Закономерности существования клетки во времени кратко

Обновлено: 05.07.2024

Совокупность хромосом, содержащихся в ядре, называется хромосомным набором. Число хромосом в клетке и их форма постоянны для каждого вида живых организмов.

Число (диплоидный набор) хромосом у некоторых видов растений и животных

Пшеница твёрдая 28 Гидра 32
Пшеница мягкая 42 Дождевой червь 36
Рожь 14 Таракан 48
Кукуруза 20 Пчела 16
Подсолнечник 34 Дрозофила 8
Картофель 48 Кролик 44
Огурец 14 Шимпанзе 48
Яблоня 34 Человек 46

Соматические клетки обычно диплоидны (содержат двойной набор хромосом — 2n). В этих клетках хромосомы представлены парами. Диплоидный набор хромосом клеток конкретного вида живых организмов, характеризующийся числом, размером и формой хромосом, называют кариотипом. Хромосомы, принадлежащие к одной паре, называются гомологичными. Одна из них унаследована от отцовского организма, другая — от материнского. Хромосомы разных пар называются негомологичными. Они отличаются друг от друга размерами, формой, местами расположения первичных и вторичных перетяжек. Хромосомы, одинаковые у обоих полов, называются аутосомами. Хромосомы, по которым мужской и женский пол отличаются друг от друга, называются половыми, или гетерохромосомами. В клетке человека содержится 46 хромосом или 23 пары: 22 пары аутосом и 1 пара половых хромосом. Половые хромосомы обозначают как X- и Y-хромосомы. Женщины имеют две X-хромосомы, а мужчины одну Х- и одну Y-хромосому.
Половые клетки гаплоидны (содержат одинарный набор хромосом — n). В этих клетках хромосомы представлены в единственном числе и не имеют пары в виде гомологичной хромосомы.

Деление клеток

Хромосомный набор

Хромосомный набор — совокупность хромосом, содержащихся в ядре. В зависимости от хромосомного набора клетки бывают соматическими и половыми.

Соматические и половые клетки

Тип Хромосомный набор Характеристика
Соматические 2n Диплоидны — содержат двойной набор хромосом. В этих клетках хромосомы представлены парами. Хромосомы, принадлежащие к одной паре, называются гомологичными.
Половые 1n Гаплоидны — содержат одинарный набор хромосом. В этих клетках хромосомы представлены в единственном числе и не имеют пары в виде гомологичной хромосомы.

Клеточный цикл

Клеточный цикл (жизненный цикл клетки) — существование клетки от момента её возникновения в результате деления материнской клетки до её собственного деления или смерти. Продолжительность клеточного цикла зависит от типа клетки, её функционального состояния и условий среды. Клеточный цикл включает митотический цикл и период покоя.
В период покоя (G0) клетка выполняет свойственные ей функции и избирает дальнейшую судьбу — погибает либо возвращается в митотический цикл. В непрерывно размножающихся клетках клеточный цикл совпадает с митотическим циклом, а период покоя отсутствует.
Митотический цикл состоит из четырёх периодов: пресинтетического (постмитотического) — G1, синтетического — S, постсинтетического (премитотического) — G2, митоза — М. Первые три периода — это подготовка клетки к делению (интерфаза), четвёртый период — само деление (митоз).

Интерфаза — подготовка клетки к делению — состоит из трёх периодов.

Периоды интерфазы

Периоды Число хромосом и хроматид Процессы
Пресинтетический (G1) 2n2c Увеличивается объем цитоплазмы и количество органоидов, происходит рост клетки после предыдущего деления.
Синтетический (S) 2n4c Происходит удвоение генетического материала (репликация ДНК), синтез белковых молекул, с которыми связывается ДНК, и превращение каждой хромосомы в две хроматиды.
Постсинтетический (G2) 2n4c Усиливаются процессы биосинтеза, происходит деление митохондрий и хлоропластов, удваиваются центриоли.

Деление эукариотических клеток

Основой размножения и индивидуального развития организмов является деление клетки.
Эукариотические клетки имеют три способа деления:

  • амитоз (прямое деление),
  • митоз (непрямое деление),
  • мейоз (редукционное деление).

Амитоз — редкий способ деления клетки, характерный для стареющих или опухолевых клеток. При амитозе ядро делится путём перетяжки и равномерное распределение наследственного материала не обеспечивается. После амитоза клетка не способна вступать в митотическое деление.

Митоз

Митоз — тип клеточного деления, в результате которого дочерние клетки получают генетический материал, идентичный тому, который содержался в материнской клетке. В результате митоза из одной диплоидной клетки образуется две диплоидные, генетически идентичные материнской.

Митоз состоит из четырёх фаз.

Фазы митоза

Фазы Число хромосом и хроматид Процессы
Профаза 2n4c Хромосомы спирализуются, центриоли (у животных клеток) расходятся к полюсам клетки, распадается ядерная оболочка, исчезают ядрышки, и начинает формироваться веретено деления.
Метафаза 2n4c Хромосомы, состоящие из двух хроматид, прикрепляются своими центромерами (первичными перетяжками) к нитям веретена деления. При этом все они располагаются в экваториальной плоскости. Эта структура называется метафазной пластинкой.
Анафаза 2n2c Центромеры делятся, и нити веретена деления растягивают отделившиеся друг от друга хроматиды к противоположным полюсам. Теперь разделённые хроматиды называются дочерними хромосомами.
Телофаза 2n2c Дочерние хромосомы достигают полюсов клетки, деспирализуются, нити веретена деления разрушаются, вокруг хромосом образуется ядерная оболочка, ядрышки восстанавливаются. Два образовавшихся ядра генетически идентичны. После этого следует цитокинез (деление цитоплазмы), в результате которого образуются две дочерние клетки. Органоиды распределяются между ними более или менее равномерно.

Биологическое значение митоза:

  • достигается генетическая стабильность;
  • увеличивается число клеток в организме;
  • происходит рост организма;
  • возможны явления регенерации и бесполого размножения у некоторых организмов.

Мейоз

Мейоз — тип клеточного деления, сопровождающийся редукцией числа хромосом. В результате мейоза из одной диплоидной клетки образуется четыре гаплоидных, генетически отличающиеся от материнской. В ходе мейоза происходит два клеточных деления (первое и второе мейотические деления), причём удвоение числа хромосом происходит только перед первым делением.

Как и митоз, каждое из мейотических делений состоит из четырёх фаз.

Фазы мейоза

Биологическое значение мейоза:

  • основа полового размножения;
  • основа комбинативной изменчивости.

Деление прокариотических клеток

Определение и периодизация жизненного цикла клетки. Типы клеточной пролиферации. Митотический цикл и его протяжённость во времени. Интерфаза, её периоды и процессы, происходящие в них. Редупликация ДНК, её механизмы. Биологическое значение митоза.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 01.06.2016
Размер файла 11,8 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Закономерности существования клеток во времени

1. Жизненный цикл клетки: определение и периодизация

Клеточный цикл - это период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или смерти. Жизненный (клеточный) цикл включает: митотический цикл; период выполнения клеткой специальных функций; период покоя.

2. Типы клеточной пролиферации

Митотический (пролиферативный) цикл - комплекс взаимосвязанных и детерминированных хронологических событий, происходящих в процессе подготовки клетки к делению и на протяжении самого деления. В митотическом цикле выделяют два периода: интерфаза и собственно митоз (М). Интерфаза подразделяется на пресинтетический (G1), синтетический (S) и постсинтетический (G2) периоды. Собственно митоз включает четыре фазы: профазу, метафазу, анафазу и телофазу.

Физиологическая - естественное восстановление клеток и тканей в онтогенезе. Например, смена эритроцитов, кожного эпителия.

Репаративная - восстановление после повреждения или гибели клеток и тканей.

Патологическая - разрастание тканей не идентичных здоровым тканям. Например, разрастание рубцовой ткани на месте ожога, хряща - на месте перелома, размножение клеток соединительной ткани - на месте мышечной ткани сердца, раковая опухоль.

3. Периодизация митотического цикла и его протяжённость во времени

Периодизация митотического цикла:

а) репродуктивная фаза (интерфаза):

- пресинтетический (G1) период;

- синтетический (S) период;

- постсинтетический (G2) период;

б) разделительная фаза (митоз):

Продолжительность митотического цикла для большинства клеток составляет от 10 до 50 ч. Длительность цикла регулируется путем изменения продолжительности всех его периодов.

4. Интерфаза, её периоды и процессы, происходящие в них

- пресинтетический (G1) период - завершаются процессы телофазы предыдущего деления (восстанавливаются черты организации интерфазной клетки, завершается формирование ядрышка), из цитоплазмы в ядро поступает значительное количество белка, а в цитоплазме интенсифицируется его синтез, что способствует набору массы клетки; если дочерней клетке предстоит вступить в следующий митотический цикл, синтез приобретает направленный характер, осуществляя подготовку клетки к следующему периоды интерфазы;

- синтетический (S) период - происходит удвоение количества наследственного материала клетки, интенсивно образуются ДНК и белок, а количество гистонов удваивается;

- постсинтетический (G2) период - происходит интенсивный синтез РНК и особенно белка, завершается удвоение массы цитоплазмы по сравнению с началом интерфазы, происходит удвоение центриолей клеточного центра.

5. Редупликация ДНК, её механизмы

Репликация происходит полуконсервативным способом, т.е. обе цепи ДНК разделяются, и на каждой синтезируется комплементарная ей цепь. Репликация осуществляется под контролем ряда ферментов и протекает в несколько этапов.

Процесс начинается с раскручивания двойной спирали молекулы ДНК ферментом геликазой, затем цепи ДНК связываются с дестабилизирующими белками или SSB белками, которые растягивают цепи с разные стороны и удерживают их в виде вилки, она имеет название репликационной вилки. Перед репликационной вилкой возникает супернапряжение, которое снимается ферментом тополимеразой, она разрывает одну из цепей и эта цепь начинает своободно вращаться вокруг другой, после этого в дело вступает еще один фенмент - ДНК-полимераза, который осуществяет синтез цепи. Причем ДНК-полимераза работает только в одном направлении 5'--> 3'. Поскольку две цепи молекулы ДНК антипараллельны то есть направление 5'--> 3' у них противоположно, то ДНК-полимераза может непрерывно синтезировать только одну из двух цепей, которая называется лидирующей, отстающая же цепь синтезируется отдельными фрагментами РНК-полимеразы, которые называются фрагменты Оказаки синтез на отстающей цепи осуществяется по типу шитья "назад иголкой " затем эти фрагменты сшиваются ферментом лигаза и конечным итогом процесса репликации явялется образование двух, идентичных материнской, молекул ДНК.

Таблица 1 Периодизация митоза и характеристика его фаз

Процессы, происходящие в клетках

Динамика кол-ва хромосом(п) и ДНК(с), п и с -гаплоидное кол-во хромосом и ДНК

постмитотический (пресинтетический) период (G1)

Завершение формирования ядрышка, синтез белка, РНК, увеличение массы клетки; образование предшественников ДНК, ферментов, катализирующих реакцию редупликации.

Редупликация ДНК полуконсервативным способом; образование РНК и белка.

предмитотический (постсинтетический) период (G2)

Интенсивный синтез РНК и белка, деление митохондрий и хлоропластов, накопление энергии; завершение удвоения массы цитоплазмы, происходит удвоение центриолей.

Разрушение ядерной оболочки, исчезновение ядрышка. Хроматиды укорачиваются и утолщаются в результате их спирализации и конденсации. Формирование веретена деления и полюсов деления клетки.

Завершение формирования ахроматинового веретена, прикрепление ахроматиновых нитей к хромосомам. Хромосомы располагаются по экватору.

Снижение вязкости цитоплазмы; сокращение нитей веретена деления. Расхождение хрома- тид (сестринских хромосом) к полюсам клетки. Анафазное движение связано с удлинением центральных нитей веретена, раздвигающего митотические полюсы, и с укорочением хромосомальных микротрубочек митотического аппарата.

Образование двух дочерних ядер, деление цитоплазмы (цитотомия, цитокинез) - образование двух диплоидных клеток и окончательное разрушении митотического аппарата. Реконструкция дочерних ядер связана с деспирализацией хромосом, восстановлением ядрышка и ядерной оболочки. Цитокинез осуществляется путём образования клеточной пластинки (в растительной клетке) или путём образования перетяжки (в животной клетке).

6. Динамика количества хромосом и ДНК в митотическом цикле

Динамика количества хромосом в митотическом цикле:

а) репродуктивная фаза (интерфаза):

- пресинтетический (G1) период - 2n2c;

- синтетический (S) период - 2n4c (после удвоения);

- постсинтетический (G3) период - 2n4c;

б) разделительная фаза (митоз):

- анафаза - 4n4c (по 2n2c у каждого полюса клетки);

7. Биологическое значение митоза

Биологическое значение митоза состоит в том, что митоз обеспечивает наследственную передачу признаков и свойств в ряду поколений клеток при развитии многоклеточного организма. Благодаря точному и равномерному распределению хромосом при митозе все клетки единого организма генетически одинаковы.

Митотическое деление клеток лежит в основе всех форм бесполого размножения как у одноклеточных, так и у многоклеточных организмов. Митоз обусловливает важнейшие явления жизнедеятельности: рост, развитие и восстановление тканей и органов и бесполое размножение организмов.

8. Понятия об эндомитозе и политении

Эндомитоз - кратное увеличение числа хромосом без дальнейшего разделения клетки. Встречается в клетках печени животных характеризующихся повышенной функциональной деятельностью, а также в клетках слюнных желез некоторых насекомых.

Политения - кратное увеличение содержания ДНК в отдельных хромосомах при сохранении их диплоидного количества. И эндомитоз, и политения приводят к образованию полиплоидных клеток, отличающихся кратным увеличением объема наследственного материала.

9. Регуляция митотической активности клеток в организме

Большая группа гормонов -- ФСГ, АКТГ, меланотропин, пролактин, тиреотропин, эстрогены, андрогены, эритропоэтин -- обладает способностью стимулировать митозы в специализированных тканях-мишенях.

Существуют также данные и о других факторах, определяющих митотическую активность, причем гормоны, как видно, участвуют в механизмах регуляции и этих систем поддержания размеров нормальной клеточной популяции.

10. Изменения клеточной пролиферации в онтогенезе

Об интенсивности пролиферации судят по количеству митозов, приходящихся на 1000 подсчитанных клеток. Если учесть, что сам митоз в среднем длится около 1 ч, а весь митотаческий цикл в соматических клетках в среднем протекает 22--24 ч, то становится ясно, что для определения интенсивности обновления клеточного состава тканей необходимо подсчитать количество митозов в течение одних или нескольких суток. Оказалось, что количество делящихся клеток не одинаково в разные часы суток. Так был открыт суточный ритм клеточных делений.

Суточный ритм количества митозов обнаружен не только в нормальных, но и в опухолевых тканях. Он является отражением более общей закономерности, а именно ритмичности всех функций организма. Одна из современных областей биологии -- хронобиология -- изучает, в частности, механизмы регуляции суточных ритмов митотической активности, что имеет весьма важное значение для медицины. Существование самой суточной периодичности количества митозов указывает на регулируемость физиологической регенерации организмом. Кроме суточных существуют лунные и годичные циклы обновления тканей и органов.

клетка интерфаза редупликация митоз

11. Биологические ритмы митотической активности клетка

Выражением регуляции митоза в связи с взаимодействием организма и среды служит суточный ритм деления клеток. В большинстве органов ночных животных максимум митоза отмечается утром, а минимум -- в ночное время. У дневных животных и человека отмечается обратная динамика суточного ритма. Суточный ритм митоза -- следствие цепной реакции, в которую вовлекаются ритмические изменения внешней среды (освещённость, температура, режим питания и др.), ритм функциональной активности клеток и изменения процессов обмена веществ.

12. Понятие об амитозе. Его механизмы

Наряду с непрямым делением или митозом существует прямое деление - амитоз. Встречается прямое деление у прокариот, а также в больных, поврежденных (злокачественные опухоли) и некоторых специализированных эукариотических клетках (у растений в эндосперме, у животных - в печени, хрящах, роговице глаза, скелетных мышцах, фиброцитах, эпителии мочевого пузыря и т.д.). Нередко амитоз инициируется повреждением тканей разными агентами. При амитозе происходит разделение ядра путем перетяжки или путем образования перегородки без сложной перестройки наследственного материала, и затем деление цитоплазмы. Часто амитоз может не сопровождаться плазматомией и приводит лишь к увеличению числа ядер в клетке. Такой амитоз приводит к образованию многоядерных клеток опухолей. Вопросы полноценности амитоза как способа деления ядер, состояния хромосомного аппарата при амитозе и возможности смены амитоза митозом до настоящего времени не решены.

Подобные документы

Изучение процесса митоза как непрямого деления клетки и распространенного способа репродукции эукариотических клеток, его биологическое значение. Мейоз как редукционное деление клетки. Интерфаза, профаза, метафаза, анафаза и телофаза мейоза и митоза.

презентация [7,6 M], добавлен 21.02.2013

Клеточный цикл как период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или гибели. Принципы и методы его регуляции. Этапы и биологическое значение митоза, мейоза, обоснование данных процессов.

презентация [1,1 M], добавлен 07.12.2014

Рассмотрение компонентов ядра: кариолеммы, кариоплазмы, хроматина и ядрышек. Этапы клеточного цикла: гетерокаталитическая интерфаза, митотический цикл (автокаталитическая интерфаза) и период относительного покоя. Метафаза, анафаза и телофаза мейоза.

презентация [4,1 M], добавлен 20.09.2014

Характеристика жизненного цикла клетки, особенности периодов ее существования от деления до следующего деления или смерти. Стадии митоза, их продолжительность, сущность и роль амитоза. Биологическое значение мейоза, его основные этапы и разновидности.

лекция [169,6 K], добавлен 27.07.2013

Сущность клеточного цикла - периода жизни клетки от одного деления до другого или от деления до смерти. Биологическое значение митоза, его основные регуляторные механизмы. Два периода митотического деления. Схема активации циклинзависимой киназы.

Раздел ЕГЭ: 2.7. … Жизненный цикл клетки: интерфаза и митоз. Митоз — деление соматических клеток. Мейоз. Фазы митоза и мейоза. …

Клеточный цикл (жизненный цикл клетки) — время существования клетки от начала одного деления до начала следующего деления, состоит из интерфазы и собственно процесса деления.

Интерфаза — период между делениями, в котором происходят процессы роста и развития клетки, удвоения ДНК, синтеза белков и органических соединений.

жизненный цикл клетки

  1. Пресинтетический (постмитотический) период G1 — образуются рибосомы, синтезируется АТФ и все виды РНК, ферменты, делятся митохондрии, клетка растет (хромосомный набор — 2n2c).
  2. Синтетический период S — удвоение ДНК, вследствие которого к концу синтетического периода каждая хромосома состоит из двух хроматид, активно синтезируются структурные белки ДНК — гистоны (хромосомный набор — 2n4c).
  3. Постсинтетический (премитотический) период G2 — подготовка к последующему процессу — делению клетки, синтезируются белки и АТФ, удваиваются центриоли (хромосомный набор — 2n4c).

Примечание. В схемах деления гаплоидный набор хромосом обозначают буквой n , а молекул ДНК (т. е. хроматид ) — буквой с . Перед буквами указывают число гаплоидных наборов, например:

виды деления клеток

Митоз и амитоз

Митоз (непрямое деление клетки) — процесс равномерного распределения между дочерними клетками ядерного наследственного материала.

В результате митоза из одной материнской клетки с диплоидным (двойным) набором хромосом образуются две диплоидные дочерние клетки, содержащие полную генетическую информацию в том же объёме, что и родительская. Митоз обеспечивает сохранность наследственных признаков и увеличение количества клеток или одноклеточных организмов.

Стадии (фазы) митоза:

  • Профаза (2n4c) — спирализация хромосом, уменьшение их функциональной активности; репликация практически не идёт; разрушение оболочки ядра; образование веретена деления; прикрепление хромосом к нитям веретена деления.
  • Метафаза (2n4c) — спирализация хромосом достигает максимума; хромосомы утрачивают свою функциональную активность, образуют экваториальную пластинку.
  • Анафаза (4n4c) — деление центромер; расхождение по нитям веретена сестринских хромосом. Анафаза заканчивается, когда центромеры достигают полюсов клетки.
  • Телофаза (2n2c) — деспирализация хромосом; образование ядерной оболочки; деление цитоплазмы; между дочерними клетками формируется клеточная стенка.

митоз

Амитоз — прямое деление клетки, при котором ядро делится путём перешнуровки без предшествующей перестройки:

  • хромосомы не проходят цикла спирализации;
  • не образуется веретено деления;
  • клетка делится сразу после репликации ДНК;
  • ДНК между дочерними клетками распределяется неравномерно.

Амитоз проходит быстрее, чем митоз. В результате амитоза увеличивается количество дочерних клеток, но одновременно могут появляться двух- и многоядерные клетки. Амитоз характерен для одноклеточных и некоторых клеток многоклеточных организмов (клетки при патологических состояниях).

Мейоз

Мейоз — способ деления эукариотических клеток, в результате которого из одной материнской клетки образуются четыре дочерние с уменьшенным в два раза набором хромосом. На этапе интерфазы (предшествует мейозу) происходит репликация ДНК с последующим удвоением хромосом. Клетки с диплоидным набором хромосом, каждая состоит из одной хромосомной нити (хромонемы). После интерфазы хромосомы становятся удвоенными, а их диплоидное число 2n сохраняется. Центриоли в клеточном центре удваиваются.

Стадии (фазы) мейоза I (редукционное деление):

  1. Профаза I — спирализация хромосом; конъюгация; кроссинговер; хроматиды начинают расходиться; биваленты обособляются и располагаются по периферии ядра; ядрышко исчезает (хромосомный набор клетки — 2n4c).
  2. Метафаза I — начинается с момента разрушения ядерной оболочки; биваленты располагаются в экваториальной плоскости, прикреплённые к нитям веретена деления (хромосомный набор клетки — 2n4c).
  3. Анафаза I — центромеры каждой пары гомологичных хромосом разъединяются, и к полюсам клетки отходят гомологичные хромосомы, состоящие из двух хроматид (хромосомный набор клетки к концу анафазы: у полюсов — 1n2c, в клетке — 2n4c).
  4. Телофаза I — начинается с достижения хромосомами полюсов клетки (у каждого полюса — n хромосом): происходит редукция числа хромосом; образуется ядерная оболочка; делится цитоплазма; формируется клеточная стенка (хромосомный набор каждой из образовавшихся клеток — 1n2c).

Завершение мейоза I сопровождается образованием двух дочерних клеток, содержащих гаплоидный набор хромосом, которые в свою очередь остаются удвоенными.

Во время кратковременной интерфазы (интеркинеза) не происходит репликация ДНК, нет удвоения хромосомы, две дочерние клетки вступают во второе деление мейоза.

Стадии (фазы) мейоза II (по типу митоза — равное деление):

  1. Профаза II — непродолжительная, так как хроматиды спирализованы (хромосомный набор клетки — 1n2c).
  2. Метафаза II — образуются экваториальная пластинка, хромосомы, состоящие из двух хроматид, центромерными участками прикрепляются к нитям веретена деления (хромосомный набор клетки — 1n2c).
  3. Анафаза II — хроматиды расходятся к полюсам клетки (хромосомный набор у каждого полюса — 1n1c , в клетке — 2n2c).
  4. Телофаза II — образуется ядерная оболочка; делится цитоплазма; формируется клеточная стенка. Образуются четыре гаплоидные клетки 1n1c (хромосомные наборы образовавшихся клеток не идентичны).

мейоз

Мейоз II проходит по типу митоза. В результате мейоза из одной клетки с диплоидным набором хромосом после двух последовательных делений образуются 4n клетки.

Черты мейоза

  1. Редукция числа хромосом (если бы не было уменьшения числа хромосом при образовании половых клеток, то из поколения в поколение их количество возрастало бы и был бы утрачен один из важнейших признаков каждого вида — постоянство числа хромосом),
  2. Конъюгация (сближение и переплетение) гомологичных хромосом.
  3. Рекомбинация генетического материала, обусловленная случайным расхождением материнских и отцовских гомологичных хромо сом в дочерние клетки, а также кроссинговером (процессом обмена участками гомологичных хромосом).

Таким образом, мейоз — непрерывный процесс, состоящий из двух последовательных делений ядра и цитоплазмы, перед которыми репликация происходит только один раз. Энергия и вещества, необходимые для обоих делений мейоза, накапливаются во время интерфазы I.

Наборы хромосом и количество ДНК в клетке (мейоз)

Наборы хромосом и количество ДНК в клетке (мейоз)

Вы можете изучить и скачать доклад-презентацию на тему Закономерности существования клетки во времени. Презентация на заданную тему содержит 24 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!

500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500

Актуальность Митотический цикл является механизмом воспроизведения клеточной организации эукариотов в индивидуальном развитии. В ходе цикла обеспечивается образование клеток, равноценных по объему и содержанию наследственной информации. Нарушения различных этапов митотического цикла могут наблюдаться при некоторых патологиях, в частности, при злокачественных опухолях. Эти знания необходимы врачам для изучения вопросов диагностики и лечения заболеваний такого рода.

Жизненный цикл клетки Закономерные изменения структурно-функциональных характеристик клетки во времени составляют содержание жизненного цикла клетки. Клеточный цикл – это период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или смерти

Профаза 2n4c Конденсация хроматина Ядерная оболочка и ядрышко исчезают Центриоли клеточного центра расходятся по полюсам, поляризуя клетку и образуя будущие полюса деления Из центросферы образуется веретено деления

Метафаза 2n4c Максимально конденсированные хромосомы располагаются в экваториальной области, образуя метафазную пластинку Каждая хромосома состоит их 2х сестринских хроматид с общей центромерой Нити веретена деления прикрепляются к центромерам этих хромосом

Анафаза 4n4c Центромерные области удваиваются Нити веретена деления сокращаются и сестринские хромосомы расходятся по противоположным полюсам

Телофаза 2n2c Происходит деконденсация хромосом Образуются ядрышки, ядерная оболочка Веретено деления разрушается

Нетипичные формы митоза Амитоз — это прямое деление ядра. При этом сохраняется морфология ядра, видны ядрышко и ядерная мембрана. Хромосомы не видны, и их равномерного распределения не происходит. Ядро делится на две относительно равные части без образования митотического аппарата (системы микротрубочек, центриолей, структурированных хромосом). Если при этом деление заканчивается, возникает двухъядерная клетка

Нетипичные формы митоза Эндомитоз - при этом типе деления после репликации ДНК не происходит разделения хромосом на две дочерние хроматиды. Это приводит к увеличению числа хромосом в клетке иногда в десятки раз по сравнению с диплоидным набором. Так возникают полиплоидные клетки. В норме этот процесс имеет место в интенсивно функционирующих тканях, например, в печени, где полиплоидные клетки встречаются очень часто. Однако с генетической точки зрения эндомитоз представляет собой геномную соматическую мутацию.

Нетипичные формы митоза Политения - кратное увеличение содержания ДНК (хромонем) в хромосомах без увеличения содержания самих хромосом. При этом количество хромонем может достигать 1000 и более, хромосомы при этом приобретают гигантские размеры. При политении выпадают все фазы митотического цикла, кроме репродукции первичных нитей ДНК.

Биологическое значение митоза Благодаря точному и равномерному распределению хромосом при митозе все клетки единого организма генетически одинаковы Митотическое деление клеток лежит в основе всех форм бесполого размножения как у одноклеточных, так и у многоклеточных организмов Митоз обусловливает важнейшие явления жизнедеятельности: рост, эмбриональное развитие, восстановление тканей и органов, бесполое размножение организмов.

Задания для подготовки к теме №5 Оформить протокол практического занятия: Зарисовать препараты: Митоз растительных клеток (в корешке лука) Митоз животных клеток (культура раковых клеток человека) Радиоавтографы клеток культуры ткани

Вопросы для самоподготовки к теме №6 Размножение, как универсальная форма живого. Характеристика типов размножения, эволюционные преимущества и недостатки каждого из них. Формы бесполого размножения, их характеристика. Формы полового размножения, их характеристика. Эволюция форм полового размножения. Половой процесс, как механизм обмена наследственной информацией внутри вида. Половые клетки, их морфологическая характеристика. Партеногенез и его биологическое значение. Чередование поколений с бесполым и половым размножением. Половой диморфизм.

Демонстрационный вариант теста 1. Спорообразование у бактерий является: а) формой полового размножения; б) формой бесполого размножения; в) способом переживания неблагоприятных условий; г) формой партеногенеза. 2. В гамете человека число половых хромосом равно: а) 1; б) 2; в) 22; г) 23. 3. Шизогония (множественное деление) встречается в жизненном цикле: а) аскариды; б) малярийного плазмодия; в) моллюска; г) дождевого червя. 4. Своеобразная форма полового процесса у пчел, муравьев, тлей, дафний: а) коньюгация; б) партеногенез; в) копуляция; г) почкование. 5. Акросома - это видоизмененный: а) клеточный центр; б) жгутик; в) комплекс Гольджи; г) цитоскелет. 6. Развитие яйца на основе только женского ядерного материала: а) партеногенез; б) гиногенез; в) андрогенез; г) филогенез.

Демонстрационный вариант теста 7. Если мужские и женские половые клетки развиваются в одной особи, то организм называется: а) гинадоморфным; б) гермафродитным; в) зигоморфным; г) мутагенным. 8. Укажите соответствие: Типы размножения Формы размножения: 1. Половой процесс а) копуляция; 2. Бесполое. б) партеногенез; в) спорообразование; г) шизогония д) почкование; 1. -,-,-. 2.-,-,-. е) коньюгация. 9. Укажите форму бесполого размножения у эвглены зеленой: а) почкование; б) фрагментация; в) простое митотическое деление; г) шизогония. 10. Морфология гамет на первом этапе эволюции форм полового размножения: а) изогамия; б) оогамия; в) анизогамия; г) мерогамия.

Читайте также: