Взаимосвязь между классами органических соединений кратко

Обновлено: 04.07.2024

Изучая строение, свойства и методы получения органических веществ различных классов можно прийти к выводу, что существует определенная взаимосвязь органических соединений. Такая взаимосвязь, действительно, имеет место и носит название генетической связи между классами органических веществ. Рассмотрим генетическую связь как можно большего числа различных классов органических веществ:

И в качестве наглядного примера покажем генетический ряд этана:

Можно ещё от алкинов и предельных многоатомных спиртов сделать связь с кетонами со знаком обратимости

Добрый день! В рамках ЕГЭ не умеем кетон в алкин превращать в одну стадию.

Органическая химия 10 класс. Ключевые слова конспекта: Генетическая связь между классами органических соединений

Материальный мир, в котором мы живём и маленькой частичкой которого являемся, един и в то же время бесконечно разнообразен. Единство и многообразие химических веществ наиболее ярко проявляется в генетической связи веществ.

При изучении свойств органических соединений мы часто встречались с примерами взаимопревращений соединений различных классов. Так, с помощью реакции дегидрирования из алкана можно получить алкен, реакцией гидратации алкен превратить в спирт, спирт окислить до альдегида и далее до карбоновой кислоты и т. д. Получается целая цепь превращений веществ, которые объединяет одинаковое число атомов углерода в молекуле.


Генетическая связь органических веществ изображена на схеме, в которой стрелками указаны возможные переходы, осуществляемые с помощью одной реакции (в одну стадию).

Рассмотрим генетическую связь органических соединений на примере веществ различных классов, содержащих в молекулах два атома углерода.


Ниже приведены уравнения шести реакций, которые иллюстрируют цепь превращений, изображённую на рисунке.



В результате фотосинтеза из двух неорганических веществ — углекислого газа и воды — образуется органическое соединение глюкоза и выделяется кислород:

Знание генетической связи необходимо химикам для получения веществ с заданными свойствами. Генетическая связь между веществами разных классов позволяет представить себе миллионы незримых нитей, которыми связаны разнообразные вещества живой природы.

1)Генетические ряды кислородосодержащих органических веществ.

2)Генетические ряды аминов, аминокислот.

3)Единство веществ мира

Единство и многообразие химических веществ этого мира наиболее ярко проявляется в генетической связи веществ, которая отражается в так называемых генетических рядах. Выделим наиболее характерные признаки таких рядов:

1. Все вещества этого ряда должны быть образованы одним химическим элементом.

2. Вещества, образованные одним и тем же элементом, должны принадлежать к различным классам, то есть отражать разные формы его существования.

3. Вещества, образующие генетический ряд одного элемента, должны быть связаны взаимопревращениями. По этому признаку можно различать полные и неполные генетические ряды.

Обобщая сказанное выше, можно дать следующее определение генетического ряда:
Генетическим называют ряд веществ представителей разных классов, являющихся соединениями одною химического элемента, связанных взаимопревращениями и отражающих общность происхождения этих веществ или их генезис.

Генетическая связь — понятие более общее, чем генетический ряд. который является пусть и ярким, но частным проявлением этой связи, которая реализуется при любых взаимных превращениях веществ..

Для характеристики генетической связи неорганических веществ мы рассмотрим три разновидности генетических рядов:
1. Генетический ряд металла. Наиболее богат ряд металла, у которого проявляются разные степени окисления. В качестве примера рассмотрим генетический ряд железа со степенями окисления +2 и +3:


II. Генетический ряд неметалла. Аналогично ряду металла более богат связями ряд неметалла с разными степенями окисления, например генетический ряд серы со степенями окисления +4 и +6.
Затруднение может вызвать лишь последний переход. Если вы выполняете задания такого типа, то руководствуйтесь правилом: чтобы получить простое вещество из окнелгнного соединения элементе, нужно взять для атой цели самое восстановленное его соединение, например летучее водородное соединение неметалла.


III. Генетический ряд металла, которому соответствуют амфотерные оксид и гидроксид, очень богат связями. так как они проявляют в зависимости от условий то свойства кислоты, то свойства основания. Например, рассмотрим генетический ряд цинка:


В органической химии также следует различать более общее понятие — генетическая связь и более частное понятие генетический ряд. Если основу генетического ряда в неорганической химии составляют вещества, образованные одним химическим элементом, то основу генетического ряда в органической химии (химии углеродных соединений) составляют вещества с одинаковым числом атомов углерода в молекуле. Рассмотрим генетический ряд органических веществ, в который включим наибольшее число классов соединений:


Каждой цифре над стрелкой соответствует определенное уравнение реакции (уравнение обратной реакции обозначено цифрой со штрихом):


Под определение генетического ряда не подходит последний переход - образуется продукт не с двумя, и с множеством углеродных атомов, но зато с его помощью наиболее многообразно представлены генетические связи. И наконец, приведем примеры генетической связи между классами органических и неорганических соединений, которые доказывают единство мира веществ, где нет деления на органические и неорганические вещества.
Воспользуемся возможностью повторить названия реакций, соответствующих предложенным переходам:1. Обжиг известняка:




1)Генетические ряды кислородосодержащих органических веществ.

2)Генетические ряды аминов, аминокислот.

3)Единство веществ мира

Единство и многообразие химических веществ этого мира наиболее ярко проявляется в генетической связи веществ, которая отражается в так называемых генетических рядах. Выделим наиболее характерные признаки таких рядов:

1. Все вещества этого ряда должны быть образованы одним химическим элементом.

2. Вещества, образованные одним и тем же элементом, должны принадлежать к различным классам, то есть отражать разные формы его существования.

3. Вещества, образующие генетический ряд одного элемента, должны быть связаны взаимопревращениями. По этому признаку можно различать полные и неполные генетические ряды.




Обобщая сказанное выше, можно дать следующее определение генетического ряда:
Генетическим называют ряд веществ представителей разных классов, являющихся соединениями одною химического элемента, связанных взаимопревращениями и отражающих общность происхождения этих веществ или их генезис.

Генетическая связь — понятие более общее, чем генетический ряд. который является пусть и ярким, но частным проявлением этой связи, которая реализуется при любых взаимных превращениях веществ..

Для характеристики генетической связи неорганических веществ мы рассмотрим три разновидности генетических рядов:
1. Генетический ряд металла. Наиболее богат ряд металла, у которого проявляются разные степени окисления. В качестве примера рассмотрим генетический ряд железа со степенями окисления +2 и +3:


II. Генетический ряд неметалла. Аналогично ряду металла более богат связями ряд неметалла с разными степенями окисления, например генетический ряд серы со степенями окисления +4 и +6.
Затруднение может вызвать лишь последний переход. Если вы выполняете задания такого типа, то руководствуйтесь правилом: чтобы получить простое вещество из окнелгнного соединения элементе, нужно взять для атой цели самое восстановленное его соединение, например летучее водородное соединение неметалла.


III. Генетический ряд металла, которому соответствуют амфотерные оксид и гидроксид, очень богат связями. так как они проявляют в зависимости от условий то свойства кислоты, то свойства основания. Например, рассмотрим генетический ряд цинка:


В органической химии также следует различать более общее понятие — генетическая связь и более частное понятие генетический ряд. Если основу генетического ряда в неорганической химии составляют вещества, образованные одним химическим элементом, то основу генетического ряда в органической химии (химии углеродных соединений) составляют вещества с одинаковым числом атомов углерода в молекуле. Рассмотрим генетический ряд органических веществ, в который включим наибольшее число классов соединений:


Каждой цифре над стрелкой соответствует определенное уравнение реакции (уравнение обратной реакции обозначено цифрой со штрихом):


Под определение генетического ряда не подходит последний переход - образуется продукт не с двумя, и с множеством углеродных атомов, но зато с его помощью наиболее многообразно представлены генетические связи. И наконец, приведем примеры генетической связи между классами органических и неорганических соединений, которые доказывают единство мира веществ, где нет деления на органические и неорганические вещества.
Воспользуемся возможностью повторить названия реакций, соответствующих предложенным переходам:1. Обжиг известняка:

Путем изучения молекулярного строения и свойств органических веществ установлена непосредственная взаимосвязь между органическими соединениями. Из этого следует, что путем последовательных преобразований вещества одного органического класса преобразуются в соединения другого класса. Эта связь между веществами, образованная вследствие превращений и указывающая на единое происхождение, принято называть генетической связью.

Схематично отобразить генетическую связь можно многими вариантами. Например:

Пример генетической связи

Взаимосвязь органических соединений

Взаимосвязь между органическими веществами (спирты, карбоновые кислоты и другие углеводороды) дает возможность проследить сложность строения веществ. Вследствие этого происходит появление новых классов и, таким образом, многообразие органических соединений не исчерпывает себя.

Читайте также: