Введение в генетику кратко

Обновлено: 06.07.2024

Генетика занимает особое место в ряду фундаменталь­ных биологических дисциплин. Она изучает универсальные для всех живых существ законы наследственности и изменчи­вости. Без знаний современной генетики невозможно понять сущность жизни и главные свойства живого (самообновле­ние, самовоспроизведение и саморегуляцию) независимо от уровня его организации. Понимание механизмов инди­видуального развития и его нарушений, сути наследственной патологии, состояния здоровья аномального ребенка, его возможностей обеспечит педагогу - дефектологу сознательный подход в решении вопросов его коррекционно-воспитательной работы.

Наследственность - это свойство живых систем сохранять из поколения в поколение сходные признаки и обеспечивать специфический характер индивидуального развития в опре­деленных условиях среды.

Изменчивость - это свойство живых систем приобретать новые признаки (строение и функции систем органов и осо­бенности индивидуального развития), отличающие их от ро­дительских форм.

Наследственность и изменчивость - два противополож­ных свойства живого, тесно связанных между собой и с эво­люционным процессом. Наследственность консервативна и обеспечивает сохранение видовых признаков. Благодаря из­менчивости особи способны к адаптации и выживанию в из­меняющихся условиях окружающей среды. Появившиеся но­вые признаки могут играть важную роль в эволюции только при сохранении их в последующих поколениях, т. е. при на­следовании.

Наследование - это процесс передачи генетической ин­формации через гаметы - при половом размножении или че­рез соматические клетки - при бесполом. Степень соотноше­ния наследственности и изменчивости, или мера сходства родителей и детей, определяет понятие наследуемости. Чем больше доля наследственности, тем меньше проявление из­менчивости, и наоборот.

Совокупность наследственных факторов - генотип - орга­низм получает от родителей в момент оплодотворения. Гене­тический аппарат зиготы содержит программу индивидуаль­ного развития. Генотип организма определяет диапазон его приспособительных возможностей и характер реагирования на любой внешний агент. Следовательно, совокупность всех признаков организма (морфологических, физиологических, биохимических, иммунологических и др.) зависит от закоди­рованной в генотипе информации и от степени ее реализации. Изменения генотипа или процесса реализации программы развития приводят к различного рода аномалиям. Это могут быть врожденные пороки развития разной степени тяжести, наследственные болезни или болезни с наследственной пред­расположенностью. Факторы эволюции в течение длительно­го времени формировали все свойства организмов, в том чис­ле и их ответные реакции на внедрение патогенных агентов. Так, устойчивость к инфекциям и инвазиям обусловлена им­мунитетом, который в свою очередь определяется наследст­венными факторами.

Гены контролируют матричные реакции репликации ДНК и биосинтеза белков в клетке. Белки определяют все свойст­ва клеток, в том числе и их способность, взаимодействовать непосредственно или опосредованно через внутреннюю среду организма. Взаимодействие клеток организма в конечном итоге определяет его фенотип.

Таким образом, общее состояние организма, его морфо - физиологические характеристики, здоровье и болезнь в каж­дый данный момент представляют собой результат взаимо­действия генотипа с условиями окружающей среды.

Современная генетика - это комплексная наука, которая включает ряд отдельных дисциплин: общую генетику, генети­ку микроорганизмов, растений, животных и человека, моле­кулярную генетику, цитогенетику и др.

Общая генетика изучает организацию наследственного ма­териала и общие закономерности наследственности и измен­чивости, характерные для всех уровней организации живого.

Генетика человека изучает явления наследственности и из­менчивости в популяциях людей, особенности наследования признаков в норме и изменения их под действием условий окружающей среды. Задачей медицинской гене­тики является изучение механизмов наследственных болезней, разработка методов их диагностики, лечения и профи­лактики.

В истории развития генетики выделяют три периода:

I период (1900-1930) - менделизм, период классической генетики, установлением природы дискретной наследственности, создание хромосомной теории, теория мутаций;

II период (1930-1953) - исследования в областях молекулярной генетики, комплексный подход в исследованиях, разработка и пересмотр ряда поло­жений классической генетики;

III период (с 1953 г. по настоящее время) – структурно-системное познание глубинной сущности гена, расшифровка генетического кода, установление внутренего и внешнего влиянияна процессы изменчивости.

Гипотезы о природе наследственности и изменчивости высказывались еще в глубокой древности, когда человек про­изводил бессознательный отбор растений и животных с наи­более ценными для себя качествами и свойствами.

Первая работа по наследственности и изменчивости дати­руется XVII в.; это работа Р. Камерариуса о дифференциации пола у растений. В 50-х годах XVIII в. уже проводятся иссле­дования по гибридизации растений (Дж. Кельрейтер).

Толчком к развитию науки о наследственности и изменчи­вости послужили работы Ч. Дарвина.

Результаты и значимость опытов Г. Менделя были оценены позже и в 1900 г., независимо друг от друга Г. де Фриз, К. Корренс и Э. Чермак вторично переоткрыли законы Г. Менделя.

Датой рождения научной генетики считают 1900 год. Термин "генетика" был предложен У. Бэтсоном (1906), а понятие "ген" - В. Иогансеном (1909).

В 1911 г. Т. Морган с сотрудниками экспериментально до­казали связь наследственных единиц (генов) с хромосомами и сформулировали хромосомную теорию наследственности.

В 1925-1927 гг. рядом отечественных (Г.А. Надсон, Г.С. Филиппов, И.А. Раппопорт) и зарубежных (Г. Меллер, Л. Стадлер) исследователей была экспериментально доказана изменчивость генов (мутации) под воздействием факторов окружающей среды (рентгеновские лучи, этиленимин). Опы­ты на дрожжах и на растениях заложили основы радиацион­ной генетики и учения об искусственном мутагенезе.

С.С. Четвериков с сотрудниками (1926-1929), объединив положения менделизма и эволюционной теории Ч. Дарвина и проведя многочисленные исследования частот генов в попу­ляциях, стали по сути основоположниками популяционной и эволюционной генетики. Дальнейшему развитию этих на­правлений способствовали исследования С. Райта, Р. Фише­ра, Дж. Холдейна и школ отечественных исследователей Ф.Г. Добржанского, Д.Д. Ромашова, Н.П. Дубинина, Н.В. Ти­мофеева-Ресовского. Результаты работ этих авторов позволили сформулировать основные положения современной синтети­ческой теории эволюции.

Важным этапом в развитии молекулярной генетики яви­лось предположение Н.К. Кольцова (1928) о матричной тео­рии ауторепродукции хромосом, о связи наследственных еди­ниц — генов с конкретным химическим веществом (белковы­ми радикалами).

Неоценимый вклад в развитие мировой и отечественной генетики внес академик Н.И. Вавилов. Им сформулирован закон гомологичных рядов в наследственной изменчивости, показано единство генетики и селекции (1920-1943), собран самый большой генофонд культурных растений мира (свыше 250 тыс. экземпляров), хранящихся во Всесоюзном институте растениеводства (Санкт-Петербург).

Ф. Гриффитс (1928), О. Эйвери, С.Мак-Леод и М. Мак-Карти (1944) в опытах на микроорганизмах показали, что ве­ществом наследственности является не белок, как считали ра­нее, а ДНК. Проникновение в генетику методов химии и фи­шки определило становление и развитие молекулярной гене­тики.

Гениальная работа Дж. Уотсона, Ф. Крика и М. Уилкинса (1953) по расшифровке структуры "нити жизни" - молекулы ДНК - позволила раскрыть тайну генетического кода, меха­низмы биосинтеза полипептидов в клетке и передачи генети­ческой информации.

Важной исторической вехой в развитии генетики явилось создание концепции ("центральная догма молекулярной биологии") передачи генетической информации: ДНК → и- РНК белок (полипептид). Г. Тимин и Д. Балтимор (1970) показали возможность обратной передачи генетической информации с РНК на ДНК с участием фермента обратной транскриптазы. Эти исследования заложили основы генной инженерии, позволяющей конструировать клетки и организ­мы с новой генетической программой путем переноса генети­ческой информации из одного организма в другой.

В настоящее время генетика тесно связана с цитологией, эмбриологией, тератологией, микробиологией, иммунологией, биохимией, биофизикой, радиобиологией, медициной, систематикой, селекцией, эволюционным учением. Она изу­чает и анализирует закономерности наследственности и из­менчивости на молекулярном, клеточном, организменном и популяционном уровнях.

Начало развития медицинской генетики в СССР относит­ся к 30-м годам XX в. Это связано главным образом с работа­ми ленинградского невропатолога академика С.Н. Давиденкова и сотрудников первого в мире Медико-генетического института, созданного в Москве профессором С.Г. Левитом. Именно С.Н. Давиденков заложил основы медико-генетиче­ского консультирования на примере нервно-психических за­болеваний и показал генетическую гетерогенность многих форм наследственной патологии. Высокую оценку на между­народном уровне получили генетические исследования сотрудников Медико-генетического института по проблемам наследования сахарного диабета и мультифакториальной па­тологии (язвенной и гипертонической болезней и др.). К со­жалению, государственная политика тех времен и в особенно­сти "лысенковское учение" на многие годы затормозили про-гресси-вное развитие в СССР медицинской генетики, и лишь в 50-е годы благодаря новому поколению генетиков (Н.П. Ду­бинин, Н.В. Тимофеев-Ресовский, И.А. Раппопорт, В.П. Зфроимсон, А.А. Прокофьева-Бельговская, Н.П. Бочков) меди­цинская генетика в нашей стране получила стимул для даль­нейшего развития.

Широкому внедрению методов медицинской генетики в практику здравоохранения способствовал созданный в Моск­ве (1969) по инициативе академика.Н.П. Бочкова Институт медицинской генетики Академии медицинских наук СССР.

Достижения генетики человека, общей и молекулярной генетики сделали реальной возможность вмешательства в на­следственность человека, в первую очередь с целью замену и коррекции генов наследственных болезней.

Большое значение имеет прикладной аспект генетичес­ких исследований в области коррекционной педагогики и специальной психологии. Такие исследования традици­онно проводятся в клиническом секторе Института коррек­ционной педагогики РАО РФ, сначала под руководством М.С. Певзнер, затем - К.С. Лебединской и Е.М. Мастюковой. В 1976 г. в институте была организована генетическая лаборатория (заведующий - К.Н.Назаров), сотрудники кото­рой принимали участие в работе медико-педагогических консультаций. Среди разрабатываемых проблем большое вни­мание уделялось генетике интеллектуальных нарушений и сложным дефектам интеллекта и зрения. М.С. Певзнер со­трудничала с такими известными генетиками Института медицинской генетики (руководимого Н.П. Бочковым) АМН СССР, как К.Н. Гринберг и А.А. Ревазов. Интересное иссле­дование было проведено ее сотрудниками и аспирантами. М.М. Райская изучала психическое развитие детей и подростков с нарушениями в системе половых хромосом, Г.П. Бертынь - ЭЭГ у близнецов, страдающих олигофренией, В.М. Явкин и В.Ф. Шалимов - потомство родителей-олигофренов. Неко­торые генетические синдромы, обусловливающие сложный дефект интеллекта и зрения, в специальных школах диагнос­тировала и описала И.Д. Лукашова.

Большой вклад в генетику интеллектуальных нарушений внесла Е.М. Мастюкова, наблюдавшая и лечившая в течение продолжительного времени детей с наследственно обусловлен­ными психическими нарушениями.

Наследственность — свойство организмов передавать свои признаки от одного поколения к другому.

Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

Признак — любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее.

Фенотип — совокупность всех внешних и внутренних признаков организма.

Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака.

Генотип — совокупность генов организма.

Локус — местоположение гена в хромосоме.

Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом.

Гомозигота — организм, имеющий аллельные гены одной молекулярной формы.

Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.

Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

Методы генетики

Основным является гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода: 1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков; 2) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений.

Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным, двух пар — дигибридным, нескольких пар — полигибридным. Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак — цвет горошин, альтернативные признаки — желтый цвет, зеленый цвет горошин.

Кроме гибридологического метода, в генетике используют: генеалогический — составление и анализ родословных; цитогенетический — изучение хромосом; близнецовый — изучение близнецов; популяционно-статистический метод — изучение генетической структуры популяций.

Генетическая символика

Предложена Г. Менделем, используется для записи результатов скрещиваний: Р — родители; F — потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F1 — гибриды первого поколения — прямые потомки родителей, F2 — гибриды второго поколения — возникают в результате скрещивания между собой гибридов F1); × — значок скрещивания; G — мужская особь; E — женская особь; A — доминантный ген, а — рецессивный ген; АА — гомозигота по доминанте, аа — гомозигота по рецессиву, Аа — гетерозигота.

Закон единообразия гибридов первого поколения, или первый закон Менделя

Другие материалы по теме:

Успеху работы Менделя способствовал удачный выбор объекта для проведения скрещиваний — различные сорта гороха. Особенности гороха: 1) относительно просто выращивается и имеет короткий период развития; 2) имеет многочисленное потомство; 3) имеет большое количество хорошо заметных альтернативных признаков (окраска венчика — белая или красная; окраска семядолей — зеленая или желтая; форма семени — морщинистая или гладкая; окраска боба — желтая или зеленая; форма боба — округлая или с перетяжками; расположение цветков или плодов — по всей длине стебля или у его верхушки; высота стебля — длинный или короткий); 4) является самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение.

Опыты Менделя были тщательно продуманы. Если его предшественники пытались изучить закономерности наследования сразу многих признаков, то Мендель свои исследования начал с изучения наследования всего лишь одной пары альтернативных признаков.

Мендель взял сорта гороха с желтыми и зелеными семенами и произвел их искусственное перекрестное опыление: у одного сорта удалил тычинки и опылил их пыльцой другого сорта. Гибриды первого поколения имели желтые семена. Аналогичная картина наблюдалась и при скрещиваниях, в которых изучалось наследование других признаков: при скрещивании растений, имеющих гладкую и морщинистую формы семян, все семена полученных гибридов были гладкими, от скрещивания красноцветковых растений с белоцветковыми все полученные — красноцветковые. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает. Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый — рецессивным.

При моногибридном скрещивании гомозиготных особей, имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу.

( А — желтый цвет горошин, а — зеленый цвет горошин)

Р ♀ AA
желтые
× ♂ аа
зеленые
Типы гамет А а
F1
желтые
100%

Закон расщепления, или второй закон Менделя

Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Результаты опытов приведены в таблице.

Признаки Доминантные Рецессивные Всего
Число % Число %
Форма семян 5474 74,74 1850 25,26 7324
Окраска семядолей 6022 75,06 2001 24,94 8023
Окраска семенной кожуры 705 75,90 224 24,10 929
Форма боба 882 74,68 299 25,32 1181
Окраска боба 428 73,79 152 26,21 580
Расположение цветков 651 75,87 207 24,13 858
Высота стебля 787 73,96 277 26,04 1064
Всего: 14949 74,90 5010 25,10 19959

Анализ данных таблицы позволил сделать следующие выводы:

  1. единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть — другой (рецессивный) признак из альтернативной пары;
  2. количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;
  3. рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.

Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть — рецессивный, называют расщеплением. Причем, наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении.

При моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

Генетическая схема закона расщепления Менделя

( А — желтый цвет горошин, а — зеленый цвет горошин):

P ♀ Aa
желтые
× ♂ Aa
желтые
Типы гамет A a A a
F2 AA
желтые
Aa
желтые
75%
Aa
желтые
aa
зеленые
25%

Закон чистоты гамет

Купить проверочные работы
и тесты по биологии


Биология. Животные. Работаем по новым стандартам. Проверочные работы

Биология. Человек. Работаем по новым стандартам. Проверочные работы
Биология. 9 класс. Тесты

  1. за формирование признаков отвечают какие-то дискретные наследственные факторы;
  2. организмы содержат два фактора, определяющих развитие признака;
  3. при образовании гамет в каждую из них попадает только один из пары факторов;
  4. при слиянии мужской и женской гамет эти наследственные факторы не смешиваются (остаются чистыми).

В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

Р ♀ Аа
желтые
× ♂ aа
зеленые
Типы гамет A a a
F Аа
желтые
50%
аa
зеленые
50%

Цитологические основы первого и второго законов Менделя

Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А , а зеленую — а . Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма — гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа ). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А , а другого — с геном а .

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа ; один вариант генотипа даст один вариант фенотипа — желтый цвет горошин.

У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет — половина гамет будет нести ген А , другая половина — ген а . Оплодотворение — процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них — гетерозиготы (несут гены А и а ), 1/4 — гомозиготы по доминантному признаку (несут два гена А ) и 1/4 — гомозиготы по рецессивному признаку (несут два гена а ). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву — зеленого (1/4).

Закон независимого комбинирования (наследования) признаков, или третий закон Менделя

Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). Желтая окраска ( А ) и гладкая форма ( В ) семян — доминантные признаки, зеленая окраска ( а ) и морщинистая форма ( b ) — рецессивные признаки.

Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F1 с желтыми и гладкими семенами. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1).

Анализируя полученное потомство, Мендель обратил внимание на то, что: 1) наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена); 2) расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании. Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 — зеленую (соотношение 3:1). Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтые гладкие семена и зеленые морщинистые семена), но и возникновение новых комбинаций признаков (желтые морщинистые семена и зеленые гладкие семена).

При дигибридном скрещивании дигетерозигот у гибридов имеет место расщепление по фенотипу в отношении 9:3:3:1, по генотипу в отношении 4:2:2:2:2:1:1:1:1, признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Р ♀ АABB
желтые, гладкие
× ♂ aаbb
зеленые, морщинистые
Типы гамет AB ab
F1 AaBb
желтые, гладкие, 100%
P ♀ АaBb
желтые, гладкие
× ♂ AаBb
желтые, гладкие
Типы гамет AB Ab aB ab AB Ab aB ab

Генетическая схема закона независимого комбинирования признаков:

Гаметы: AB Ab aB ab
AB AABB
желтые
гладкие
AABb
желтые
гладкие
AaBB
желтые
гладкие
AaBb
желтые
гладкие
Ab AABb
желтые
гладкие
AАbb
желтые
морщинистые
AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aB AaBB
желтые
гладкие
AaBb
желтые
гладкие
aaBB
зеленые
гладкие
aaBb
зеленые
гладкие
ab AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aaBb
зеленые
гладкие
aabb
зеленые
морщинистые

Анализ результатов скрещивания по фенотипу: желтые, гладкие — 9/16, желтые, морщинистые — 3/16, зеленые, гладкие — 3/16, зеленые, морщинистые — 1/16. Расщепление по фенотипу 9:3:3:1.

Анализ результатов скрещивания по генотипу: AaBb — 4/16, AABb — 2/16, AaBB — 2/16, Aabb — 2/16, aaBb — 2/16, ААBB — 1/16, Aabb — 1/16, aaBB — 1/16, aabb — 1/16. Расщепление по генотипу 4:2:2:2:2:1:1:1:1.

Если при моногибридном скрещивании родительские организмы отличаются по одной паре признаков (желтые и зеленые семена) и дают во втором поколении два фенотипа (2 1 ) в соотношении (3 + 1) 1 , то при дигибридном они отличаются по двум парам признаков и дают во втором поколении четыре фенотипа (2 2 ) в соотношении (3 + 1) 2 . Легко посчитать, сколько фенотипов и в каком соотношении будет образовываться во втором поколении при тригибридном скрещивании: восемь фенотипов (2 3 ) в соотношении (3 + 1) 3 .

Если расщепление по генотипу в F2 при моногибридном поколении было 1:2:1, то есть было три разных генотипа (3 1 ), то при дигибридном образуется 9 разных генотипов — 3 2 , при тригибридном скрещивании образуется 3 3 — 27 разных генотипов.

Третий закон Менделя справедлив только для тех случаев, когда гены анализируемых признаков находятся в разных парах гомологичных хромосом.

Цитологические основы третьего закона Менделя

Пусть А — ген, обусловливающий развитие желтой окраски семян, а — зеленой окраски, В — гладкая форма семени, b — морщинистая. Скрещиваются гибриды первого поколения, имеющие генотип АаВb . При образовании гамет из каждой пары аллельных генов в гамету попадает только один, при этом в результате случайного расхождения хромосом в первом делении мейоза ген А может попасть в одну гамету с геном В или с геном b , а ген а — с геном В или с геном b . Таким образом, каждый организм образует четыре сорта гамет в одинаковом количестве (по 25%): АВ , Ab , aB , ab . Во время оплодотворения каждый из четырех типов сперматозоидов может оплодотворить любую из четырех типов яйцеклеток. В результате оплодотворения возможно появление девяти генотипических классов, которые дадут четыре фенотипических класса.

Генетика (греч. γενητως — порождающий, происходящий от кого-то) - наука о наследственности и изменчивости. Это определение отлично соответствует афоризму А.П. Чехова "Краткость - сестра таланта". В словах наследственность и изменчивость скрыта вся сущность генетики, к изучению которой мы приступаем.

Грегор Мендель

Наследственность подразумевает возможность передачи из поколения в поколение различных признаков и свойств, общих особенностей развития. Это происходит благодаря способности ДНК к самоудвоению (репликации) и дальнейшему равномерному распределению генетического материала.

Изменчивость подразумевает способность организмов приобретать новые признаки, которые отличают их от родительских особей. Вследствие этого формируется материал для главного направленного фактора эволюции - естественного отбора, который отбирает наиболее приспособленных особей.

Мы с вами - истинное чудо генетики :) Очевидно, что в чем-то мы схожи с собственными родителями, в чем-то отличаемся от них. Гены, которые собраны в нас, уже миллионы лет передаются из поколения в поколение, в каждом поколении совершая чудо вновь и вновь.

Отец и сын в одинаковом возрасте

Ген и генетический код

Ген - участок молекулы ДНК, кодирующий последовательность аминокислот для синтеза одного белка. Генетическая информация в ДНК реализуется с помощью процессов транскрипции и трансляции, изученных нами ранее.

Ген

В одной молекуле ДНК зашифрованы сотни тысяч различных белков. Все наши соматические клетки имеют одну и ту же молекулу ДНК. Задумайтесь: почему же в таком случае клетки кожи отличаются от клеток печени, миоцитов, клеток эпителия рта - ведь ДНК везде одинакова!

Это происходит потому, что в разных клетках одни гены "выключены", а другие "активны": транскрипция идет только с активных генов. Именно из-за этого наши клетки отличаются по строению, функции и форме.

Разнообразие клеток в организме

Каждой аминокислоте соответствует 3 нуклеотида (триплет ДНК, кодон иРНК). Существует 64 кодона, из которых 3 являются нонсенс кодонами (стоп-кодонами)

Информация считывается непрерывно - внутри гена нет знаков препинания: так как ген кодирует один белок, то было бы нецелесообразно разделять его на части. Стоп-кодоны - "знаки препинания" - есть между генами, которые кодируют разные белки.

Один и тот же нуклеотид не может принадлежать 2,3 и более триплетам ДНК/кодонам иРНК. Он входит в состав только одного триплета.

Один кодон соответствует строго одной аминокислоте и никакой другой более соответствовать не может.

Одна аминокислота может кодироваться несколькими кодонами (при этом одну а/к кодируют 3 нуклеотида.)

Таблица генетического кода

Соответствие линейной последовательности кодонов иРНК последовательности аминокислот в молекуле белка.

Кодоны считываются строго в одном направлении от первого к последующим. Считывание происходит в процессе трансляции.

Генетический код

Генетический код един для всех живых организмов, что свидетельствует о единстве происхождения всего живого.

Аллельные гены

Аллельные гены (греч. allélon — взаимно) - гены, занимающие одинаковое положение в локусах гомологичных хромосом и отвечающие за развитие одного и того же признака. Такими признаками могут являться: цвет глаз (карий и голубой), владение рукой (праворукость и леворукость), тип волос (вьющиеся и прямые волосы).

Локусом (лат. locus — место) - в генетике обозначают положение определенного гена в хромосоме.

Аллельные гены

Обратите внимание, что гены всегда парные, по этой причине генотип должен быть записан двумя генами - AA, Aa, aa. Писать только один ген было бы ошибкой.

Признаки бывают доминантными (от лат. dominus - господствующий), которые проявляются у гибридов первого поколения, и рецессивными (лат. recessus - отступающий) - не проявляющимися. У человека доминантный признак - карий цвет глаз (ген - А), рецессивный признак - голубой цвет глаз (ген - а). Именно поэтому у человека с генотипом Aa будет карий цвет глаз: А - доминантный аллель подавляет a - рецессивный аллель.

Доминантные и рецессивные признаки

  • Гомозиготный (в случае, когда оба гена либо доминантны, либо рецессивны) - AA, aa
  • Гетерозиготный (в случае, когда один ген доминантный, а другой - рецессивный) - Аа

Понять, какой признак является подавляемым - рецессивным, а какой подавляющим - доминантным, можно в результате основного метода генетики - гибридологического, то есть путем скрещивания особей и изучения их потомства.

Гаметы

Гамета (греч. gamos - женщина в браке) - половая клетка, образующаяся в результате гаметогенеза (путем мейоза) и обеспечивающая половое размножение организмов. Гамета (сперматозоид/яйцеклетка) имеет гаплоидный набор хромосом - n, при слиянии двух гамет набор восстанавливается до диплоидного - 2n.

  • В гаметах представлены все гены, составляющие гаплоидный набор хромосом - n
  • В каждую гамету попадает только одна хромосома из гомологичной пары
  • Число возможных вариантов гамет можно рассчитать по формуле 2 i = n, где i - число генов в гетерозиготном состоянии в генотипе

К примеру для особи AABbCCDDEeFfGg количество гамет будет рассчитываться исходя из количества генов в гетерозиготном состоянии, которых в генотипе 4: Bb, Ee, Ff, Gg. Формула будет записана 2 4 = 16 гамет.

Осознайте изученные правила и посмотрите на картинку ниже. Здесь мы образуем гаметы для различных особей: AA, Aa, aa. При решении генетических задач гаметы принято обводить в кружок, не следует повторяться при написании гамет - это ошибка.

К примеру, у особи "AA" мы напишем только одну гамету "А" и не будем повторяться, а у особи "Aa" напишем два типа гамет "A" и "a", так как они различаются между собой.

Образование гамет

Гибридологический метод

Мы приступаем к изучению методологии генетики, то есть тех методов, которые использует генетика. Один из первых методов генетики, предложенный самим Грегором Менделем - гибридологический.

Этот метод основан на скрещивании организмов между собой и дальнейшем анализе полученного потомства от данного скрещивания. С помощью гибридологического метода возможно изучение наследственных свойств организмов, определение рецессивных и доминантных генов.

Гибридологический метод

Цитогенетический метод

С помощью данного метода становится возможным изучение наследственного материала клетки. Врач-генетик может построить карту хромосом пациента (кариотип) и на основании этого сделать вывод о наличии или отсутствии наследственных заболеваний.

Если быть более точным, кариотипом называют совокупность признаков хромосом: строения, формы, размера и числа. При наследственных заболеваниях может быть нарушена структура хромосом (часто летальный исход), иногда нарушено их количество (синдром Дауна, Шерешевского-Тернера, Клайнфельтера).

Цитогенетический метод исследования

Генеалогический метод (греч. γενεαλογία — родословная)

Генеалогический метод является универсальным методом медицинской генетики и основан на составлении родословных. Человек, с которого начинают составление родословной - пробанд. В результате изучения родословной врач-генетик может предположить вероятность возникновения тех или иных заболеваний.

Правила написания родословной

По мере изучения законов Менделя, хромосомной теории, я непременно буду обращать ваше внимание на родословные. Вы научитесь видеть детали, по которым можно будет сказать об изучаемом признаке: "рецессивный он или доминантный?", "сцеплен с полом или не сцеплен?"

Генеалогический метод

На предложенной родословной в поколениях семьи хорошо прослеживается наследование не сцепленного с полом (аутосомного) рецессивного признака (например, альбинизма). Это можно определить по ряду признаков, которые я в следующих статьях научу вас видеть. Аутосомно-рецессивный тип наследования можно заподозрить, если:

  • Заболевание проявляется только у гомозигот
  • Родители клинически здоровы
  • Если больны оба родителя, то все их дети будут больны
  • В браке больного со здоровым рождаются здоровые дети (если здоровый не гетерозиготен)
  • Оба пола поражаются одинаково

Сейчас это может показаться сложным, но не волнуйтесь - решая генетические задачи вы сами "дойдете" до этих правил, и через некоторое время они будут казаться вам очевидными.

Близнецовый метод

Применение близнецового метода в генетике - вопрос удачи. Ведь для этого нужны организмы, чьи генотипы похожи "один в один": такими являются однояйцевые близнецы, их появление подчинено случайности.

Близнецовый метод

Близнецовый метод изучает влияние наследственных факторов и внешней среды на формирование фенотипа - совокупности внешних и внутренних признаков организма. К фенотипу относят физические черты: размеры частей тела, цвет кожи, форму и особенности строения внутренних органов и т.д.

Часто изучению подвергают склонность к различным заболеваниям. Интересный факт: если психическое расстройство - шизофрения - развивается у первого из однояйцевых близнецов, то у второго она возникает с вероятностью 90%. Таким образом, удается сделать вывод о значительной доле наследственного фактора в развитии данного заболевания.

Гебефреническая шизофрения

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Генетика – это наука, изучающая закономерности наследования генетической информации и изменчивость организмов. Основоположник генетики – австрийский ученый Грегор Мендель.

История развития генетики

Генетика – относительно молодая наука, зародилась она в 19 ст., и развивается до сегодняшних дней.

Что такое генетика

Выделяют три основных этапа в развитии генетики:

Этап I

Этап II

Второй этап начался с изучения генетики на клеточном уровне. Исследуя строение клетки, удалось установить, что гены являются участками гомологичных хромосом, которые в процессе деления распределяются между дочерними клетками. В этот период Т.Г.Морганом было открыто явление кроссинговера, который играет важную роль в механизме наследственной изменчивости.

Этап III

Третий этап характеризуется достижениями в сфере молекулярных наук, которые позволили изучать закономерности генетики на уровне бактерий и вирусов. Была выдвинута теория, которая гласит, что один ген отвечает за один фермент. Фермент катализирует определенную реакцию, среди множества других, которая отвечает за формирование признака.

В 50-60 годах прошлого столетия Ф.Крик и Дж.Уотсон разработали модель ДНК, которая представляла собой двойную спираль, она дала возможность проследить репликацию молекулы ДНК. Это открытие стало выдающимся событием века.

В XXI веке начала развиваться генная инженерия, которая дает возможность создавать собственные генетические системы. Это позволило выделять гены из одних участков и внедрять их в генетический аппарат других организмов. Так генная инженерия стала занимать важное место в селекции растений и животных, в медицине при изучении врожденных заболеваний, аномалий развития.

Основные понятия генетики

Наследственность — способность одного поколения живых организмов передавать свои характеристики следующему.

Изменчивость — приобретение потомством отличительных признаков в процессе индивидуального развития.

Признаки — особые черты строения организма, которые формируются на протяжении жизни и зависят от генетического фона и условий окружающей среды.

Фенотип — совокупность всех внешних и внутренних признаков организма.

Генотип — набор генов, унаследованных от родителей, которые под влиянием внешних факторов определяют фенотип организма.

Аллельные гены — гены, занимающие одинаковые локусы в гомологичных хромосомах.

Гомозиготы— особи, несущие аллельные гены с одинаковой молекулярной основой.

Гетерозиготы — особи, несущие аллельные гены различной молекулярной структуры.

Законы и понятия генетики

Законы и понятия генетики

Законы генетики

Основные законы были сформулированы Менделем, которые он вывел опытным путем, исследуя закономерности наследования на растениях.

Закон единообразия гибридов первого поколения.

Суть закона заключается в следующем: если скрестить два гомозиготных организма, которые кодируют разное проявление одного признака, то потомки в первом поколении будут единообразны. Аллель, который проявился, является доминантным, он подавляет рецессивный признак.

Определить это явление Менделю удалось, используя чистые линии гороха с белыми и пурпурными цветами. После скрещивания, все потомство имело пурпурный окрас цветков.

Закон расщепления.

Скрещивание гетерозигот, полученных в первом поколении, дает расщепление по такому принципу:

Так, менделевский закон подтвердил, что рецессивные признаки никак не изменяются и не теряются, а просто не проявляются в сочетании с доминантным геном.

Закон независимого наследования признаков.

Скрещивание двух гетерозиготных особей, которые отличаются более чем по двум признакам, дает поколение с разнообразной и независимой комбинацией генов.

Разделы генетики

Классическая генетика изучает закономерности передачи генов.

Цитогенетика исследует структуру хромосом и их участие в передаче наследственной информации.

Молекулярная генетика исследует молекулярные основы наследования признаков путем изучения строения ДНК и РНК.

Биохимическая генетика направлена на изучение влияния генетических факторов на биохимические процессы в живом организме.

Медицинская генетика – изучает наследственные заболевания и разрабатывает эффективное лечение.

Значение генетики

Все чаще рождаются дети с наследственными аномалиями развития. Врожденная патология сказывается на деятельности жизненно важных органов и приводит к росту ранней детской смертности.

Неблагоприятная экологическая обстановка вредные привычки родителей приводят к разного рода мутациям, которые сказываются на здоровье человека.

На сегодняшний день ученые-генетики сделали много открытий в области медицины, селекции животных и растений, что позволяет целенаправленно влиять на наследственность организмов, предотвращая мутационные процессы.

Многие заболевания, как показали исследования, носят генетическую природу:

  • Увеличение количества хромосом (синдром Клайнфельтера);
  • уменьшение (синдром Шерешевского-Тернера);
  • болезни сцепленные с хромосомами (гемофилия, дальтонизм);
  • нарушения обмена веществ (галактоземия).

Теперь, зная причину развития заболевания, ученые разрабатывают методы предотвращения мутаций, которые ведут к врожденным аномалиям.

Селекция животных и растений уже стала самостоятельной наукой, но в основе ее лежат генетические закономерности наследования. Новые сорта растений с высокой урожайностью, ценные породы животных удалось получить, используя законы наследственности и изменчивости.

Фармацевтическая промышленность не обходится без генетической инженерии. Продукция антибиотиков стала возможной благодаря генетической модификации микроорганизмов-продуцентов. Так удалось многократно увеличить скорость синтеза лекарственных средств и уменьшить затраты на производство.

Читайте также: