Значение атф в энергетическом обмене кратко

Обновлено: 05.07.2024

АТФ – это аденозинтрифосфорная кислота, которая является основным источником клеточной энергии.

Химическое строение АТФ

АТФ является важнейшим клеточным веществом также и потому, что относится к группе нуклеозидтрифосфатов, обеспечивая метаболизм живых клеток.

Первооткрывателем АТФ в клетке являются ученые-биохимики Суббарао, Ломан и Фиске. АТФ была открыта в 1929 году и ее исследования стали революционными в развитии биологии живых систем. Немного позднее в 1941 году Ф. Липман установил энергетическую функцию АТФ.

АТФ обладает определенными чертами строения:

  • представляет собой трифосфорный эфир аденозина;
  • образуется путём соединения аденина, являющегося пуриновым азотистым основанием;
  • соединяется с 1′-углеродом рибозы при помощи β-N-гликозидной связи.
  • АТФ + вода → АДФ + фосфорная кислота + энергия;
  • АДФ + вода → АМФ + фосфорная кислота + энергия.

Общеизвестно, что в биоэнергетическом обмене веществ живых организмов важным является наличие двух основных моментов:

  • химическая энергия запасается путем образования АТФ при протекании катаболических реакций окисления органических субстратов;
  • химическая энергия утилизируется путем расщепления АТФ. Этот процесс сопряжен с эндергоническими реакциями анаболизма, а также другими процессами, которые также требуют энергетических затрат.

Выделяют три основных способа образования АТФ в клетке. А именно:

  • субстратное фосфорилирование, протекающее в цитоплазме клетке. Такие реакции получили название гликолиза или анаэробного этапа аэробного дыхания;
  • окислительное фосфорилирование;
  • фотофосфорилирование.

Готовые работы на аналогичную тему

Роль АТФ в клетке

Процесс фотофосфорилирования — это то же окислительное фосфорилирование лишь с одним отличием: реакции фотофосфорилирования протекают в хлоропластах клетки под действием света.

АТФ образуется во время световой стадии фотосинтеза – основного процесса получения энергии у зеленых растений, водорослей и некоторых бактерий.

Как уже отмечалось ранее, АТФ выполняет в клетке, прежде всего, энергетическую функции. Это обусловлено тем, что подобная молекула содержит две высокоэнергетические связи и обеспечивает многие физиологические и биохимические процессы. К подобным процессам можно отнести все реакции синтеза веществ в организме.

Реакции синтеза – это комплекс химических реакций, направленных на создание вещества с определенной степенью затраты энергии. При этом отмечается активный перенос молекул через клеточную мембрану, включая участие в создании межмембранного электрического потенциала. Также АТФ необходима для обеспечения процесса сокращения мышц.

Также к достаточно важным функциям АТФ, иллюстрирующим ее роль в клетке относят:

  • может являться медиатором в синапсах, сигнальным веществом в других клеточных взаимодействиях. Например, при пуринергической передаче сигнала;
  • АТФ регулирует биохимические процессы. Например, при участии АТФ происходит усиление и подавление активности некоторых ферментов с помощью присоединения к их регуляторным центрам молекулы;
  • участвует в создании циклического аденозинмонофосфата, который, в свою очередь, выступает посредником передачи гормональных сигналов в клетки;
  • наконец, АТФ участвует в синтезе нуклеиновых кислот (ДНК и РНК);
  • АТФ отвечает за обеспечение всех двигательных реакций организма, а именно от ее наличия зависит работа всех элементов опорно – двигательного аппарата.

Любая функция АТФ обусловлена тем, что ее используют для реализации жизненных клеточных процессов. Если АТФ не участвует в нем напрямую, то каким – либо образом обуславливает деятельность организма.

Больше всего АТФ содержат такие клетки, как мышцы и нервная ткань, энергообмен в которых протекает особенно быстро. Неизменный уровень АТФ в клетках достаточно важно поддерживать, поскольку при минимальном недостатке данного вещества происходят серьёзные нарушения любого физиологического процесса.

Другими словами, АТФ является маркером стабильности развития организма человека и многих высокоорганизованных животных.

К наиболее интересным фактам, касательно АТФ можно отнести следующие:

  • в клетке около 1 млрд молекул АТФ;
  • срок жизни молекул АТФ очень короткий;
  • синтез АТФ протекает достаточно быстро.

Подводя итог всему вышесказанному, можно сделать вывод о том, что АТФ является часто обновляемым веществом организма человека. Продолжительность жизни молекулы АТФ составляет менее одной минуты, поэтому одна молекула АТФ может зарождаться и распадаться до трех тысяч раз за сутки. В течение дня организм человека создает около 40 кг данного вещества.

АТФ – это аденозинтрифосфорная кислота, которая является основным источником клеточной энергии.

Химическое строение АТФ

АТФ является важнейшим клеточным веществом также и потому, что относится к группе нуклеозидтрифосфатов, обеспечивая метаболизм живых клеток.

Первооткрывателем АТФ в клетке являются ученые-биохимики Суббарао, Ломан и Фиске. АТФ была открыта в 1929 году и ее исследования стали революционными в развитии биологии живых систем. Немного позднее в 1941 году Ф. Липман установил энергетическую функцию АТФ.

АТФ обладает определенными чертами строения:

  • представляет собой трифосфорный эфир аденозина;
  • образуется путём соединения аденина, являющегося пуриновым азотистым основанием;
  • соединяется с 1′-углеродом рибозы при помощи β-N-гликозидной связи.
  • АТФ + вода → АДФ + фосфорная кислота + энергия;
  • АДФ + вода → АМФ + фосфорная кислота + энергия.

Общеизвестно, что в биоэнергетическом обмене веществ живых организмов важным является наличие двух основных моментов:

  • химическая энергия запасается путем образования АТФ при протекании катаболических реакций окисления органических субстратов;
  • химическая энергия утилизируется путем расщепления АТФ. Этот процесс сопряжен с эндергоническими реакциями анаболизма, а также другими процессами, которые также требуют энергетических затрат.

Выделяют три основных способа образования АТФ в клетке. А именно:

  • субстратное фосфорилирование, протекающее в цитоплазме клетке. Такие реакции получили название гликолиза или анаэробного этапа аэробного дыхания;
  • окислительное фосфорилирование;
  • фотофосфорилирование.

Готовые работы на аналогичную тему

Роль АТФ в клетке

Процесс фотофосфорилирования — это то же окислительное фосфорилирование лишь с одним отличием: реакции фотофосфорилирования протекают в хлоропластах клетки под действием света.

АТФ образуется во время световой стадии фотосинтеза – основного процесса получения энергии у зеленых растений, водорослей и некоторых бактерий.

Как уже отмечалось ранее, АТФ выполняет в клетке, прежде всего, энергетическую функции. Это обусловлено тем, что подобная молекула содержит две высокоэнергетические связи и обеспечивает многие физиологические и биохимические процессы. К подобным процессам можно отнести все реакции синтеза веществ в организме.

Реакции синтеза – это комплекс химических реакций, направленных на создание вещества с определенной степенью затраты энергии. При этом отмечается активный перенос молекул через клеточную мембрану, включая участие в создании межмембранного электрического потенциала. Также АТФ необходима для обеспечения процесса сокращения мышц.

Также к достаточно важным функциям АТФ, иллюстрирующим ее роль в клетке относят:

  • может являться медиатором в синапсах, сигнальным веществом в других клеточных взаимодействиях. Например, при пуринергической передаче сигнала;
  • АТФ регулирует биохимические процессы. Например, при участии АТФ происходит усиление и подавление активности некоторых ферментов с помощью присоединения к их регуляторным центрам молекулы;
  • участвует в создании циклического аденозинмонофосфата, который, в свою очередь, выступает посредником передачи гормональных сигналов в клетки;
  • наконец, АТФ участвует в синтезе нуклеиновых кислот (ДНК и РНК);
  • АТФ отвечает за обеспечение всех двигательных реакций организма, а именно от ее наличия зависит работа всех элементов опорно – двигательного аппарата.

Любая функция АТФ обусловлена тем, что ее используют для реализации жизненных клеточных процессов. Если АТФ не участвует в нем напрямую, то каким – либо образом обуславливает деятельность организма.

Больше всего АТФ содержат такие клетки, как мышцы и нервная ткань, энергообмен в которых протекает особенно быстро. Неизменный уровень АТФ в клетках достаточно важно поддерживать, поскольку при минимальном недостатке данного вещества происходят серьёзные нарушения любого физиологического процесса.

Другими словами, АТФ является маркером стабильности развития организма человека и многих высокоорганизованных животных.

К наиболее интересным фактам, касательно АТФ можно отнести следующие:

  • в клетке около 1 млрд молекул АТФ;
  • срок жизни молекул АТФ очень короткий;
  • синтез АТФ протекает достаточно быстро.

Подводя итог всему вышесказанному, можно сделать вывод о том, что АТФ является часто обновляемым веществом организма человека. Продолжительность жизни молекулы АТФ составляет менее одной минуты, поэтому одна молекула АТФ может зарождаться и распадаться до трех тысяч раз за сутки. В течение дня организм человека создает около 40 кг данного вещества.

АТФ — в расшифровке аденозинтрифосфорная кислота или аденозинтрифосфат — это нуклеозидтрифосфат, многофункциональный источник энергии. Для протекания любого биохимического процесса в живой клетке требуется энергия, заключенная в химических связях АТФ.

Молекула была обнаружена в 1929 году Карлом Ломаном, Сайрусом Фиске и Йеллапрагадой Суббарао — учёными Гарвардской медицинской школы. В области биологии это открытие стало ключевым. В 1941 году немецко-американский биохимик Фриц Липман доказал, что АТФ — главный проводник энергии в клетке.

Строение аденозинтрифосфорной кислоты (АТФ)

Систематическое наименование

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Энергетический обмен

Энергетический обмен в клетке представляет собой общую деятельность химических реакций при распаде органических веществ. При этом происходит освобождение энергии, которая впоследствии идет на синтез аденозинтрифосфорной кислоты (АТФ). Значение энергетического обмена в биологии велико, именно с его помощью осуществляется клеточный метаболизм, а сама клетка обеспечивается необходимой энергией для ее функционирования и поддержания жизни.

Что такое АТФ?

Аденозинтрифосфорная кислота (она же АТФ) является постоянным источником энергии для клетки. Деятельность АТФ начинается с реакции фосфорилирования – добавления атомов фосфорного соединения к молекулам аденозиндифосфата (АДФ).

Строение молекулы АТФ

Вот так выглядит строение молекулы АТФ.

Как результат, расходуемая энергия накапливается в связях АДФ, чтобы после ее распада и гидролиза (взаимодействия с водой) поступить в материю в количестве 40 кДж. Говоря по простому, распад органических веществ способствует выделению энергии. А само выделение энергии, энергетический обмен, проходит через две или три стадии. И тут мы переходим к следующему пункту.

Этапы обмена

В целом существует три этапа энергетического обмена:

  • Подготовительный.
  • Безкислородный.
  • Кислородный.

Так эти этапы или фазы энергетического обмена выглядят схематически:

Этапы энергетического обмена

Но есть исключение. Таким исключением являются организмы, живущие без воздуха, так как они не нуждаются в поступлении кислорода, то энергетический обмен у них происходит только в два этапа. Кислород в этом процессе не участвует.

Далее мы детально рассмотрим все этапы ЭО в живой природе.

Подготовительный этап

На этой фазе совершается распад больших пищевых полимеров на более мелкие образования. В желудочно-кишечном тракте многоклеточных существ осуществляется ферментативный пищеварительный распад, в то время как у существ одноклеточных он происходит при помощи лизосом (клеточных органоидов, ответственных за расщепление биополимеров).

В это же время полисахариды (высокомолекулярные углеводы) распадаются на дисахариды и моносахариды. Затем белки превращаются в аминокислоты, а жиры в чистый глицерин и прочие жирные соединения.

В результате описанных выше преобразований образуется определенное количество энергии в виде тепла. АТФ при этом еще не образуется. Зато полученные мономеры могут участвовать в метаболизме для синтеза веществ, необходимых для получения силы.

Живая материя использует, прежде всего, углеводы, в то время как жиры, будучи источником энергии первого резерва, исчерпываются по окончании углеродного запаса. Исключением выступают скелетные мышцы, в них предпочтение отдается наличию жиров, а не глюкозе. Белки при этом расходуются гораздо позже, уже после исчерпания запасов углеводов и жиров.

Бескислородный этап

Также второй этап энергетического обмена называется гликолизом. Происходит он в цитоплазме. Главная роль здесь отведена глюкозе, она же является основным источником освобожденной энергии. Анаэробный гликолиз осуществляется благодаря безкислородному распаду собственно глюкозы, с целью ее превращения в лактат. Уставшие спортсмены после интенсивной тренировки зачастую чувствуют это вещество в своих мышцах.

Также на этом этапе происходит ферментативное деление органических частиц.

Гликолиз представляет собой многоуровневый процесс бескислородного распада частиц глюкозы. Сама же глюкоза содержит шесть элементов водорода и две единицы пировиноградного соединения.

гликолиз глюкозы

Так выглядит гликолиз глюкозы.

В ходе гликолиза при распадении 1 моля глюкозы выделяется 200 кДж энергии, 60% которых освобождается в виде тепла, а оставшиеся 40% идут на синтез нескольких частиц АТФ из нескольких частиц АДФ.

Если же в окружении пировиноградного соединения вдруг оказывается кислород, то он переходит из цитоплазмы в митохондрию, еще один важный клеточный органоид, где проходит его участие в 3 этапе энергетического обмена клетки.

Кислородный этап

Кислородный энергетический обмен более сложный, нежели гликолиз, он имеет более сложную структуру, проходит в несколько этапов, являясь, по сути, многоуровневым процессом при участии большого числа ферментов.

В окончании третьего этапа формирования энергии из двух частиц СН3(СО)СООН получается CO2, Н2О и 36 элементов АТФ. Для АТФ создается запас в процессе бескислородного распада C6H12O6.

Читайте также: