Высокомолекулярные вещества это кратко

Обновлено: 05.07.2024

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ ( полимеры) - характеризуются мол. массой от неск. тысяч до неск. (иногда многих) миллионов.

В состав молекул высокомолекулярных соединений (макромолекул) входят тысячи атомов, соединенных хим. связями. Любые атом или группа атомов, входящие в состав цепи полимера или олигомера, наз. составным звеном. Наим. составное звено, повторением к-рого м. б. описано строение регулярного полимера, наз. составным повторяющимся звеном. Составное звено, к-рое образуется из одной молекулы мономера при полимеризации, наз. мономерным звеном (ранее иногда наз. элементарным звеном). Напр., в полиэтилене [—СН2СН2—]n повторяющееся составное звено - СН2, мономерное -СН2СН2. Название линейного полимера образуют прибавлением приставки "поли" (в случае неорганич. полимеров -"катена-поли"): а) к названию составного повторяющегося звена, заключенному в скобки (систематич. названия); б) к названию мономера, из к-рого получен полимер (полусистематич. названия, к-рые ИЮПАК рекомендует использовать для обозначения наиб. часто применяемых полимеров).

Классификация. По происхождению высокомолекулярные соединения делят на природные, или биополимеры (напр., белки, нуклеиновые кислоты, полисахариды), и синтетические (напр., полиэтилен, полистирол, феноло-алъдегидные смолы). В зависимости от расположения в макромолекуле атомов и атомных групп различают: 1) линейные высокомолекулярные соединения, макромолекулы к-рых представляют собой открытую, линейную, цепь (напр., каучук натуральный)или вытянутую в линию последовательность циклов (напр., целлюлоза); 2)разветвленные высокомолекулярные соединения, макромолекулы к-рых имеют форму линейной цепи с ответвлениями (напр., амилопектин); 3) сетчатые высокомолекулярные соединения - трехмерные сетки, образованные отрезками высокомолекулярных соединений цепного строения (напр., отвержденные феноло-альдегидные смолы, вулканизов. каучук).

Макромолекулы одного и того же хим. состава м. б. построены из разл. стереоизомеров звена. Высокомолекулярные соединения, молекулы к-рых состоят из одинаковых стереоизомеров или из разл. стереоизомеров, чередующихся в цепи с определенной периодичностью, наз. стереорегулярными. Bысокомолекулярные соединения, в к-рых каждый или нек-рые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, наз. стереоблоксополимерами. В нестереорегулярных, или атактических, высокомолекулярных соединениях звенья разл. пространств. конфигурации чередуются в цепи произвольно.

По хим. составу макромолекулы различают гомополимеры (полимер образован из одного мономера, напр. полиэтилен) и сополимеры (полимер образован по меньшей мере из двух разл. мономеров, напр. бутадиен-стирольный каучук). Bысокомолекулярные соединения, состоящие из одинаковых мономерных звеньев, но различающиеся по мол. массе, наз. полимергомологами.

Сополимеры в зависимости от характера распределения разл. звеньев в макромолекуле делят на регулярные и нерегулярные. В регулярных макромолекулах наблюдается определенная периодичность распределения звеньев. Простейшие примеры - чередующиеся сополимеры стирола с малеиновым ангидридом или нек-рых олефинов с акриловыми мономерами, построенные по типу . АВАВАВАВ. где А и В - мономерные звенья. Более сложные регулярные последовательности чередования звеньев реализованы, напр., в полипептидах - сополимерах аминокислот. Для нерегулярных сополимеров характерно случайное, или статистическое (т.е. подчиняющееся определенной статистике, но не регулярное), распределение звеньев; оно наблюдается у мн. синтетич. сополимеров. В белках нерегулярные последовательности звеньев задаются генетич. кодом и определяют биохим. и биол. специфичность этих соединений. Сополимеры, в к-рых достаточно длинные непрерывные последовательности, образованные каждым из звеньев, сменяют друг друга в пределах макромолекулы, наз. блоксополимерами. Последние наз. регулярными, если длины блоков и их чередование подчиняются определенной периодичности. При уменьшении длины блоков различие между блоксополимерами и статистич. сополимерами постепенно утрачивается. К внутр. (неконцевым) звеньям макромолекулярной цепи одного хим. состава или строения м. б. присоединены одна или неск. цепей другого состава или строения; такие сополимеры наз. привитыми.

В зависимости от состава основной (главной) цепи макромолекулы все высокомолекулярные соединения делят на два больших класса: гомоцепные, основные цепи к-рых построены из одинаковых атомов, и гетероцепные, в основной цепи к-рых содержатся атомы разных элементов, чаще всего С, N, Si, P. Среди гомоцепных высокомолекулярных соединений наиб. распространены карбоцепные (главные цепи состоят только из атомов углерода), напр. полиэтилен, полиметилметакрилат, политетрафторэтилен, гуттаперча. Примеры гетероцепных высокомолекулярных соединений - полиэфиры (напр., полиэтиленоксид, полиэтилентерефталат, поликарбонаты), полиамиды, кремнийорганические полимеры, мочевино-формалъдегидные смолы, белки, целлюлоза. Высокомолекулярные соединения в макромолекулы к-рых наряду с углеводородными группами входят атомы неорганогенных элементов, наз, элементоорганическими. В полимерах, содержащих атомы металла (напр., Zn, Mg, Си), обычные ковалентные связи могут сочетаться с координационными. Отдельная группа высокомолекулярных соединений - неорганические полимеры (напр., полифосфазены), макромолекулы к-рых построены из неорг. главных цепей и не содержат орг. боковых радикалов (обрамляющих групп).

Свойства и основные характеристики. высокомолекулярных соединений обладают специфич. комплексом физ.-хим. и мех. св-в. Важнейшие из них: 1) способность образовывать высокопрочные анизотропные волокна и пленки; 2)способность к большим обратимым, т. наз. высокоэластическим, деформациям; 3) способность набухать перед растворением и образовывать высоковязкие р-ры. Эти св-ва обусловлены высокой мол. массой высокомолекулярных соединений, цепным строением макромолекул, их гибкостью и наиб. полно выражены у линейных высокомолекулярных соединений. По мере перехода от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к частым сетчатым структурам комплекс характерных св-в высокомолекулярных соединений становится все менее выраженным. Трехмерные высокомолекулярные соединения с очень большой частотой сетки нерастворимы, неплавки и неспособны к высокоэластич. деформациям.

По фазовому состоянию высокомолекулярные соединения могут быть кристаллическими или аморфными. Необходимое условие кристаллизации - регулярность достаточно длинных участков молекулярной цепи. В таких высокомолекулярных соединениях возможно образование разнообразных кристаллич. форм (фибрилл, сферолитов, монокристаллов и др.Х тип к-рых во многом определяет св-ва полимерного материала. Аморфные высокомолекулярные соединения помимо высокоэластического могут находиться в двух других физ. состояниях: стеклообразном состоянии и вязкотекучем состоянии. высокомолекулярные соединения, к-рые переходят из высокоэластич. состояния в стеклообразное при т-рах ниже комнатной, относят к эластомерам, при более высокой т-ре-к пластикам. Кристаллические высокомолекулярные соединения обычно являются пластиками.

Св-ва отдельных высокомолекулярных соединений определяются хим. составом, строением, конформацией и взаимным расположением макромолекул (надмолекулярной структурой). В зависимости от этих факторов св-ва высокомолекулярных соединений могут изменяться в широких пределах. Так, цис-1,4-полибутадиен, построенный из гибких углеводородных цепей, при т-рах ок. 20 °С представляет собой эластичный материал, к-рый ниже — 90 °С переходит в стеклообразное состояние, тогда как полиметилметакрилат, построенный из более жестких цепей, при т-рах ок. 20°С - твердый стеклообразный продукт, переходящий в высокоэластич. состояние лишь выше 100°С. Целлюлоза - полимер с очень жесткими цепями, соединенными межмол. водородными связями,-вообще не может существовать в высокоэластич. состоянии до т-ры ее разложения. Большие различия в св-вах высокомолекулярных соединений могут наблюдаться даже в том случае, когда различия в строении макромолекул на первый взгляд и невелики. Так, изотактич. полипропилен - кристаллическое вещество, плавящееся ок. 175°С, а атактический вообще не способен кристаллизоваться и размягчается ок. — 40 °С. В данном случае различия в микроструктуре макромолекулярной цепи определяют качеств. различия и в характере надмолекулярной структуры.

Bысокомолекулярные соединения могут вступать в следующие р-ции: 1) соединение макромолекул поперечными хим. связями (т. наз. сшивание), происходящее, напр., при вулканизации каучуков, отверждетш реактопластов, дублении кож; 2) распад молекулярных цепей на более короткие фрагменты; 3) р-ции макромолекул с низкомол. соединениями, при к-рых изменяется природа боковых функц. групп, но сохраняются длина и строение скелета осн. цепи (т. наз. полимераналогичные превращения), напр. омыление поливинилацетата с образованием поливинилового спирта; высокомолекулярные соединения, образующиеся в результате таких р-ций, наз. полимераналогами; 4) внутримолекулярные р-ции между функц. группами одной макромолекулы, напр. внутримолекулярная циклизация. Гетероцепные высокомолекулярные соединения в отличие от карбоцепных обычно относительно легко гидролизуются. Скорость р-ций высокомолекулярных соединений, особенно сетчатых, с низкомол. в-вами часто лимитируется скоростью диффузии низкомол. в-ва в фазу высокомолекулярного соединения. В кинетич. области (напр., в разб. р-ре) скорость взаимод. макромолекул с низкомол. в-вами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным р-циям между функц. группами, принадлежащими одной цепи.

Нек-рые св-ва высокомолекулярных соединений, напр. р-римость, способность к вязкому течению, стабильность, существенно зависят от небольших кол-в примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимер из р-римого в полностью нерастворимый, достаточно одной-двух поперечных связей на одну макромолекулу.

Важнейшие характеристики высокомолекулярных соединений - хим. состав, мол. масса, ММР, стереохим. строение, степень разветвленности и гибкость макромолекулярных цепей, распределение по типам функциональности.

Получение. Прир. высокомолекулярных соединений, образующиеся в клетках живых организмов в результате биосинтеза, м. б. выделены из растит. и животного сырья с помощью экстрагирования, фракционного осаждения и др. методов. Основные пути получения синтетических высокомолекулярных соединений - полимеризация и поликонденсация.

Карбоцепные высокомолекулярные соединения обычно синтезируют полимеризацией мономеров по кратным углерод-углеродным связям. Гетероцепные высокомолекулярные соединения получают поликонденсацией, а также полимеризацией мономеров по кратным гетероатомным связям типа С=О, N=C—О,(напр., альдегиды, изоцианаты, нитрилы) или с раскрытием гетероциклич. группировок (напр., окисей олефинов, лактамов).

Применение. Мех. прочность, эластичность, электроизоляц. и др. ценные техн. св-ва высокомолекулярных соединений обусловливают их широкое применение в разл. отраслях народного хозяйства и в быту. высокомолекулярные соединения - основа пластических масс, волокон химических, резины, лакокрасочных материалов, клеев, герметиков, ионообменных смол. Биополимеры составляют основу всех живых организмов и участвуют во всех процессах жизнедеятельности.

Историческая справка. Термин "полимерия" введен в науку Й. Берцелиусом в 1833 для обозначения особого вида изомерии, при к-рой в-ва одинакового состава имеют разл. мол. массу, напр. этилен и бутилен, кислород и озон (т. обр., содержание термина не соответствовало совр. представлениям о полимерах).

Ряд B.C. был получен, по-видимому, еще в 1-й пол. 19 в. Однако в то время их рассматривали как нежелат. побочные продукты "осмоления". Первые упоминания о син-тетич. B.C. относятся к 1838 (поливинилхлорид) и 1839 (полистирол).

До кон. 20-х гг. 20 в. наука о В. с. развивалась гл. обр. в русле интенсивного поиска способов синтеза каучука (Г. Бушарда, У. Тилден, И.Л.Кондаков, С, В. Лебедев. и др.). В 30-х гг. было доказано существование свободнорадикального (Г. Штаудингер и др.) и ионного (Ф. Уитмор и др.) механизмов полимеризаций. Большую роль в развитии представлений о поликонденсации сыграли работы У. Карозерса, к-рый ввел в химию высокомолекулярных соединений понятия функциональности мономера, линейной и трехмерной поликонденсации. Он же в 1931 синтезировал совместно с Дж. А. Ньюландом хлоропреновый каучук (неопрен) и в 1937 разработал метод получения полиамида для формования волокна типа найлон.

Автором принципиально новых представлений о высокомолекулярных соединениях как о в-вах, построенных из макромолекул, был Штаудингер. Победа его идей (к нач. 40-х гг. 20 в.) привела к тому, что высокомолекулярные соединения стали рассматривать как качественно новый объект исследования химии и физики. В 40-60-х гг. значит. вклад в исследование закономерностей поликонденсации, теорию р-ров высокомолекулярных соединений и статистич. механику макромолекул внес П. Флори.

Развитие химии и физики В. с. в СССР связано с именами: С. С. Медведева, к-рый в 30-х гг. впервые установил свободнорадикальную природу активных центров роста цепи при инициировании полимеризации пероксидами и сформулировал понятие передачи цепи; А.П. Александрова, впервые развившего в 30-х гг. представления о релаксац. природе деформации полимерных тел; В. А. Каргина, установившего в кон. 30-х гг. факт термодинамич. обратимости р-ров полимеров и сформулировавшего систему представлений о трех физ. состояниях аморфных высокомолекулярных соединений; К. А. Андрианова, впервые синтезировавшего в 1937 полиорганосилоксаны, и др.

Исп. литература:
Энциклопедия полимеров, т. 1-3, М., 1972-77;
Стрепихеев А. А., Деревицкая В.А., Основы химии высокомолекулярных соединений, 3 изд., М., 1976;
Ван Кревелен Д.В., Свойства и химическое строение полимеров, пер. с англ., М., 1976; Шур A.M., Высокомолекулярные соединения, 3 изд., М., 1981;
Encyclopedia of polymer science and technology, v. 1-16, N. Y.-[a. o.j, 1964-72, Suppl. v. 1-2, 1976-77. B.A. Кабанов.

А | Б | В | Г | Д | Е | Ё | Ж | З | И | Й | К | Л | М | Н | О | П | Р | С | Т | У | Ф | Х | Ц | Ч | Ш | Щ | Ы | Э | Ю | Я

Приглашаем специалистов к сотрудничеству в качестве внештатных авторов и консультантов!

Мониторинг цен на полимеры

Выставки и конференции
Государство и бизнес
Литература и образование
Новые материалы и марки
Обзоры и анализ рынков
Обзоры СМИ
Оборудование
Объемы и мощности
Отходы и экология
Персоны и назначения
Пресс-релизы, форс-мажоры
Разработки изделий
Слияния и новые имена
Цены на сырье и изделия

(полимеры), характеризуются мол. массой от неск. тысяч до неск. (иногда многих) миллионов. В состав молекул В. с. ( макромолекул )входят тысячи атомов, соединенных хим. связями. Любые атом или группа атомов, входящие в состав цепи полимера или олигомера, наз. составным звеном. Наим. составное звено, повторением к-рого м. б. описано строение регулярного (см. ниже) полимера, наз. составным повторяющимся звеном. Составное звено, к-рое образуется из одной молекулы мономера при полимеризации, наз. мономерным звеном (ранее иногда наз. элементарным звеном). Напр., в полиэтилене [ЧСН 2 СН 2 Ч]n повторяющееся составное звено - СН 2, мономерное -СН 2 СН 2.


Название линейного полимера образуют прибавлением приставки "поли" (в случае неорганич. полимеров -"кате на-поли"): а) к названию составного повторяющегося звена, заключенному в скобки (систематич. названия); б) к названию мономера, из к-рого получен полимер (полусистематич. названия, к-рые ИЮПАК рекомендует использовать для обозначения наиб. часто применяемых полимеров). Название составного повторяющегося звена образуют по правилам номенклатуры химической. напр. (первыми указаны полусистематич. названия):

Классификация. По происхождению В. с. делят на природные, или биополимеры (напр., белки, нуклеиновые кислоты, полисахариды), и синтетические (напр., полиэтилен, полистирол, феноло-алъдегидные смолы). В зависимости от расположения в макромолекуле атомов и атомных групп различают: 1) линейные B.C., макромолекулы к-рых представляют собой открытую, линейную, цепь (напр., каучук натуральный )или вытянутую в линию последовательность циклов (напр., целлюлоза); 2 )разветвленные B.C., макромолекулы к-рых имеют форму линейной цепи с ответвлениями (напр., амилопектин); 3) сетчатые В. с. - трехмерные сетки, образованные отрезками B.C. цепного строения (напр., отвержденные феноло-альдегидные смолы, вулканизов. каучук). См. также Сетчатые полимеры.

Макромолекулы одного и того же хим. состава м. б. построены из разл. стереоизомеров звена. В. с., молекулы к-рых состоят из одинаковых стереоизомеров или из разл. стереоизомеров, чередующихся в цепи с определенной периодичностью, наз. стереорегулярными. B.C., в к-рых каждый или нек-рые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, наз. стереоблоксополимерами. В нестереорегулярных, или атактических, B.C. звенья разл. пространств. конфигурации чередуются в цепи произвольно. См. также Стереорегулярные полимеры.

По хим. составу макромолекулы различают гомополимеры (полимер образован из одного мономера, напр. полиэтилен) и сополимеры (полимер образован по меньшей мере из двух разл. мономеров, напр. бутадиен-стирольный каучук). В. с., состоящие из одинаковых мономерных звеньев, но различающиеся по мол. массе, наз. полимергомологами.


Сополимеры в зависимости от характера распределения разл. звеньев в макромолекуле делят на регулярные и нерегулярные. В регулярных макромолекулах наблюдается определенная периодичность распределения звеньев. Простейшие примеры - чередующиеся сополимеры стирола с малеиновым ангидридом или нек-рых олефинов с акриловыми мономерами, построенные по типу . АВАВАВАВ. где А и В - мономерные звенья (см. Сополиме-ризация, Радикальная полимеризация). Более сложные регулярные последовательности чередования звеньев реализованы, напр., в полипептидах - сополимерах аминокислот. Для нерегулярных сополимеров характерно случайное, или статистическое (т. е. подчиняющееся определенной статистике, но не регулярное), распределение звеньев; оно наблюдается у мн. синтетич. сополимеров. В белках нерегулярные последовательности звеньев задаются генетич. кодом и определяют биохим. и биол. специфичность этих соединений. Сополимеры, в к-рых достаточно длинные непрерывные последовательности, образованные каждым из звеньев, сменяют друг друга в пределах макромолекулы, наз. блоксополимерами (см. Блоксополимеры). Последние наз. регулярными, если длины блоков и их чередование подчиняются определенной периодичности. При уменьшении длины блоков различие между блоксополимерами и статистич. сополимерами постепенно утрачивается. К внутр. (неконцевым) звеньям макромолекулярной цепи одного хим. состава или строения м. б. присоединены одна или неск. цепей другого состава или строения; такие сополимеры наз. привитыми.

В зависимости от состава основной (главной) цепи макромолекулы все B.C. делят на два больших класса: гомоцепные, основные цепи к-рых построены из одинаковых атомов, и гетероцепные, в основной цепи к-рых содержатся атомы разных элементов, чаще всего С, N, Si, P. Среди гомоцепных В. с. наиб. распространены карбоцепные (главные цепи состоят только из атомов углерода), напр. полиэтилен, полиметилметакрилат, политетрафторэтилен (см. Фторопласты), гуттаперча. Примеры гетероцепных В. с.- полиэфиры (напр., полиэтиленоксид, полиэтилентерефталат, поликарбонаты), полиамиды, кремнийорганические полимеры, мочевино-формалъдегидные смолы, белки, целлюлоза. В. с., в макромолекулы к-рых наряду с углеводородными группами входят атомы неорганогенных элементов, наз, элементоорганическими. В полимерах, содержащих атомы металла (напр., Zn, Mg, Си), обычные ковалентные связи могут сочетаться с координационными (см. Координационные полимеры). Отдельная группа В. с.- неорганические полимеры (напр., полифосфазены), макромолекулы к-рых построены из неорг. главных цепей и не содержат орг. боковых радикалов (обрамляющих групп).

Свойства и основные характеристики. В. с. обладают специфич. комплексом физ.-хим. и мех. св-в. Важнейшие из них: 1) способность образовывать высокопрочные анизотропные волокна и пленки (см. Ориентированное состояние, Пленки полимерные); 2 )способность к большим обратимым, т. наз. высокоэластическим, деформациям (см. Высокоэластическое состояние);3) способность набухать перед растворением и образовывать высоковязкие р-ры (см. Растворы полимеров). Эти св-ва обусловлены высокой мол. массой B.C., цепным строением макромолекул, их гибкостью и наиб. полно выражены у линейных В. с. По мере перехода от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к частым сетчатым структурам комплекс характерных св-в В. с. становится все менее выраженным. Трехмерные В. с. с очень большой частотой сетки нерастворимы, неплавки и неспособны к высокоэластич. деформациям.

По фазовому состоянию В. с. могут быть кристаллическими или аморфными. Необходимое условие кристаллизации - регулярность достаточно длинных участков молекулярной цепи. В таких В. с. возможно образование разнообразных кристаллич. форм (фибрилл, сферолитов, монокристаллов и др. Х тип к-рых во многом определяет св-ва полимерного материала. Аморфные В. с. помимо высокоэластического могут находиться в двух других физ. состояниях: стеклообразном состоянии и вязкотекучем состоянии. В. с., к-рые переходят из высокоэластич. состояния в стеклообразное при т-рах ниже комнатной, относят к эластомерам, при более высокой т-ре-к пластикам. Кристаллические B.C. обычно являются пластиками.

Св-ва отдельных B.C. определяются хим. составом, строением, конформацией и взаимным расположением макромолекул (надмолекулярной структурой). В зависимости от этих факторов св-ва B.C. могут изменяться в широких пределах. Так, цис-1,4-полибутадиен, построенный из гибких углеводородных цепей, при т-рах ок. 20

Химическая энциклопедия. — М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Высокомолекулярные соединения занимают особое место в группе органических веществ. Они обладают значительной массой, для их описания используются такие понятия, как макромолекула, мономер, степень полимеризации и другие. Характерны наличием множества повторяющихся звеньев в различных химических реакциях.

Высокомолекулярные соединения

Классификация соединений

Высокомолекулярные соединения делятся на природные и синтетические. К первым относятся различные каучуки, полисахариды, нуклеиновые кислоты. Искусственно создаются полиэтилен, полипропилен, смолы на основе фенола и альдегидов. Атомы вещества в виде макромолекулы классифицируются следующим образом:

  • Однотяжные цепи или последовательность циклов, которая применяется в спирополимерах.
  • Разветвленные соединения, которыми обладают крахмал и дендримеры.
  • Трехмерная сетка, которая состоит из отрезков структурной цепи.
  • Соединения из множества повторяющихся звеньев в низкомолекулярных и высокомолекулярных разновидностях.

Полимеры в химии — это соединения, которые называются таковыми из-за большой массы и прочных химических связей и формул вдоль цепи вида C6H5CH.

Они могут быть стереополимерами, сополимерами и общими блок-сополимерами, которые делятся на стереорегулярные и нестереорегулярные в зависимости от периодичности чередования звеньев. Это зависит от степени расположения цепей, периодичности чередования и особенности строения.

Свойства и характеристики

Высокомолекулярные реакции обладают рядом химических свойств. Некоторые из них присущи исключительно ВМС (аббревиатура для обозначения таких соединений). Самыми важными характеристиками, которые лежат в основе классификации, можно назвать:

  1. Образование соответствующими методами высокоориентированных волокон и пленок.
  2. Способность к значительным обратимым деформациям с низкой упругостью по происхождению.
  3. Могут набухать, образуя упругие тела с веществами типа гелия.
  4. Очень высокая вязкость при получении раствора в разбавленном виде.

Указанные свойства обусловлены массой, строением цепей и способностью макромолекул изменять форму от внешних воздействий. Переход от линейных цепей к разветвленным и трехмерным делает такие характеристики менее выраженными.

Строение макромолекул

В химии реакция полимеризации это процесс сшивания множества молекул мономера в макромолекулы. В нее вступают непредельные соединяющие элементы. Существует гомополимеризация и сополимеризация. В первом варианте идет слияние молекул одного мономера, а во втором воссоединяются два и более веществ. Она идет по радикальному или ионному механизму.

В случае радикальной полимеризации процесс инициируется свободными радикалами. К примеру, реакция поливинилхлорида идет по следующим стадиям:

  • Зарождение цепи C6H5COO=2C2H5COO.
  • После этого идет рост цепи с участием радикала R+CH2=CHCl=RCH2-CHCl.
  • В конце происходит разветвление или обрыв цепи.

В ионной полимеризации роль активных центров играют катионы и анионы. Это позволяет разделить ее на катионную и анионную вариацию в зависимости от доноров и акцепторов. По ней протекает реакция полимеризации полиизобутилена, бутадиена, синтетического каучука и прочих неорганических реакций.

Применение полимеров

Применение полимеров

Полимеры благодаря высокой механической прочности и вязкости используются во многих отраслях промышленности. Среди них автомобилестроение, электротехника, сельское хозяйство, медицина. Основными примерами являются пластмассы, резины, лаки, краски и эмали, а также капрон и прочие элементарные полимерные соединения.

Высокомолекулярные соединения и вещества встречаются в химии часто и занимают особое место. Под расшифровкой ВМС понимают такие реакции полимеризации и поликонденсации, в которых выделяются аминокислоты, полиэтилены и остальные соединения.

Высокомолекулярные соединения (ВМС) - это химические вещества с большой молекулярной массой, молекулы которых состоят из огромного числа (сотен и даже тысяч) атомов, обычно соединенных между собой ко-валентными связями. Такие молекулы называются макромолекулами. Не­смотря на большое количество атомов, химическое строение макромолекул не так уж сложно, так как они построены из связанных между собой одина­ковых, многократно повторяющихся групп атомов - элементарных звеньев. Высокомолекулярные соединения часто называют просто полимерами (от греч. poly - много, meros - часть).

Глядя на формулы фрагментов макромолекул полипропилена


легко понять, что их элементарные звенья, формулами которых отражают состав полимеров - это остатки мономеров, из которых полимеры полу­чены:


у поливинилхлорида - мономер винилхлорид:

Число элементарных звеньев в макромолекуле (n) называется степе­нью полимеризации. Между этой величиной и молекулярной массой поли­мера (Мn) имеется следующее соотношение: Мn = n • Мn,

где Мn - молекулярная масса элементарного звена.

Молекулярная масса полимеров - особенное понятие. Если для обыч­ных химических соединений молекулярная масса - величина постоянная, то для полимеров молекулярная масса - величина среднестатистическая. Это связано с тем, что полимеры обычно состоят из смеси макромолекул, имеющих различные размеры и массу. Поэтому для полимеров пользуются понятием средней молекулярной массы.

Высокомолекулярные соединения (ВМС) - это химические вещества с большой молекулярной массой, молекулы которых состоят из огромного числа (сотен и даже тысяч) атомов, обычно соединенных между собой ко-валентными связями. Такие молекулы называются макромолекулами. Не­смотря на большое количество атомов, химическое строение макромолекул не так уж сложно, так как они построены из связанных между собой одина­ковых, многократно повторяющихся групп атомов - элементарных звеньев. Высокомолекулярные соединения часто называют просто полимерами (от греч. poly - много, meros - часть).

Глядя на формулы фрагментов макромолекул полипропилена


легко понять, что их элементарные звенья, формулами которых отражают состав полимеров - это остатки мономеров, из которых полимеры полу­чены:


у поливинилхлорида - мономер винилхлорид:

Число элементарных звеньев в макромолекуле (n) называется степе­нью полимеризации. Между этой величиной и молекулярной массой поли­мера (Мn) имеется следующее соотношение: Мn = n • Мn,

где Мn - молекулярная масса элементарного звена.

Молекулярная масса полимеров - особенное понятие. Если для обыч­ных химических соединений молекулярная масса - величина постоянная, то для полимеров молекулярная масса - величина среднестатистическая. Это связано с тем, что полимеры обычно состоят из смеси макромолекул, имеющих различные размеры и массу. Поэтому для полимеров пользуются понятием средней молекулярной массы.

Читайте также: