Значение архебактерий в природе и жизни человека кратко

Обновлено: 30.06.2024

Известно около 50 видов архебактерий. Выделяя здесь эту группу организмов в самостоятельное подцарство нельзя не отметить, что многие биологи классифицируют архебактерии в качестве самостоятельного царства (кроме царств растений и животных).[ . ]

Классификация архебактерий еще плохо разработана.[ . ]

В ДНК некоторых архебактерий отмечается наличие повторяющихся последовательностей азотистых оснований, чего нет у настоящих бактерий. У галофилов обнаружен родопсиноподобный белок, обычно содержащийся в зрительном пурпуре многих позвоночных.[ . ]

Прокариоты (бактерии, архебактерии, цианобактерии) — одноклеточные организмы, не имеют ядра. Благодаря такому разнообразному метаболизму бактерии могут существовать в самых различных условиях среды: в воде, воздухе, почве, живых организмах. Велика роль бактерий в образовании нефти, каменного угля, торфа, природного газа, в почвообразовании, в круговоротах азота, фосфора, серы и других элементов в природе. Сапротрофные бактерии участвуют в разложении органических останков растений и животных и в их минерализации до С02, Н20, Н28, 1ЧН3 и других неорганических веществ. Вместе с грибами они являются редуцентами. Клубеньковые бактерии (азотфикси-рующие) образуют симбиоз с бобовыми растениями и участвуют в фиксации атмосферного азота в минеральные соединения, доступные растениям. Сами растения такой способностью не обладают.[ . ]

Считают, что первыми возникли архебактерии. Примерно 3,5 млрд лет назад. Затем возникли истинные бактерии, а от них ответвились вирусы, цианобактерии, красные водоросли и зеленые жгутиковые. От последних ответвились водоросли (от которых позднее произошли, в свою очередь, высшие растения) и бесцветные ризофлагелляты, из которых развились диатомовые водоросли, плесневые грибы, губки и простейшие. Часть простейших стала паразитической.[ . ]

Перечисленные особенности делают архебактерии по существу промежуточной формой между растениями и животными, что и явилось основанием для некоторых ученых к выделению их в самостоятельное царство.[ . ]

Схема синтеза белков, осуществляемого архебактериями, является такой же, как и у настоящих бактерий, однако в тРНК этих организмов нет ни тимина, ни урацила. Есть также отличия и в структуре рРНК.[ . ]

В отличие от большинства настоящих бактерий для архебактерии характерен ряд особенностей. Например, плазматическая мембрана архебактерии имеет однослойную структуру, а в пептидогли-кане их клеточных стенок в отличие от клеточных стенок настоящих бактерий отсутствует муреин.[ . ]

Уникальностью характеризуются также мембранные липиды архебактерий, ибо они не содержат эфиров глицерина и жирных кислот, но содержат изопреноидные углеводороды, которые обычно встречаются в нефти.[ . ]

Самым первым следствием кризиса была гибель подавляющего числа архебактерий в земном океане. Из их остатков сформировались огромные скопления нефти, газа, графитов в отложениях рифея. Вторым важным следствием стало разделение биосферы на две принципиально отличные по жизненным принципам ветви, кстати весьма неравнозначные по объему. Исходная биосфера восстановительного характера уцелела только в донных, преимущественно глубоких зонах, где сформировались локальные резерваты хемобиосферы. На земной поверхности воцарилась оксибиосфера, при этом освободились значительные по объемам экологические ниши. Дальнейший процесс развития новых форм жизни изучен еще слабо, наибольшую обоснованность в его описании имеет теория эндосимбиоза развития по Л. Маргулис. В.А. Зубаков (1997) так описывает ее основные положения: в результате многоэтапных коопераций доядерных органелл с гипотетическим протоядерным организмом уркариотом (по-гречески — творящийся ядерный) возникло новое направление в жизненных формах. Вначале появилась вышеназванная крупная ядерная клетка — эукариот, способная дышать кислородом и генетически активная, совершенствующаяся путем мутаций. Именно генетическая активность резко усилила эволюционный процесс, а главное появилась возможность бесконечного усложнения жизненных форм. И, в частности, кроме всего прочего, жизнь на Земле невозможна без бактерий особых форм, которые определяют завершенность жизненных циклов, а именно выполняют важнейшую функцию деструкции органического материала, синтезируемого эукариотами.[ . ]

Ряд ученых выделяет в надцарстве Прокариоты одно царство Дробянки, которое включает три подцарства: Бактерии, Архебактерии и Цианобактерии.[ . ]

Однако следует заметить, что многие ученые не разделяют эту точку зрения. Большинство специалистов классифицируют архебактерии в рамках подцарства.[ . ]

В этих, уже достаточно суровых, относительно прежних, условиях произошли определенные изменения в органическом мире Земли. Эубактерии или эукариоты, которые к этому времени получили достаточное развитие, представляли собой уже оформленные клеточным ядром образования с отделенной от цитоплазмы ядерной оболочкой. Генетический материал был сформирован в хромосомах. В клетках уже имелись митохондрии, пластиды и другие органоиды. Появление же цианобактерий, использовавших для дыхания азот, привело в конечном счете к постепенному вытеснению архебактерий и эубактерий, что в результате эволюции сделало цианобактерии жизненными монополистами. По В.А. Зубакову (1997), цианобактерии имели очень важную особенность, чрезвычайно существенную для дальнейшего развития органического мира. Этой особенностью было то, что при поглощении азота они выделяли в окружающую водную среду кислород, который в целом был продуктом их жизнедеятельности. Для существовавших же на Земле архебактерий кислород был смертельным ядом. Здесь следует сделать некоторое геологическое отступление.[ . ]

В пределах этого надцарства Доядерные организмы выделяют лишь одно царство — царство дробянок (Mychota), которое классифицируют далее на подцарства Архебактерии (Archaeobacteria, или Archaeobacteriobionta), Настоящие бактерии (Bacteria, или Bacteriobionta) и Оксифотобактерии (Oxyphotobacteria, или Oxyphotobacteriobionta).[ . ]

Хемоавтотрофы в процессах синтеза органического вещества используют энергию химических связей. К этой группе относятся только прокариоты: бактерии, архебактерии и отчасти синезеленые. Химическая энергия высвобождается в процессах окисления минеральных веществ. Экзотермические окислительные процессы используются нитрифицирующими бактериями (окисляют аммиак до шпротов, а затем до нитратов), железобактериями (окисление закисного железа до окисного), серобактериями (сероводород до сульфатов). Как субстрат для окисления используется также метан, СО и некоторые другие вещества.[ . ]

В разных гйзсонах органического мира соотношение форм по Их пищевой сяедааяизащт может быть различным. Чрезвычайно разнообразны по tfttM показателям прокариоты (бактерии, архебактерии, цианобактерии). Они насчитывают относительно небольшое число видов, но представленных большой биомассой, которая обеспечивает высокий уровень Первичной продукции. Показано, например, что в некоторых озерах фотосинтезирующими бактериями создается 3/4 валовой продукций.[ . ]

Фотосинтез у прокариот протекает несколько иначе, чем у растений. Бактерии используют для этой функции пигмент бактериохдорин и не выделяют кислород в окружающую среду.[ . ]

Максимальный температурный диапазон активной жизни (температура функционирующих клеток) несколько меньше диапазона жидкого состояния воды, а для большинства многоклеточных организмов — от 0 до 50°С. Микроорганизмы-эбулиофилы, обитающие в горячих поверхностных и глубинных источниках, могут сохранять способность к размножению при температуре до 75°С, а некоторые архебактерии нормально существуют при 85—105°.[ . ]

Нефтезагрязненные почвы обрабатывают Acinetobacter sp., Alcalgenes sp., Pseudomonas sp., одновременно вносят растворы фосфорных и аммонийных солей. Нефть на поверхности почвы уничтожают бактерии видов Actinomycor elegans и Geotrichum marinum [2, 27]. Использование Actinebacter sp. дает 80%-ный эффект очистки от ароматических соединений по истечении 5 недель [34]. Для деструкции нефти выделены штаммы гало-толерантных и галофильных архебактерий. В условиях высоких температур может быть использована Bacillus thermoleovorans. Бактерия рода Desulfobacterium осуществляет деградацию сали-цилата в условиях сульфатредукции. Деградацию ароматических углеводородов осуществляют некоторые виды Mycobacterium, а также Pseudomonas alcaligenes, которая разлагает и галоуглеводороды [34].[ . ]

Предполагают, что жизнь возникла на границе катархея и архея, который начался около 3,5 млрд лет назад и длительность которого составляет около 2 млрд лет. Эта эра характеризовалась широкой вулканической деятельностью. Обнаружение в архейских породах графита и чистого углерода предположительно указывает на существование в этой эре очень простых живых организмов растительной и животной природы, в частности архебактерий и цианобактерий.[ . ]

В катархее и архее, на отрезке времени между 4,0—2,8 млрд. лет тому назад, когда сформированная к этому времени атмосфера значительно уплотнилась и насытилась различными парами за счет исключительно активной вулканической деятельности. Это привело к тому, что солнечный свет не достигал поверхности Земли. Высокая плотность атмосферы даже при весьма низкой светимости Солнца (примерно в 4 раза меньше современного) привела к формированию высокого парникового эффекта. Следствием этих факторов стал ровный, очень теплый климат с температурами в диапазоне 200—400° С. Мелкие, пересыщенные солями обширные моря были сосредоточением проявлений жизни. Органический мир был представлен, как пишет В.А. Зубаков, доядерными бессмертными микроорганизмами — прокариотами. Прокариоты были гетеротрофными архебактериями, дышащие метаном и производными серы. Прокариоты не обладали оформленным клеточным ядром и типичным хромосомным аппаратом. Наследственная информация реализовывалась через ДНК.[ . ]

В настоящее время выделяют4 типа архей:
* Crenarchaeota — термофилы, термоацидофилы, серные анаэробные бактерии;
* Euryarchaeota — метаногенные и галофильные археи;
* Nanoarchaeota — единственный известный представитель Nanoarchaeum equitans;
* Korarchaeota — ДНК обнаружены в геотермальных источниках США, Исландии, на рисовых полях Японии, культивируемые виды пока неизвестны.

Использование бактерий человеком
Широкого применения бактерии не нашли, но можно выделить:
* Медицина: в определенных количествах оказывают положительное действие на организм в целом. Археи неспособны к паразитизму.
* Утилизации органических отходов. В метантенках при высокой температуре и отсутствии молекулярного кислорода происходит сбраживание органических веществ разнообразной микрофлорой, в результате чего образуются водород и углекислота, которые и используются археями при образовании метана. Благодаря высокой температуре процессы идут с высокой интенсивностью. В литературе сообщалось, что от трупа лошади, помещенного в такой метантенк, через неделю остался один скелет.

* Crenarchaeota
* Euryarchaeota
o Halobacteria
o Methanobacteria
o Methanococci
o Methanopyri
o Archaeoglobi
o Thermoplasmata
o Thermococci
* Korarchaeota
* Nanoarchaeota

Использование бактерий человеком

Широкого применения бактерии не нашли, но можно выделить:

* Медицина: в определенных количествах оказывают положительное действие на организм в целом. Археи неспособны к паразитизму.
* Утилизации органических отходов. В метантенках при высокой температуре и отсутствии молекулярного кислорода происходит сбраживание органических веществ разнообразной микрофлорой, в результате чего образуются водород и углекислота, которые и используются археями при образовании метана. Благодаря высокой температуре процессы идут с высокой интенсивностью. В литературе сообщалось, что от трупа лошади, помещенного в такой метантенк, через неделю остался один скелет.

О. Так и знал, что к разряду ботаники причислят что-то угарное. ))))))))) ) Ботаника - о растениях, если чо.


Обзор

Человек, обжитая археями территория, на фоне горячих источников, с которыми принято ассоциировать архей

иллюстрация авторов статьи

Авторы
Редакторы


Партнер номинации — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.

Генеральный партнер конкурса — международная инновационная биотехнологическая компания BIOCAD.

Археи. Самые древние, самые загадочные

Само название архей намекает на их раннее происхождение. По последним данным, они — самые древние из ныне живущих организмов [3], но выделены были в отдельную группу самыми последними, всего 40 лет назад [4]. Прежде представителей архей относили к бактериям, и лишь Карл Вёзе смог убедительно показать, что они достаточно далеко эволюционно отстоят друг от друга [5].

Дерево жизни

Рисунок 1. Дерево жизни, три домена: археи, бактерии, эукариоты

Впервые архей обнаружили в вулканических горячих источниках [6], и долгое время считалось, что они могут существовать только в экстремальных средах обитания с высокой температурой и повышенной кислотностью. Сегодня они известны как большая и разнообразная группа, широко распространенная в природе: благодаря молекулярным методам исследователи стали обнаруживать архей во многих местах, например, в почве или на коже человека. Получение чистой культуры многих архей — дело очень трудоемкое и не всегда заканчивается успехом, потому что археи часто требуют экзотических условий или не желают расти без присутствия других микроорганизмов [7].

Немного о роли молекулярных методов в современной микробиологии

Мы уже не раз упоминали, что именно молекулярные методы позволили нам больше узнать об археях. Но что конкретно это означает на практике?

Археи в необычных местах

При помощи метагеномики мы обнаружили архей вне типичных для них, как мы думали, условий обитания. Например, оказалось, что метанобразующие археи (они же метаногены) населяют желудочно-кишечный тракт (ЖКТ) травоядных животных. В рубце жвачных или в кишечнике термитов различные бактерии разлагают целлюлозу, образуя водород в качестве побочного продукта, а метаногены превращают водород и углекислый газ в метан, который затем выделяется из пищеварительного тракта их хозяев. Есть гипотеза, утверждающая, что, если бы этого процесса не было, происходящее накопление водорода в пищеварительном тракте влияло бы на равновесие в реакции разложения целлюлозы и она разлагалась бы медленнее. В последнее время метаногенных архей находят во все большем числе видов животных [10].

И это не единственный пример архей как эндосимбионтов. Например, их удалось обнаружить в морских губках, хотя на данный момент их роль в этом союзе не совсем ясна. Тем не менее один и тот же вид архей обнаружен во многих образцах губок, и такая ассоциация является довольно устойчивой [11]. В другом исследовании архей из разных типов удалось обнаружить на нескольких видах кораллов, причем археи составляли половину всего прокариотического сообщества [12], [13].

Становится все более очевидным, что археи распределены по всему миру и хорошо приспособлены к различному образу жизни, включая симбиотическое партнерство с эукариотическими хозяевами. Но несмотря на то, что этим открытиям уже больше десятка лет, роль архей в большинстве таких симбиозов неясна. Тот факт, что они составляют значительную часть микробного сообщества, указывает на их важную роль, но подробности таких союзов нам пока неизвестны.

Археом человека

Как же обстоят дела с изучением архей, обитающих в человеческом теле?

И вот, когда исследователи принялись за метагеном различных сообществ тела человека, оказалось, что архей можно встретить и там. Но какова же их роль? Это случайные пассажиры или археи действительно освоили человека как одно из своих местообитаний? На самом деле, на этот вопрос до сих пор нет однозначного ответа.

Да, ученым достоверно известно о том, что археи составляют значительную часть нашего микробиома, но их почти всегда упускают из виду при изучении различных патологий. Дело в том, что на данный момент нет стандартных протоколов обнаружения архей, поэтому справочные базы данных по ним не полны, и выделение и установление последовательности ДНК происходит с большими трудностями [14]. Хотя уже в конце 2010-х некоторые некультивируемые виды удалось обнаружить с помощью метагеномики, только развитие высокопроизводительного секвенирования позволило выявить сообщества архей, ассоциированных с человеком [15], [16].

Человеческий археом

Рисунок 2. Человеческий археом. Обзор хронологии открытия видов архей, обнаруженных как часть человеческого микробиома в разных местах.

Взаимодействие с иммунной системой

В исследованиях 2016 года [20], [21] удалось выявить корреляцию между количеством архей родов Methanobrevibacter и Akkermansia с риском возникновения рассеянного склероза — аутоиммунного заболевания, при котором поражается миелиновая оболочка нервных волокон головного и спинного мозга. Было обнаружено, что повышенное содержание этих архей в кишечнике человека вызывает синтез провоспалительных цитокинов в некоторых иммунных клетках и ингибирует производство подавляющих воспаление белков [22]. Казалось бы, эти археи — явные патогены, ведь в ответ на их присутствие организм начинает воспалительный процесс! Однако прямое патогенное действие не было доказано in vitro, так как совместная инкубация вида Methanobrevibacter smithii и иммунных клеток не воспроизводила эти результаты, что было показано в том же исследовании [23].

Потенциальные механизмы влияния на здоровье человека

На сегодняшний день можно выделить несколько потенциальных механизмов, с помощью которых археи могут влиять на здоровье человека.

Во-первых, это метаногенез. Метаногены поддерживают благоприятные условия для развития условно-патогенных бактерий, что косвенно способствует развитию заболеваний: различные вредоносные микроорганизмы лучше растут в тесном союзе с археями [24]. Однако присутствие архей-метаногенов имеет две стороны. Положительным эффектом метаногенеза является снижение общего давления в желудочно-кишечном тракте. В случае бескислородного дыхания одна молекула CO2 и четыре молекулы H2 используются для получения одной молекулы метана (CO2 + 4H2 = CH4 + 2H2O) [25], что приводит к уменьшению вздутия живота.

Основные виды архей-метаногенов

Рисунок 3. Основные виды архей-метаногенов и их расположение в теле человека. Красной стрелкой показано повторное поступление метана в кишечник.

Еще один способ влияния архей на здоровье человека — преобразование металлов и металлоидов. В процессе метаногенеза метильные группы различных соединений превращаются в метан. По-видимому, архейные ферменты-переносчики метильной группы, которые участвуют в этом процессе, могут взаимодействовать со многими веществами. Например, они способны превращать металлы и металлоиды, такие как мышьяк, селен, теллур, сурьма и висмут, в их более опасные летучие производные [26].

Помимо этого, археи способны удалять триметиламин (ТМА), превращая его в метан, что противодействует развитию атеросклероза — заболевания, поражающего артерии, в стенках которых накапливается холестерин (рис. 3) [27]. Связь повышенной концентрации TMA с развитием сердечно-сосудистых заболеваний не вызывает сомнений [28].

Археи (как и многие бактерии) также могут образовывать биопленки — устойчивые конгломераты микроорганизмов, защищенные от воздействия внешней среды и погруженные в общий матрикс. Для различных видов архей было показано образование биопленок [29], и предполагается, что метаноархеи в ЖКТ встречаются в таких сообществах, оседая на поверхности слизистой оболочки. Биопленки также наблюдались в полости рта, и в них археи Methanobrevibacter oralis обнаруживались у каждого второго пациента, страдающего пародонтозом (поражение околозубной ткани), при этом у здоровых людей подобные биопленки не встречаются [30]. В биопленках присутствуют организмы разных таксономических групп, и, возможно, архейные биопленки способствуют сохранению групп патогенных бактерий, например, защищая их от антибиотиков [29].

Таким образом, археи могут оказывать на организм человека как положительный, так и отрицательный эффект. Например, метаногенные археи вовлечены во многие процессы, помогают пищеварению и снижают общее давление в ЖКТ, однако несколько исследований предполагали участие метаногенных архей в желудочно-кишечных заболеваниях, таких как рак, ожирение, анорексия и воспалительное заболевание кишечника [31]. Тем не менее следует уточнить, что в этих исследованиях отсутствуют соответствующие методы количественной оценки, и в других работах сообщается о спорных результатах общей численности этих микроорганизмов в исследуемых группах пациентов [32].

Что же мы в итоге можем сказать о роли архей в нашем организме? Способны ли они вызывать болезни?

Таксономический ландшафт архей в человеческом теле

Рисунок 4. Таксономический ландшафт архей в человеческом теле. Синий — легкие, желтый — кожа, красный — нос, коричневый — ЖКТ.

Заключение

На данный момент не существует четких доказательств существования патогенных, или, тем более, паразитических архей [33], [34]. Разница между паразитизмом и патогенностью состоит в том, что патогенность — это способность быть причиной патологии, а паразитизм — один из способов взаимодействия видов, в ходе которого паразит использует хозяина в качестве источника пищи и/или среды обитания. Мы рассказали о возможной роли архей в патогенезе, но именно паразитами они, по-видимому, быть не могут.

Это тем более удивительно, что паразитические организмы встречаются в огромном количестве в двух других доменах. Либо археям что-то мешает перейти к паразитизму, либо их паразитические отношения настолько своеобразны, что мы до сих пор это не обнаружили. Почему же так произошло? Возможно, из-за своих метаболических особенностей бактерии более успешны на этом поприще и просто не дают археям развиваться в том же направлении. Археи также, как правило, не обмениваются ДНК с патогенными бактериями: обмен генетической информацией более типичен между экстремофильными бактериями и археями [35].

Зачем же тогда ученые потратили столько времени и сил на изучение данного вопроса? Пока что из исследований на эту тему можно сделать несколько выводов. Археи присутствуют в большинстве, если не во всех, микробиомах, связанных с эукариотическими хозяевами, но из-за отсутствия стандартных протоколов обнаружения архей их часто упускают из виду. И даже слегка копнув эту тему, можно смело заявить, что роль домена архей велика как в жизнедеятельности человека, так и в различных экосистемах, ассоциированных с эукариотами. Будущие исследования археомов, ассоциированных с хозяином, позволят лучше понять их роль в здоровье человека и их потенциальную роль в развитии болезни.

Архебактрии

Ранее археи объединяли с бактериями в общую группу, называемую прокариоты , и они назывались архебактерии , однако сейчас такая классификация считается устаревшей : установлено, что археи имеют свою независимую эволюционную историю и характеризуются многими биохимическими особенностями, отличающими их от других форм жизни.

Существуют 3 группы архебактерий:

1- метанобразующие -окисляют углекислый газ,

Они могут жить как за счет органических субстратов (гетеротрофные аэробы), так и за счет энергии Солнца, имея в своих мембранах светочувствительный пигмент –бактериородопсин (фотоавтотрофы).

Температура около 100 °С для них не проблема

Они могут использовать для питания как органические соединения (аэробные гетеротрофы), так и неорганические соединения (аэробные и анаэробные хемотрофы)

У архебактерий есть черты, роднящие их с бактериями, но есть так же общие признаки с эукариотами:

Сходства архебактерий

Сходства архебактерий

Свойства только арбактерий

нет мембранных органелл

архебактерии содержат псевдомуреин

кольцевая ДНК — нуклеойд

в составе мембраны есть липиды

генетически отличаются от эукариот и бактерий

размер и форма клеток

форма клетки может быть квадратной

однослойная мембрана

некоторые похожие обменные процессы

Архебактерии используют значительно больше источников энергии,

чем эукариоты: начиная от обыкновенных органических соединений,

таких как сахара, и заканчивая аммиаком, ионами металлов

и даже водородом.

1) бесполое надвое

не образуют спор

  • именно архебактерии образовали запасы природного газа (в частности метана) на Земле
  • у дивительно и то, что среди архебактерий нет паразитов и болезнетворных фор м, что заметно отличает их от бактерий.


Археи

Большой вклад в изучение строения, эволюции архебактерий внес академик РАН Б.В.Громов, профессор Санкт-Петербургского университета. Им был создан уникальный банк архебактерий. Филогенез, экология, систематика архебактерий были досконально изучены чл. – корр РАН Г.А. Заварзиным. В своих многочисленных экспедициях на Камчатку, другие экстремальные районы Земли, им были обнаружены и описаны многие виды и группы архей и эубактерий.

Читайте также: