Жесткий магнитный диск кратко

Обновлено: 30.06.2024

image

Он магнитный. Он электрический. Он фотонный. Нет, это не новое супергеройское трио из вселенной Marvel. Речь идёт о хранении наших драгоценных цифровых данных. Нам нужно где-то их хранить, надёжно и стабильно, чтобы мы могли иметь к ним доступ и изменять за мгновение ока. Забудьте о Железном человеке и Торе — мы говорим о жёстких дисках!

Итак, давайте погрузимся в изучении анатомии устройств, которые мы сегодня используем для хранения миллиардов битов данных.

You spin me right round, baby

Механический накопитель на жёстких дисках (hard disk drive, HDD) был стандартом систем хранения для компьютеров по всему миру в течение более 30 лет, но лежащие в его основе технологии намного старше.

Первый коммерческий HDD компания IBM выпустила в 1956 году, его ёмкость составляла аж 3,75 МБ. И в целом, за все эти годы общая структура накопителя не сильно изменилась. В нём по-прежнему есть диски, которые используют для хранения данных намагниченность, и есть устройства для чтения/записи этих данных. Изменился же, и очень сильно, объём данных, который можно на них хранить.

В 1987 году можно было купить HDD на 20 МБ примерно за 350 долларов; сегодня за такие же деньги можно купить 14 ТБ: в 700 000 раз больший объём.

Мы рассмотрим устройство не совсем такого размера, но тоже достойное по современным меркам: 3,5-дюймовый HDD Seagate Barracuda 3 TB, в частности, модель ST3000DM001, печально известную своим высоким процентом сбоев и вызванных этим юридических процессов. Изучаемый нами накопитель уже мёртв, поэтому это будет больше похоже на аутопсию, чем на урок анатомии.



Перевернув накопитель, мы видим печатную плату и несколько разъёмов. Разъём в верхней части платы используется для двигателя, вращающего диски, а нижние три (слева направо) — это контакты под перемычки, позволяющие настраивать накопитель под определённые конфигурации, разъём данных SATA (Serial ATA) и разъём питания SATA.

Serial ATA впервые появился в 2000 году. В настольных компьютерах это стандартная система, используемая для подключения приводов к остальной части компьютера. Спецификация формата претерпела множество ревизий, и сейчас мы пользуемся версией 3.4. Наш труп жёсткого диска имеет более старую версию, но различие заключается только в одном контакте в разъёме питания.

В подключениях передачи данных для приёма и получения данных используется дифференцированный сигнал: контакты A+ и A- используются для передачи инструкций и данных в жёсткий диск, а контакты B — для получения этих сигналов. Подобное использование спаренных проводников значительно снижает влияние на сигнал электрического шума, то есть устройство может работать быстрее.

Если говорить о питании, то мы видим, что в разъёме есть по паре контактов каждого напряжения (+3.3, +5 и +12V); однако большинство из них не используется, потому что HDD не требуется много питания. Эта конкретная модель Seagate при активной нагрузке использует менее 10 Вт. Контакты, помеченные как PC, используются для precharge: эта функция позволяет вытаскивать и подключать жёсткий диск, пока компьютер продолжает работать (это называется горячей заменой (hot swapping)).

Контакт с меткой PWDIS позволяет удалённо перезагружать (remote reset) жёсткий диск, но эта функция поддерживается только с версии SATA 3.3, поэтому в моём диске это просто ещё одна линия питания +3.3V. А последний контакт, помеченный как SSU, просто сообщает компьютеру, поддерживает ли жёсткий диск технологию последовательной раскрутки шпинделей staggered spin up.

Перед тем, как компьютер сможет их использовать, диски внутри устройства (которые мы скоро увидим), должны раскрутиться до полной скорости. Но если в машине установлено много жёстких дисков, то внезапный одновременный запрос питания может навредить системе. Постепенная раскрутка шпинделей полностью устраняет возможность таких проблем, но при этом перед получением полного доступа к HDD придётся подождать несколько секунд.


Сняв печатную плату, можно увидеть, как она соединяется с компонентами внутри устройства. HDD не герметичны, за исключением устройств с очень большими ёмкостями — в них вместо воздуха используется гелий, потому что он намного менее плотный и создаёт меньше проблем в накопителях с большим количеством дисков. С другой стороны, не стоит и подвергать обычные накопители открытому воздействию окружающей среды.

Благодаря использованию таких разъёмов минимизируется количество входных точек, через которые внутрь накопителя могут попасть грязь и пыль; в металлическом корпусе есть отверстие (большая белая точка в левом нижнем углу изображения), позволяющее сохранять внутри давление окружающей среды.


Теперь, когда печатная плата снята, давайте посмотрим, что находится внутри. Тут есть четыре основных чипа:

  • LSI B64002: чип основного контроллера, обрабатывающий инструкции, передающий потоки данных внутрь и наружу, корректирующий ошибки и т.п.
  • Samsung K4T51163QJ: 64 МБ DDR2 SDRAM с тактовой частотой 800 МГц, используемые для кэширования данных
  • Smooth MCKXL: управляет двигателем, крутящим диски
  • Winbond 25Q40BWS05: 500 КБ последовательной флеш-памяти, используемой для хранения встроенного ПО накопителя (немного похожего на BIOS компьютера)

Открыть накопитель просто, достаточно открутить несколько болтов Torx и вуаля! Мы внутри…


Учитывая, что он занимает основную часть устройства, наше внимание сразу привлекает большой металлический круг; несложно понять, почему накопители называются дисковыми. Правильно их называть пластинами; они изготавливаются из стекла или алюминия и покрываются несколькими слоями различных материалов. Этот накопитель на 3 ТБ имеет три пластины, то есть на каждой стороне одной пластины должно храниться 500 ГБ.


Изображение довольно пыльное, такие грязные пластины не соответствуют точности проектирования и производства, необходимого для их изготовления. В нашем примере HDD сам алюминиевый диск имеет толщину 0,04 дюйма (1 мм), но отполирован до такой степени, что средняя высота отклонений на поверхности меньше 0,000001 дюйма (примерно 30 нм).

Базовый слой имеет глубину всего 0,0004 дюйма (10 микронов) и состоит из нескольких слоёв материалов, нанесённых на металл. Нанесение выполняется при помощи химического никелирования с последующим вакуумным напылением, подготавливающих диск для основных магнитных материалов, используемых для хранения цифровых данных.

Этот материал обычно является сложным кобальтовым сплавом и составлен из концентрических кругов, каждый из которых примерно 0,00001 дюйма (примерно 250 нм) в ширину и 0,000001 дюйма (25 нм) в глубину. На микроуровне сплавы металлов образуют зёрна, похожие на мыльные пузыри на поверхности воды.

Каждое зерно обладает собственным магнитным полем, но его можно преобразовать в заданном направлении. Группирование таких полей приводит к возникновению битов данных (0 и 1). Если вы хотите подробнее узнать об этой теме, то прочитайте этот документ Йельского университета. Последними покрытиями становятся слой углерода для защиты, а потом полимер для снижения контактного трения. Вместе их толщина составляет не больше 0,0000005 дюйма (12 нм).

Скоро мы увидим, почему пластины должны изготавливаться с такими строгими допусками, но всё-таки удивительно осознавать, что всего за 15 долларов можно стать гордым владельцем устройства, изготовленного с нанометровой точностью!

Однако давайте снова вернёмся к самому HDD и посмотрим, что же в нём есть ещё.


Жёлтым цветом показана металлическая крышка, надёжно крепящая пластину к электродвигателю привода шпинделя — электроприводу, вращающему диски. В этом HDD они вращаются с частотой 7200 rpm (оборотов/мин), но в других моделях могут работать медленнее. Медленные накопители имеют пониженный шум и энергопотребление, но и меньшую скорость, а более быстрые накопители могут достигать скорости 15 000 rpm.

Чтобы снизить урон, наносимый пылью и влагой воздуха, используется фильтр рециркуляции (зелёный квадрат), собирающий мелкие частицы и удерживающий их внутри. Воздух, перемещаемый вращением пластин, обеспечивает постоянный поток через фильтр. Над дисками и рядом с фильтром есть один из трёх разделителей пластин: помогающих снижать вибрации и поддерживать как можно более равномерный поток воздуха.

В левой верхней части изображения синим квадратом указан один из двух постоянных стержневых магнитов. Они обеспечивают магнитное поле, необходимое для перемещения компонента, указанного красным цветом. Давайте отделим эти детали, чтобы видеть их лучше.


То, что выглядит как белый пластырь — это ещё один фильтр, только он очищает частицы и газы, попадающие снаружи через отверстие, которое мы видели выше. Металлические шипы — это рычаги перемещения головок, на которых находятся головки чтения-записи жёсткого диска. Они с огромной скоростью движутся по поверхности пластин (верхней и нижней).

Посмотрите это видео, созданное The Slow Mo Guys, чтобы увидеть, насколько они быстрые:

В конструкции не используется чего-то вроде шагового электродвигателя; для перемещения рычагов по соленоиду в основании рычагов проводится электрический ток.


Обобщённо их называют звуковыми катушками, потому что они используют тот же принцип, который применяется в динамиках и микрофонах для перемещения мембран. Ток генерирует вокруг них магнитное поле, которое реагирует на поле, созданное стержневыми постоянными магнитами.

Не забывайте, что дорожки данных крошечны, поэтому позиционирование рычагов должно быть чрезвычайно точным, как и всё остальное в накопителе. У некоторых жёстких дисков есть многоступенчатые рычаги, которые вносят небольшие изменения в направление только одной части целого рычага.

В некоторых жёстких дисках дорожки данных накладываются друг на друга. Эта технология называется черепичной магнитной записью (shingled magnetic recording), и её требования к точности и позиционированию (то есть к попаданию постоянно в одну точку) ещё строже.


На самом конце рычагов есть очень чувствительные головки чтения-записи. В нашем HDD содержится 3 пластины и 6 головок, и каждая из них плавает над диском при его вращении. Для этого головки подвешены на сверхтонких полосках металла.

И здесь мы можем увидеть, почему умер наш анатомический образец — по крайней мере одна из головок разболталась, и что бы ни вызвало изначальный повреждение, оно также погнуло один из рычагов. Весь компонент головки настолько мал, что, как видно ниже, очень сложно получить её качественный снимок обычной камерой.


Чуть дальше, и головки не смогут распознавать изменения магнитных полей дорожки; если бы головки лежали на поверхности, то просто поцарапали бы покрытие. Именно поэтому нужно фильтровать воздух внутри корпуса накопителя: пыль и влага на поверхности диска просто сломают головки.


На этом изображении другого жёсткого диска устройства чтения и записи находятся под всеми электрическими соединениями. Запись выполняется системой тонкоплёночной индуктивности (thin film induction, TFI), а чтение — туннельным магнеторезистивным устройством (tunneling magnetoresistive device, TMR).

Создаваемые TMR сигналы очень слабы и перед отправкой должны проходить через усилитель для повышения уровней. Отвечающий за это чип находится рядом с основанием рычагов на изображении ниже.


Как сказано во введении к статье, механические компоненты и принцип работы жёсткого диска почти не изменились за многие годы. Больше всего совершенствовалась технология магнитных дорожек и головок чтения-записи, создавая всё более узкие и плотные дорожки, что в конечном итоге приводило к увеличению объёма хранимой информации.

Однако механические жёсткие диски имеют очевидные ограничения скорости. На перемещение рычагов в нужное положение требуется время, а если данные разбросаны по разным дорожкам на различных пластинах, то на поиски битов накопитель будет тратить довольно много микросекунд.

Прежде чем переходить к другому типу накопителей, давайте укажем ориентировочные показатели скорости типичного HDD. Мы использовали бенчмарк CrystalDiskMark для оценки жёсткого диска WD 3.5" 5400 RPM 2 TB:


В первых двух строчках указано количество МБ в секунду при выполнении последовательных (длинный, непрерывный список) и случайных (переходы по всему накопителю) чтения и записи. В следующей строке показано значение IOPS, то есть количество операций ввода-вывода, выполняемых каждую секунду. В последней строке показана средняя задержка (время в микросекундах) между передачей операции чтения или записи и получением значений данных.

В общем случае мы стремимся к тому, чтобы значения в первых трёх строчках были как можно больше, а в последней строчке — как можно меньше. Не беспокойтесь о самих числах, мы просто используем их для сравнения, когда будем рассматривать другой тип накопителя: твердотельный накопитель.

Жесткий диск является важной частью компьютера, на нем хранятся все ваши файлы, фотографии, фильмы. Именно с него и загружается операционная система, когда вы включаете свой ПК или ноутбук, если конечно не используете SSD.

Он установлен практически в каждом компьютере и знать, что он из себя представляет стоит каждому. Это довольно сложное устройство, которое обладает множеством возможностей и своих преимуществ перед другими накопителями информации.

Жесткий диск HDD - что это такое: все о накопителе

Недавно мы разобрали, что такое SSD накопитель, данный материал будет посвящен другому накопителю информации — жесткому диску, вы узнаете, что это, из чего состоит и как работает.

Что такое жесткий диск HDD

Жесткий диск (HDD, hard disk, магнитный диск) — это устройство для хранения данных, в котором используются магнитные пластины для записи информации. Применяется в большинстве настольных компьютеров и ноутбуках в качестве основного накопителя.


Память на таком устройстве не энергозависима, как, например, у оперативной памяти, это означает, что данные не будут стираться при отключении питания.

На компьютере или ноутбуке просто необходимо, чтобы был установлен какой-либо накопитель информации, это может быть, как раз жесткий диск, или твердотельный накопитель. Такой накопитель выполняет следующие функции:

  • Хранит на себе всю операционную систему, ее файлы и настройки
  • Все файлы, пользователи, музыка, фото, видеоролики, документы и т.д.
  • Используется для хранения временных файлов самой системой, чтобы разгрузить оперативную память

Конструкция

Конструкция HDD выглядит одновременно простой и довольно сложной. Собирается он из следующих основных компонентов:

  • Корпус — защищает от пыли, влаги
  • Магнитные пластины — на них, как раз и производится запись информации
  • Головки записи/чтения — они считывают информацию с магнитных пластин
  • Двигатель — он вращает магнитные пластины
  • Контроллер — управляет работой, по сути это обычная микросхема


В конструкции есть и другие элементы, но эти основные из них.

Как работает жесткий диск

По сути жесткие диски записывают и считывают информацию, примерно также, как происходить запись и чтение на виниловых пластинках. Т.е. не углубляясь в множество терминов. Головки чтения и записи информации при помощи магнитных импульсов записывают и считывают данные с магнитных пластин.


Записанная информация хранится на секторах, которые для большего удобства объединяются в кластеры. Выглядит это примерно, как разрезанная пицца. Запись информации происходит в непрерывной последовательности кластеров, т.е. головка для записи/чтения двигается по пластине без лишних сдвигов ровно по кластерам.


Это дает возможность быстрого доступа к записанной информации. Но, к сожалению, при удалении, какой-либо информации кластера пустеют и происходит фрагментация файлов подробнее об этом в материале — что такое дефрагментация диска.

Виды жестких дисков

Магнитные диски делают много разных производителей, основные из них это: Seagate, Western Digital и Toshiba. Делят их на следующие виды:

  • 3.5 дюймов — используют HDD такого размера обычно в персональных компьютерах и на серверах
  • 2.5 дюймов — в таком варианте можно чаще всего встретить в ноутбуках, но и на ПК тоже ставят
  • Внешние HDD — работают по USB, можно подключить к любому устройству, например, к телевизору, что реально удобно


По другим параметрам будем делить их по характеристикам.

Характеристики жестких дисков

Основные характеристики Hard Disk это:

  • Объем памяти — для домашнего ПК рекомендую на данный момент брать модели от 1 Тб т.к. игры, кино и другой медиа контент будет занимать довольно много места.
  • Форм фактор — для ПК стоит взять или 3.5 или 2.5, а для ноутбука 2.5. Если нужен, например, для телевизора — берите внешний.
  • Скорость работы — брать только от 7200 об/мин, остальное будет очень медленно, я про 5400 об/мин, особенно по сравнению с SSD. Лучше если найдете вариант с 10000 об/мин.
  • Интерфейс подключения — на данный момент в материнских платах для HDD предусмотрен интерфейс SATA, раньше использовался IDE. Внешние же — подключаются просто по USB.
  • Время произвольного доступа — промежуток в течение, которого жесткий гарантированно выполнит запись или чтение. Обычно это от 3 до 15 миллисекунд.

Также их можно еще разделить на: уровень издаваемого шума, защищенность от физического воздействия, надежность, на сколько циклов рассчитан.

Преимущества HDD дисков

Самое главное преимущество HDD перед SSD — это их долговечность в плане использования. Практически неограниченный цикл записи/чтения. Это идеальный вариант для хранения информации в виде: видео, фото, музыки. Если вы часто смотрите кино с телевизора, то рекомендую купить именно внешний жесткий диск. Разницы в скорости вы все равно не заметите, а прослужит он вам реально намного больше.


Минусы HDD

Одним из самых главных минусов по сравнению с новыми SSD является — скорость работы. Да они действительно работают намного медленнее. Поэтому для операционной системы лучше брать именно ССД, а вот уже для хранения файлов — жесткий disk.

Еще один минус, это то, что они сильно подвержены механическому воздействию, такие накопители лучше не ронять. А если берете внешний, то лучше ищите модель, защищенную от падений и ударов, такой Travel вариант.

В заключение

Этот тип хранителей информации действительно надежен и долговечен. Рекомендую брать для хранения всех своих файлов, также можно использовать в качестве резервного хранилища. Для каких целей используете вы свой HDD?

HDD (Hard Disk Drive – устройство управления жесткими дисками, винчестер, жесткий диск, дисковод жестких дисков, накопитель на жестком магнитном диске (НМЖД), Hard Magmetic Disk Drive (HMDD)) используется для хранения больших объемов информации пользователя.

Разобранный жесткий диск

Рисунок 1. Разобранный жесткий диск

Назначение

НЖМД является наиболее совершенным и сложным устройством современного ПК. Его диски способны вместить много мегабайт информации, которая передается с большой скоростью. Основные принципы работы жесткого диска за время его существования остались практически неизменными. НЖМД помещен в герметичный металлический корпус, который защищает дисковод от частичек пыли и защищает накопитель от электромагнитных помех.

НЖМД служит для длительного хранения информации, при этом в процессе работы данные могут удаляться и записываться. Жесткий диск используется для хранения больших объемов информации. Емкость жестких дисков современных ПК составляет несколько терабайт.

История

НЖМД объёмом $44$ Мб ($1980$-е гг.)

Рисунок 2. НЖМД объёмом $44$ Мб ($1980$-е гг.)

Строение и принцип работы НЖМД

Жесткий диск помещен в герметичную железную коробку, в которой размещены магнитные диски, блок головок для чтения и записи и электродвигатель.

Готовые работы на аналогичную тему


При включении ПК электродвигатель раскручивает магнитный диск до скорости в несколько тысяч об/мин и диск вращается в течении всего времени, пока ПК включен.

Устройство и принцип работы НЖМД

Рисунок 4. Устройство и принцип работы НЖМД

Логическая структура магнитного диска

  • загрузочный сектор (boot record) – сектор с номером $0$, в котором содержится небольшая программа, с помощью которой ПК определяет возможность загрузки операционной системы с данного диска;
  • таблица размещения файлов, в которой хранятся сведения о размещении файлов на диске;
  • область данных (data area), которая служит для непосредственного хранения данных и занимает основную часть дискового пространства.

Основные параметры жесткого диска

Емкость – для настольных ПК от $40$ Гб до нескольких Тб.

Скорость чтения данных. $IDE$ ($ATA$) имеет максимальную скорость передачи данных $2,1–8,3$ Мб/сек, $EIDE$ ($ATA-2$) – $11,1–33,3$ Мб/сек. Эта скорость зависит от того, куда передаются данные: в регистры ЦП или непосредственно в оперативную память (более производительный режим).

Скорость вращения диска достигает $15 \ 000$ об/мин. Скорость вращения жесткого диска в основном влияет на сокращение среднего времени доступа (поиска). Жесткие диски вращаются непрерывно даже тогда, когда к ним нет обращений, что увеличивает скорость передачи данных, т.к. при обращении не тратится время на разгон диска.

Стандартные скорости для настольных ПК $5 \ 400$, $5 \ 900$, $7 \ 200$ и $10 \ 000$ об/мин. В ноутбуках скорость вращения меньше – $4 \ 200$, $5 \ 400$ и $7 \ 200$ об/мин.

Размер кэш-памяти, в которую ПК помещает данные, наиболее часто используемые.

Фирма-производитель. Производством жестких дисков занимаются $7$ компаний: Fujitsu, Hitachi, Maxtor, Samsung, Seagate, Toshiba и Western Digital. При этом каждая модель одного производителя имеет свои, только ей присущие, особенности.

Интерфейсы подключения НЖМД

В современных ПК существуют НЖМД с различными интерфейсами подключения:

$IDE$ (или $ATA$) – интерфейс подключения жесткого диска к контроллеру с помощью $40-$ или $80$-жильного шлейфа. К одному шлейфу можно подключить сразу $2$ устройства, для чего необходимо произвести некоторые дополнительные настройки.

Serial $ATA$ ($SATA$) – интерфейс с более высокой скоростью, поддерживаемый всеми современными системными платами. Данные передаются по семижильному кабелю, накопители конфигурируются автоматически без дополнительных настроек.

$SCSI$ – производительный параллельный интерфейс, который применяется в системах на основе сервера. Системные платы с поддержкой $SCSI$ встречаются редко, поэтому для подключения $SCSI$-дисков необходимо установить дополнительный $SCSI$-контроллер. В некоторых современных системах встречается интерфейс – $SAS$ (Serial Attached SCSI).

Шкафы телекоммуникационные настенные серия LIGHT

Открытый HDD


Вскрытый жесткий диск

Жесткие диски , другое название HDD (от англ.Hard Disk Drive) или вичестер, были изобретены более 60 лет назад и используются в персональных компьютерах с середины 1980-х годов (хотя флэш-память заменила их во многих продуктах в последние годы). Жесткий диск это устройство которое дает вам огромную информационную емкость и позволяет хранить файлы, фильмы, фотографии, музыку и текстовые документы. Кроме этого на него устанавливается операционная система и програмное обеспечение компьютера. Как же работает винчестер и для чего он нужен? Давайте посмотрим поближе!

Содержание

Как хранить информацию с помощью магнетизма

Наука о магнетизме сложна. Но если вы когда-нибудь дурачились с магнитом и гвоздями, вы знаете, что технология — наука в действии — довольно проста. Железные гвозди изначально не магнитятся, но если вы будете протирать их магнитом назад и вперед, вы можете сделать их магнитными, чтобы они прилипали друг к другу. Магнетизм имеет несколько простых практических применений. Например, на свалках используются электромагниты (огромные магниты, которые можно включать и выключать с помощью электричества), чтобы собирать и перемещать груды металлического лома.

Если у вашего компьютера есть жесткий диск на 20 гигабайт (ГБ), это немного похоже на коробку, содержащую 160 миллиардов микроскопических железных гвоздей, каждый из которых может хранить один крошечный фрагмент информации, называемый бит. Бит — это двоичная цифра — либо ноль, либо единица. В компьютерах числа хранятся не как десятичные (основание 10), а как образцы двоичных цифр. Например, десятичное число 382 сохраняется как двоичное число 101111110. Буквы и другие символы также могут быть сохранены как двоичные числа. Таким образом, компьютеры хранят заглавную букву A как десятичное число 65 или двоичное число 1000001. Предположим, вы хотите сохранить число 1000001 на своем компьютере в этой большой коробке с железными гвоздями. Вам нужно найти ряд из семи неиспользованных гвоздей. Вы намагничиваете первый (чтобы сохранить 1), оставляете следующие пять размагниченными (чтобы сохранить пять нулей) и намагничиваете последний (чтобы сохранить 1).

Как работает жесткий диск

Пластина HDD


Магнитная пластина жесткого диска

Что входит в состав жесткого диска?

Конструкция HDD


Конструкция жесткого диска

Пластины — самые важные части жесткого диска. Как следует из названия, это диски, сделанные из твердого материала, такого как керамика или алюминий, и покрыты тонким слоем металла, который можно намагничивать или размагничивать. Небольшой жесткий диск обычно имеет только одну пластину, но каждая его сторона имеет магнитное покрытие. У дисков больших объемов есть несколько пластин, установленных на центральном шпинделе с небольшим зазором между ними. Пластины вращаются со скоростью до 15 000 оборотов в минуту (об/мин), поэтому головки чтения-записи могут получить доступ к любой их части.

Для каждой пластины есть две головки: одна для чтения с верхней поверхности, а другая для чтения с нижней, поэтому для жесткого диска с пятью пластинами (скажем) потребуется десять отдельных головок. Головки установлены на рычаге с электрическим управлением, который перемещается от центра привода к внешнему краю и обратно. Чтобы уменьшить износ, они фактически не касаются диска, а парят над ней. При запуске сначала раскручивается шпиндель с блинами, и только после возникновения необходимого для парения потока воздуха, головки начинают двигаться.

Чтение и запись данных

Устройство чтения-записи HDD


Система чтения/записи жесткого диска

Самое важное в памяти — это не возможность хранить информацию, а возможность найти ее позже. Представьте, что вы храните намагниченный железный гвоздь в куче из 1,6 миллиона миллионов одинаковых гвоздей, и вы будете иметь некоторое представление о том, с какими проблемами столкнулся бы ваш компьютер, если бы он не использовал очень методичный способ хранения своей информации. Рассмотрим принцип работы винчестера при работе с информацией.

Когда ваш компьютер хранит данные на жестком диске, он не просто забрасывает намагниченные гвозди в коробку, перемешивая их вместе. Данные хранятся в очень упорядоченном виде на каждой пластине. Биты данных располагаются концентрическими круговыми путями, называемыми дорожками. Каждая дорожка разбита на более мелкие области, называемые секторами. Часть жесткого диска хранит карту секторов, на которой видно свободны они или заняты. Когда компьютер хочет сохранить новую информацию, он смотрит на карту, чтобы найти несколько свободных секторов. Затем он дает команду головке чтения-записи перемещаться по пластине точно в нужное место и сохранять там данные. Чтобы прочитать информацию, тот же процесс выполняется в обратном порядке.

Как компьютер управляет всей механической мелочью жесткого диска? Между ними существует интерфейс (связующее оборудование), называемый контроллером. Это небольшая схема, которая управляет исполнительными механизмами, выбирает определенные дорожки для чтения и записи и преобразует параллельные потоки данных, идущие с компьютера, в последовательные потоки данных, записываемых на диск (и наоборот). Контроллеры либо встроены в собственную печатную плату дисковода, либо являются частью основной платы (материнской платы) компьютера.

С таким большим объемом информации, хранящимся в таком крошечном пространстве, жесткий диск представляет собой замечательное произведение инженерной мысли. Это дает не только преимущества, но и недостатки. Один из них заключается в том, что жесткие диски могут выйти из строя, если внутрь них попадет грязь или пыль. Крошечный кусочек пыли может заставить магнитную головку подпрыгивать вверх и вниз, врезаясь в опорный диск и повреждая его магнитный материал. Это известно как сбой диска (или сбой головки), и он может, хотя и не всегда, привести к потере всей информации на жестком диске. Сбой диска обычно происходит внезапно, без предупреждения. Вот почему вы всегда должны хранить резервные копии ваших важных документов и файлов.

Кто изобрел жесткий диск?

Эволюция HDD


Эволюция жестких дисков

Виды жестких дисков

HDD 2,5 и 3,5 дюйма


Жесткие диски 2,5 и 3,5 дюйма

Чем же отличаются жесткие диски и какой лучше? Если смотреть на виды HDD, то их делят на:

  • 1. для ноутбуков , их характеризует форм-фактор в 2,5 дюйма. Это позволяет им помещаться в небольшом корпусе;
  • 2. для компьютеров и систем видеонаблюдения . Несмотря на то, что возможно и использование предыдущего варианта, как правило, используются форм-фактор в 3,5 дюйма;
  • 3. внешние устройства, отдельно подключаемые к ПК/ноутбуку, в основном используются для хранилища информации;
  • 4. для серверов , отличаются большей производительностью и интерфейсом подключения SAS , а не SATA .

Кроме этого, винчестеры разделяют в зависимости от нескольких характеристик:

  • 1. объем памяти – варьируется от сейчас от 300 гигабайт до 18 терабайт;
  • 2. скорость вращения шпинделя (чем больше, тем выше производительность) – от 5400 до быстрых HDD с 15000 оборотов в минуту;
  • 3. интерфейс – SAS 2, SAS 3, SATA 3, другие встречаются гораздо реже, для внешних вариантов основной интерфейс USB;
  • 4. объем буфера (кэш-память для временного хранения данных) – от 8 до 512 мегабайт.

Любой жесткий магнитный диск выполняет свое основное назначение, хранит информацию, все остальные нюансы надо учитывать при выборе под конкретную задачу.

Заключение

Жесткие диски давно выпускаются, имеют большой объем и дешевы, но у них тоже есть много недостатков. Одна из проблем, это количество времени, которое требуется головке, чтобы добраться до нужной части диска, чтобы получить доступ к информации. Большой размер жесткого диска и его относительно высокое энергопотребление также являются проблемами, особенно в мобильных устройствах, таких как планшеты и смартфоны. Другой вопрос — надежность. Как вы уже поняли из того, что вы только что прочитали, HDD - это прекрасный образец точной инженерии с множеством сложных движущихся частей. Поэтому всегда есть возможность серьезной механической поломки, вызванной чем-то вроде грязи на одной из пластин или внезапным механическим ударом, после чего возможна потеря всей информации.

Все эти проблемы — вес, энергопотребление, время доступа и надежность — можно решить с помощью твердотельных накопителей (SSD), которые обычно используют флешь-память вместо вращающихся магнитных пластин. Производители компьютеров переходят от жестких дисков к твердотельным накопителям, в течение последнего десятилетия, в основном из-за тенденции отхода от настольных компьютеров к мобильным устройствам.

Основную тяжесть жёсткому диску предает толстый металл, он препятствует изгибанию и вибрациям корпуса.

Читайте также: