малом количестве.

У железных небесных тел интересное строение. Поверхность полируют, делают блестящей, после чего травят слабым раствором кислоты. Сверху проступает необычный узор из полосок и каемок.

Виды метеоритов

Если внимательно посмотреть на разлом каменного небесного тела, то можно заметить необычную структуру. На поверхности видны небольшие шарики — это части никелистого железа.

О происхождение метеоритов ученые спорят до сих пор. Считается, что это осколки больших твердых тел, которые когда-то существовали в Солнечной системе. На Земле неоднократно находили лунные и марсианские осколки. По всей видимости, Луна и Марс когда-то столкнулись с крупными небесными объектами. Метеориты этого вида самые дорогие — их стоимость на аукционах доходит до тысячи долларов за грамм.

Каменные метеориты встречаются чаще всего. Люди не всегда могут отличить их от обычных камней. Объекты, которые упали недавно отличаются красивой глянцевой поверхностью и они притягиваются к магниту. Иногда внутри находятся небольшие вкрапления — хондры. Они являются древнейшей известной материей и она очень ценная для изучения.

Некоторые факты

Ученые примерно подсчитали, что ежесуточно на Землю из космоса падает около 5 тонн небесных тел, за год это цифра составляет около 2000 тонн. Вес каждого экземпляра колеблется от нескольких грамм до сотен килограмм.

Земля Уилкса

Самая большая воронка от падения находится в Антарктиде, кратер называется Земля Уилкса, его диаметр составляет 500 км. Ученые считают, что воронка образовалась больше 200 млн лет назад. Существует теория, которая связывает падение такого крупного объекта с пермско-триасовым вымиранием. Воронку обнаружили только в 1962 году.

Второй по величине кратер находится в Канаде. Самая древняя воронка была обнаружена в ЮАР, в ней был основан город Вредефорт. Предположительно тело упало 4 млрд лет назад.

Самый большой объект космического происхождения, который смогли обнаружить ученые — это метеорит Гоба. Он упал в Намибии 80 тысяч лет назад. Считается, что его масса составляла 90 тонн.

Метеорит Гоба

О метеоритах можно рассказать много интересных фактов. Например, каменные небесные тела имеют магнитные свойства — это объясняется тем, что в состав входит никелистое железо.

Подобные твердые тела могут представлять серьезную опасность. В 2013 году над Челябинском разрушится метеорит, и это вызвало серию ударных волн. Во многих здания выпали оконные рамы, разбились стекла, в отдельных местах пострадали входные двери. Нарушилась мобильная связь. Большинство осколков было найдено в районе Чебаркуля. Самый крупный фрагмент весил 654 кг.

Если бы такой метеорит ударился о поверхность — последствия взрыва были очень серьезными и гораздо разрушительными. Поэтому это событие стало известным на весь мир.

Разные специалисты изучали небесные тела. Академик А. Ю. Розанов искал остатки живых организмов в углистых хондритах. Результаты своих наблюдений он изложил в статьях.

Метеоритный дождь

В астрономии небесные тела активно изучаются. Ученые всего мира занимаются сбором твердых тел, которые тщательно описываются и хранятся. Материал используют для экспериментов и в качестве экспонатов в музее. Особо крупные экземпляры имеют собственное название.

Не всегда понятна разница между астероидами и метеоритами. Астероид — это каменная глыба неправильной формы, которая вращается на орбите между Марсом и Юпитером.

Сбор метеоритов может быть увлекательным делом для коллекционера. В литературе можно найти описания разных видов — эта информация позволяет сделать поиск интересным мероприятием. Например, после взрыва космического объекта над Чебаркулем, местные жители обнаружили большое количество мелких осколков. Материал скупили коллекционеры.

Зачем нужно изучать метеориты

Метеориты и метеоры

  • о строении вселенной;
  • как зародилась;
  • дальнейшее развитие.

Поэтому, вопрос о том зачем нужно изучать метеориты, тут просто неуместен, и его могут задавать только некомпетентные в этом направлении люди.

Консультации со специалистом

Метеорит в музее.

Метеорит в музее.

Начнём с Челябинского метеорита:

— Работники ИГМ СО РАН, первыми осуществили химический анализ, и определили весь минеральный состав этого камня. Возникает вопрос что нового удалось получить при его осмотре и анализе?

— Все первые данные проводимых анализов обломков космического тела подтвердили то, что он относится к очень редкой группе обыкновенных хондритов с кодовым названием LL5. Такие камни, как известно, пока что не встречались на территории РФ. Но и это ещё не всё, потому что дальнейшие исследования, которые уже проводились совместно с японскими специалистами, показали, что в составе этого камня присутствует минерал высокого давления – жадеит. Этот факт даёт возможность установить, что во время удара, когда от основного тела метеорита откололся исследуемый кусок, камень имел температуру до двух тысяч градусов по Цельсию. И это при давлении от 30 тысяч и до 120 тысяч атмосфер.

— Дальнейшие расчёты показали, что такой удар мог получиться только на скорости до 1500 метров в секунду. При этом космическое тело должно иметь размер в пределах 200 метров.

Читайте также: