Временная дискретизация это кратко

Обновлено: 02.07.2024

Дискретизация – переход от непрерывного сигнала к близкому (в определенном смысле) дискретному сигналу, описываемому разрывной функцией времени. Пример дискретного сигнала – последовательность коротких импульсов с изменяющейся амплитудой (последняя выступает в данном случае в качестве информативного параметра).

Обработка и передача дискретной информации имеет ряд преимуществ по сравнению с информацией, заданной в непрерывном виде. Дискретные сигналы в меньшей степени подвержены искажениям в процессе передачи и хранения, они легко преобразуются в двоичный цифровой код и обрабатываются с помощью цифровых вычислительных устройств.

Процесс дискретизации состоит обычно из двух этапов: дискретизации по времени и дискретизации (квантования) по уровню.

Дискретизация аналогового сигнала по времени – процесс формирования выборки аналогового сигнала в моменты времени, кратные периоду дискретизирующей последовательности ∆t.

Дискретизирующая последовательность – периодическая последовательность отсчетов времени, задающая сетку дискретного времени.

Период дискретизации ∆t – интервал времени между двумя последовательными отсчетами аналогового сигнала (шаг дискретизации по времени).

При выборе частоты дискретизации по времени можно воспользоваться теоремой В.А. Котельникова.

Теорема отсчетов (теорема Котельникова) – теорема, определяющая выбор периода дискретизации ∆t аналогового сигнала в соответствии с его спектральной характеристикой.

Согласно теореме, всякий непрерывный сигнал, имеющий ограниченный частотный спектр, полностью определяется своими дискретными значениями в моменты отсчета, отстоящие друг от друга на интервалы времени ∆t = l/(2Fmax), где Fmax – максимальная частота в спектре сигнала. Иначе, дискретизация по времени не связана с потерей информации, если частота дискретизации f дискр = 1/∆t в два раза выше указанной верхней частоты сигнала Fmax.

Согласно теореме Котельникова, нет необходимости передавать бесконечное множество всех значений непрерывного сигнала x(t), достаточно передавать лишь те его значения (рис. 3.52), которые отстоят друг от друга на расстоянии ∆t = l/(2Fmax). Для восстановления сигнала x(t) на вход идеального фильтра низких частот, имеющего полосу пропускания частот от 0 до Fmsx, необходимо подать последовательность узких импульсов с амплитудой, соответствующей дискретным отсчетам сигнала x(ti) в моменты времени ti = it.


Рис. 3.52. Дискретные отсчеты сигнала

Поскольку теорема отсчетов (теорема Котельникова) сформулирована для сигнала с ограниченным спектром, а реальные сигналы имеют неограниченную спектральную плотность, то при расчетах ∆t =1/(2Fmax) используют приближенное значение Fmax (например, активную ширину спектра, определенную по амплитудному критерию, по критерию 90%-ного содержания энергии или средней мощности сигнала). Кроме того, и идеальный фильтр низких частот, необходимый для восстановления сигнала в соответствии с теоремой, является физически нереализуемым, так как предъявляемые к нему требования (идеально прямоугольная форма амплитудно-частотной характеристики, отсутствие фазового сдвига в рассматриваемой полосе частот от 0 до Fmax) оказываются противоречивыми и могут выполняться лишь с определенной погрешностью. Учитывая сказанное, частоту дискретизации по времени обычно принимают в 1,5–2,5 раза больше значения, рассчитанного по теореме Котельникова.

Более полно учитывая свойства реальных сигналов (конечная длительность, неограниченность спектра), критерий Железнова тем не менее исходит из допущения о равенстве нулю корреляционной функции сигнала Кх(φ) вне интервала [-φ0; φ0], что на практике выполняется с определенной погрешностью.

В тех случаях, когда имеется более подробная информация о законе изменения сигнала, выбор частоты дискретизации можно осуществлять исходя из допустимой погрешности аппроксимации функции x(t) на каждом из интервалов дискретизации. На рис. 3.53 дан пример кусочно-линейной аппроксимации, когда соседние отсчеты функции x(t), взятые в дискретные моменты времени ti и ti+1, соединяются отрезками прямых.


Рис. 3.53. Кусочно-линейная аппроксимация

Дискретизация сигнала по уровню – процесс отображения бесконечного множества значений аналогового сигнала на некоторое конечное множество (определяемое числом уровней квантования).

Отличительной особенностью дискретизации по уровню является замена непрерывной шкалы уровней сигнала x(t) дискретной шкалой хi (i = 1, 2, . m), в которой различные значения сигнала отличаются между собой не менее чем на некоторое фиксированное (или выбираемое в процессе квантования) значение ∆t, называемое шагом квантования.

Шаг квантования – величина, равная интервалу между двумя соседними уровнями кванто-вания (определена только для случая равномерного квантования).

Необходимость квантования вызвана тем, что цифровые вычислительные устройства могут оперировать только с числами, имеющими конечное число разрядов. Таким образом, квантование представляет собой округление передаваемых значений с заданной точностью. При равномерном квантовании (∆x=const) число разрешенных дискретных уровней х составляет

m = (xmax – xmin)/∆x,

где xmax и xmin – соответственно верхняя и нижняя границы диапазона изменения сигнала.

Ошибка квантования – величина, определяемая как ξ(х) = ххдi, где х – кодируемая дискретная величина, хдi– дискретизированный сигнал.

Шум квантования – случайная функция времени, определяемая как зависимость ошибки квантования от времени.

Чем меньше значение ∆х, тем меньше получаемая ошибка. Если в результате квантования любое из значений сигнала x(t), попавшее в интервал (хдi - ∆х/2; хдi + хдi х/2), округляется до хд, то возникающая при этом ошибка ξ(х) не превышает половины шага квантования, т.е. mах|ξ(х)|=0,5∆х. На практике шаг квантования ∆х выбирают исходя из уровня помех, в той или иной форме присутствующих при измерении, передаче и обработке реальных сигналов.

Если функция x(t) заранее неизвестна, а шаг квантования ∆х достаточно мал по сравнению с диапазоном изменения сигнала (хmax – хmin), то принято считать ошибку квантования ξ(х) случайной величиной, подчиняющейся равномерному закону распределения. Тогда, как показано на рис. 3.54, плотность вероятности f1(ξ) для случайной величины ξ, принимает значение 1/(∆х) внутри интервала (-∆х/2; +∆х/2) и равна нулю вне этого интервала.


Рис. 3.54. Равномерный закон распределения ошибки квантования

При ∆x=const относительная погрешность квантования ∆х=ξ(х)/х существенно зависит от текущего значения сигнала x(t). В связи с этим при необходимости обработки и передачи сигналов, изменяющихся в широком диапазоне, нередко используется неравномерное (нелинейное) квантование, когда шаг ∆х принимается малым для сигналов низкого уровня и увеличивается с ростом соответствующих значений сигнала (например ∆х выбирают пропорционально логарифму значения |x(t)|). Выбор шага ∆хi =хдi – хдi-1 осуществляется еще и с учетом плотности распределения случайного сигнала (для более вероятных значений сигнала шаг квантования выбирают меньшим, для менее вероятных – большим). Таким образом удается обеспечить высокую точность преобразования при ограниченном (не слишком большом) числе разрешенных дискретных уровней сигнала x(t).

– можно воспользоваться двоичным (бинарным) представлением амплитуды сигнала с m = 2, но тогда потребуется комбинация длины n = 10 (210=1024, так что некоторые комбинации здесь не использованы).

Временная дискретизация это математический метод, применяемый к преходящий проблемы, возникающие в области прикладной физики и техники.

Переходные проблемы часто решаются путем моделирования с использованием компьютерная инженерия (CAE), требующие дискретизирующий определяющие уравнения как в пространстве, так и во времени. Такие проблемы нестабильны (например, проблемы с потоком), и поэтому требуются решения, в которых положение меняется в зависимости от времени. Временная дискретизация включает интеграция каждого члена в различных уравнениях за временной шаг (Δт).

Пространственная область может быть дискретизирована для получения полудискретной формы: [1]

Если дискретизация выполняется с использованием обратные отличия, временная дискретизация первого порядка задается как: [2]

И второго порядка дискретизация дается как:

φ = а скаляр количество. п + 1 = значение на следующем временном уровне, т + Δт. п = значение на текущем временном уровне, т. п - 1 = значение на предыдущем временном уровне, т - Δт.

Содержание

Описание

Временная дискретизация осуществляется через интеграция с течением времени по общему дискретизированному уравнению. Во-первых, значения при заданном контрольном объеме п в интервале времени т принимаются, а затем находится значение на временном интервале t + Δt. Этот метод утверждает, что интеграл по времени заданной переменной равен средневзвешенному между текущими и будущими значениями. В интеграл форму уравнения можно записать как:

куда ƒ это вес от 0 до 1.

ƒ = 0,0 приводит к полностью явная схема. ƒ = 1.0 приводит к полностью неявная схема. ƒ = 0,5 приводит к Схема Кранка-Николсона.

Для любого контрольного объема это интегрирование справедливо для любой дискретизированной переменной. Следующее уравнение получается при применении к основному уравнению, включая полностью дискретизированное распространение, конвекция, и источник термины. [4]

Методы оценки функции F ( φ < displaystyle varphi>)

Неявная интеграция во времени

Этот метод оценивает функцию F( φ < displaystyle varphi>) в будущем.

Формулировка

Оценка с использованием неявного интегрирования по времени дается как:

В случае неявного метода установка безусловно устойчива и может обрабатывать большой временной шаг (Δт). Но стабильность не означает точность. Следовательно, большие Δт влияет на точность и определяет временное разрешение. Но поведение может включать в себя физические временные рамки, которые необходимо решить.

Явная интеграция по времени

Формулировка

Оценка с использованием интеграции с явным временем дается как:

Примеры

Во многих схемах используется интеграция с явным временем. Вот некоторые из них:

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Кодирование звука Временная дискретизация

Описание презентации по отдельным слайдам:

Кодирование звука Временная дискретизация

Кодирование звука Временная дискретизация

l λ Непрерывная звуковая волна Длина волны. Величина обратная частоте. Чем он.

l λ Непрерывная звуковая волна Длина волны. Величина обратная частоте. Чем она больше, тем звук ниже Амплитуда колебаний. Чем она больше, тем звук громче

Основные характеристики звука Длина волны и частота: l = 1/υ Чем больше длин.

Основные характеристики звука Длина волны и частота: l = 1/υ Чем больше длина волны, тем меньше частота. Измеряется в количестве колебаний в секунду (1/сек) Амплитуда колебаний. Соответствует громкости звука. Громкость измеряется в децибелах (дБ)

Громкость звука Звук Громкость Нижний предел чувствительности человеческого у.

Громкость звука ЗвукГромкость Нижний предел чувствительности человеческого уха0 дБ Шорох листьев10 дБ Разговор60 дБ Гудок автомобиля90 дБ Реактивный двигатель120 дБ Болевой порог140 дБ

Временная дискретизация звука Процесс разбиения непрерывной звуковой волны на.

Временная дискретизация звука Процесс разбиения непрерывной звуковой волны на отдельные (дискретные) временные участки, для которых может быть установлены различные уровни громкости

Частота дискретизации Для записи аналогового сигнала и его преобразования в ц.

Частота дискретизации Для записи аналогового сигнала и его преобразования в цифровую форму используется микрофон, подключенный к звуковой карте Качество звука зависит от количества измерений уровня звука в секунду Количество измерений уровня звука в единицу времени называется частотой дискретизации Частота дискретизации лежит в диапазоне от 8 000 до 48 000 измерений в секунду

Глубина дискретизации Каждому дискретному временному отрезку – каждой «ступен.

Пример Известна глубина кодирования – 16 бит (I). Рассчитать количество возмо.

Пример Известна глубина кодирования – 16 бит (I). Рассчитать количество возможных уровней громкости внутри одного измерения звука (N) По формуле N = 2I находим: N = 216 = 65 536 Каждому уровню громкости присваивается одно из 65 536 значений, которое кодируется двоичными числами от 0000 0000 0000 0000 (минимальный уровень) до 1111 1111 1111 1111 (максимальный уровень)

Вопрос: назовите основные характеристики аналогового звука Частота (количеств.

Вопрос: назовите основные характеристики аналогового звука Частота (количество вершин на единицу длины оси абсцисс) От нее зависит высота тона звука. Измеряется в 1/сек Амплитуда (высота вершин на графике – координаты по оси ординат) От нее зависит громкость звука Измеряется в децибелах

Вопрос: назовите основные характеристики цифрового звука Частота дискретизаци.

Качество оцифрованного звука Чем больше величина частоты и глубины дискретиз.

Качество оцифрованного звука Чем больше величина частоты и глубины дискретизации, тем более близким к аналоговому сигналу будет приближаться цифровой звук, и тем выше будет качество звука

Качество оцифрованного звука Совокупная характеристика качества цифрового зву.

Качество оцифрованного звука Совокупная характеристика качества цифрового звука – профессиональный термин звукорежиссеров и DJ’ев – битрейт, представляет собой произведение количества каналов на частоту и на глубину дискретизации . Измеряется: бит  1/сек = бит/сек

Качество оцифрованного звука Самое низкое качество цифрового звука (качество.

Качество оцифрованного звука Самое низкое качество цифрового звука (качество телефонной связи) соответствует: 8 000 измерений в секунду (1/сек) 8 бит глубины звука Один канал (моно) Битрейт: 1  8  8000 = 64000 = 62,5 кбит/сек

Качество оцифрованного звука Самое высокое качество цифрового звука (аудио-CD.

Качество оцифрованного звука Самое высокое качество цифрового звука (аудио-CD) соответствует: 48 000 измерений в секунду (1/сек) 16 бит глубины звука Два канала (стерео) Битрейт: 48 000  16  2 = 1 536 000 ≈ 1,5 Мбит/сек Современные аудиосистемы кроме стерео поддерживают т.н. квадрозвук – 4 канала

Информационный объем звукового файла Чем выше качество звука, тем больше треб.

Информационный объем звукового файла Чем выше качество звука, тем больше требуется дискового пространства для его хранения и оперативной памяти для его обработки. Информационный объем определяется как произведение глубины и частоты дискретизации на длительность воспроизведения и на количество каналов (или произведение битрейта на длительность)

Пример Определить информационный объем 5-секундной стереозвуковой дорожки с г.

Пример Определить информационный объем 5-секундной стереозвуковой дорожки с глубиной кодирования 16 бит и частотой дискретизации 24 000 1/с Решение: 16 бит  24 000 1/сек  5 сек  2 (канала) = = 3 840 000 бит = 468,75 кБ

Программное обеспечение для работы со звуком Различают: Средства записи звука.

Программное обеспечение для работы со звуком Различают: Средства записи звука Звуковые редакторы Плееры

Хранение цифрового звука В виде аудиотреков на аудио-CD В виде звуковых файлов

Хранение цифрового звука В виде аудиотреков на аудио-CD В виде звуковых файлов

Хранение цифрового звука. Audio Track Аудиотрек представляет собой формат зап.

Хранение цифрового звука. Audio Track Аудиотрек представляет собой формат записи звука в виде непрерывного цифрового потока. Аналогично звуковым дорожкам на виниловых дисках. Звук хранится без сжатия. Аудиодорожка воспринимается компьютером, как файл с расширением *.cda (Compact Disk Audio). Он хорошо воспроизводится плеером, но его нельзя скопировать.

Хранение цифрового звука. Звуковые файлы Наиболее распространенные форматы зв.

Хранение цифрового звука. Звуковые файлы Наиболее распространенные форматы звуковых файлов: wav (wave) wma (Windows Media Audio) mid (midi) mp3 и др. Из них только wav хранит несжатый звук, все остальные используют сжатие

Сжатие звуковой информации При сохранении звука в форматах со сжатием происхо.

Сжатие звуковой информации При сохранении звука в форматах со сжатием происходит отбрасывание не воспринимаемых человеческим ухом частот с малой амплитудой. Сжатие до десятков раз Потеря информации, что может привести к ухудшению качества звука

Работа со сжатым звуком При работе со сжатым звуком файл сначала распаковывае.

Работа со сжатым звуком При работе со сжатым звуком файл сначала распаковывается и только потом поступает на обработку плеером или редактором. Для распаковки/сжатия аудио применяются специальные программы аудиокодеки (Audio Coder/Decoder)

Задание 1 Звуковая плата производит кодирование аналогового звукового сигнала.

Задание 1 Звуковая плата производит кодирование аналогового звукового сигнала. Какое количество информации необходимо для кодирования каждого из 65 536 возможных уровней громкости сигнала? Решение: 2i = 65 536 216 = 65 536 I = 16

Задание 2 Определить информационный объем 10-секундной звуковой дорожки при.

Задание 2 Определить информационный объем 10-секундной звуковой дорожки при: Моно, 8 бит, 8 000 измерений Стерео, 16 бит, 48 000 измерений Решение: 1  8  8 000  10 = 640 000 = 78,1 (кБ) 2  16 48 000  10 = 15 360 000 = 1,83 (МБ)

*Задание 3 Определить длительность звукового файла, который может уместиться.

*Задание 3 Определить длительность звукового файла, который может уместиться на дискете 3,5’’. Учесть, что для хранения данных на дискете доступно 2 847 секторов, объемом 512 байт каждый. Моно, 8 бит, 8 000 измерений Стерео, 16 бит, 48 000 измерений

*Задание 3. Решение Секторов Объем сектора Вместимость дискеты, бит 2 847 51.

*Задание 3. Решение СекторовОбъем сектораВместимость дискеты, бит 2 8475122 847  512  8 = 11 661 312 Каналов ГлубинаЧастотаБитрейтДлит-ть, сек a)188 00064 000182,2 b)21648 0001 536 0007,6

Задание 4 Подсчитать, сколько места будет занимать одна минута цифрового стер.

Задание 4 Подсчитать, сколько места будет занимать одна минута цифрового стереозвука с частотой 44.1 кГц и разрядностью 16 бит Решение. Число каналов: 2 Длительность звучания: 60 сек Частота дискретизации: 44,1 * 1 000 = 44 100 Гц (44 100 1/сек) Разрядность: 16 бит Информационный объем: 2 * 60 * 44 100 * 16 = = 84 672 000 бит = = 10 584байт ≈ 10 Мб

Задание 5 Подсчитать, сколько места будет занимать две минуты цифрового стере.

Задание 5 Подсчитать, сколько места будет занимать две минуты цифрового стереозвука с частотой 11 кГц и разрядностью 16 бит Решение. Число каналов: 2 Длительность звучания: 2 * 60 = 120 сек Частота дискретизации: 11 * 1 000 = = 11 000 Гц (11 000 1/сек) Разрядность: 16 бит Информационный объем: 2 * 120 * 11 000 * 16 = = 42 240 000 бит = = 5 280 000байт ≈ 5 Мб

Задание 6 Подсчитать, сколько места будет занимать семь минут цифрового моноз.

Задание 6 Подсчитать, сколько места будет занимать семь минут цифрового монозвука с частотой 22 кГц и разрядностью 8 бит Решение. Число каналов: 1 Длительность звучания: 7 * 60 = 420 сек Частота дискретизации: 22 * 1 000 = = 22 000 Гц (22 000 1/сек) Разрядность: 8 бит Информационный объем: 1 * 420 * 22 000 * 8 = = 73 920 000 бит = = 9 240 000 байт ≈ 8,8 Мб

Задание 7 Подсчитать, сколько места будет занимать три минуты цифрового стере.

Задание 7 Подсчитать, сколько места будет занимать три минуты цифрового стереозвука с частотой 32 кГц и разрядностью 8 бит Решение. Число каналов: 2 Длительность звучания: 3 * 60 = 180 сек Частота дискретизации: 32 * 1 000 = = 32 000 Гц (32 000 1/сек) Разрядность: 8 бит Информационный объем: 2 * 180 * 32 000 * 8 = = 92 160 000 бит = = 11 520 000 байт ≈ 11 Мб

Задание 8 Какой объем данных имеет моноаудиофайл, длительность звучания котор.

Задание 8 Какой объем данных имеет моноаудиофайл, длительность звучания которого 1 секунда, при среднем качестве звука (16 бит, 24 кГц)? Решение. Число каналов: 1 Длительность звучания: 1 с Частота дискретизации: 24 * 1 000 = = 24 000 Гц (24 000 1/сек) Разрядность: 16 бит Информационный объем: 1 * 1 * 24 000 * 16 = = 384 000 бит = = 48 000 байт ≈ 47 кб

Задание 9 Рассчитайте объем стереоаудиофайла длительностью 20 секунд при 20-б.

Задание 9 Рассчитайте объем стереоаудиофайла длительностью 20 секунд при 20-битном кодировании и частоте дискредитации 44.1 кГц. Решение. Число каналов: 2 Длительность звучания: 20 с Частота дискретизации: 44,1 * 1 000 = = 44 100 Гц (44 100 1/сек) Разрядность: 20 бит Информационный объем: 2 * 20 * 44 100 * 20 = = 35 280 000 бит = = 4 410 000 байт ≈ 4,2 Мб

Задание 10 Определите количество уровней звукового сигнала при использовании.

Задание 11 Подсчитать объем файла с 10 минутной речью записанного с частотой.

Задание 11 Подсчитать объем файла с 10 минутной речью записанного с частотой дискретизации 11 025 Гц и разрядностью кода 4 бита на 1 измерение. Решение. Число каналов: речь принято записывать в режиме моно (1 канал) Длительность звучания: 10 * 60 = 600 сек Частота дискретизации: 11 025 Гц (11 025 1/сек) Разрядность: 4 бит Информационный объем: 1 * 600 * 11 025 * 4 = = 26 460 000 бит = = 3 307 500 байт ≈ 3,15 Мб

Задание 12 Подсчитать время звучания звукового файла объемом 3,5 Мбайт, содер.

Задание 12 Подсчитать время звучания звукового файла объемом 3,5 Мбайт, содержащего стереозапись с частотой дискретизации 44 100 Гц и разрядностью кода 16 бит на 1 измерение Решение. Число каналов: 2 Длительность звучания: Х Частота дискретизации: 44 100 Гц (44 100 1/сек) Разрядность: 16 бит Информационный объем: 2 * Х * 44 100 * 16 = 3,5 (Мб) 1 411 200*Х = 29 360 128 Х = 20,8 (сек)

Задание 13 В распоряжении пользователя имеется память объемом 2,6 Мб. Необход.

Задание 13 В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретизации и разрядность? Решение. Число каналов: X. Пусть Х=1 Длительность звучания: 60 сек Частота дискретизации: Y Разрядность: Z (8 или 16) Информационный объем: 2,6Мб = 21 810 381 бит 1 * 60 * Y * Z = 21 810 381 YZ = 363 506,35 При Y=8 Z=45438 Гц = 45,44 кГц ≈ 44,1 кГц (standard) При Y=8 Z=22719 Гц = 22,72 кГц ≈ 22,05 кГц (standard)

Задание14 Объем свободной памяти на диске 5,25 Мб, разрядность звуковой платы.

Задание14 Объем свободной памяти на диске 5,25 Мб, разрядность звуковой платы 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 22,05 кГц? Решение. Число каналов: неизвестно, принимаем 1 Длительность звучания: Х Частота дискретизации: 22,05 * 1 000 = 22 500 Гц Разрядность: 16 бит Информационный объем: 5,25 Мб = 44 040 192 бит 1 * Х * 22500 * 16 = 5,25 (Мб) 360 000*Х = 44 040 192 Х = 122,3 (сек)

Задание 12 Одна минута записи цифрового аудиофайла занимает на диске 1,3 Мб.

Задание 12 Одна минута записи цифрового аудиофайла занимает на диске 1,3 Мб, разрядность звуковой платы 8. С какой частотой дискретизации записан звук? Решение. Число каналов: X. Пусть Х=1 Длительность звучания: 60 сек Частота дискретизации: Y Разрядность: 8 бит Информационный объем: 1 * 60 * Y * 8 = 1,3 (Мб) 480Y = 10 905 190 (бит) Х ≈ 22 719 (бит/сек)   Х ≈ 22,05 кБит/сек (st.)

Краткое описание документа:

Информа́тика (фр. Informatique; англ. Computer science) — наука о методах и процессах сбора, хранения, обработки, передачи, анализа и оценки информации с применением компьютерных технологий, обеспечивающих возможность её использования для принятия решений [1] .

Информатика включает дисциплины, относящиеся к обработке информации в вычислительных машинах и вычислительных сетях: как абстрактные, вроде анализа алгоритмов, так и конкретные, например разработка языков программирования и протоколов передачи данных.

Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.

Таким образом, непрерывная зависимость громкости звука от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность "ступенек" (рис. 1.2).


Рис. 1.2. Временная дискретизация звука

Частота дискретизации. Для записи аналогового звука и г го преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т. е. частоты дискретизации. Чем большее количество измерений производится за I секунду (чем больше частота дискретизации), тем точнее "лесенка" цифрового звукового сигнала повторяет кривую диалогового сигнала.

Частота дискретизации звука - это количество измерений громкости звука за одну секунду.

Частота дискретизации звука может лежать в диапазоне от 8000 до 48 000 измерений громкости звука за одну секунду.

Глубина кодирования звука. Каждой "ступеньке" присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации I, которое называется глубиной кодирования звука.

Глубина кодирования звука - это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.

Если известна глубина кодирования, то количество уровней громкости цифрового звука можно рассчитать по формуле N = 2I. Пусть глубина кодирования звука составляет 16 битов, тогда количество уровней громкости звука равно:

N = 2I = 216 = 65 536.

В процессе кодирования каждому уровню громкости звука присваивается свой 16-битовый двоичный код, наименьшему уровню звука будет соответствовать код 0000000000000000, а наибольшему - 1111111111111111.

Качество оцифрованного звука. Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим "моно"). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим "стерео").

Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла. Можно оценить информационный объем цифрового стереозвукового файла длительностью звучания 1 секунда при среднем качестве звука (16 битов, 24 000 измерений в секунду). Для этого глубину кодирования необходимо умножить на количество измерений в 1 секунду й умножить на 2 (стереозвук):

16 бит × 24 000 × 2 = 768 000 бит = 96 000 байт = 93,75 Кбайт.

Звуковые редакторы. Звуковые редакторы позволяют не только записывать и воспроизводить звук, но и редактировать его. Оцифрованный звук представляется в звуковых редакторах в наглядной форме, поэтому операции копирования, перемещения и удаления частей звуковой дорожки можно легко осуществлять с помощью мыши. Кроме того, можно накладывать звуковые дорожки друг на друга (микшировать звуки) и применять различные акустические эффекты (эхо, воспроизведение в обратном направлении и др.).

Звуковые редакторы позволяют изменять качество цифрового звука и объем звукового файла путем изменения частоты дискретизации и глубины кодирования. Оцифрованный звук можно сохранять без сжатия в звуковых файлах в универсальном формате WAV или в формате со сжатием МР3.

При сохранении звука в форматах со сжатием отбрасываются "избыточные" для человеческого восприятия звуковые частоты с малой интенсивностью, совпадающие по времени со звуковыми частотами с большой интенсивностью. Применение такого формата позволяет сжимать звуковые файлы в десятки раз, однако приводит к необратимой потере информации (файлы не могут быть восстановлены в первоначальном виде).

Заключение

За недолгое время компьютер из вычислительного устройства превратился в устройство для обработки многих видов информации: текстовой, графической, звуковой; с помощью компьютера информация упаковывается и шифруется, путешествует по различным каналам связи и может быть доставлена в любой уголок мира. Современный человек уже не представляет свою деятельность без применения компьютера.

Источники

Список литературы.

1)Молодцов В. А., Рыжикова Н. Б. Современные открытые уроки информатики. 8 - 11-е классы. Издательство 2-е

2)Угринович Н. Д. Информатика и ИКТ. Базовый курс: Учебник для 8 класса

3)Информатика. Методическое пособие для учителей. 8 класс / Под редакцией профессора Н. В. Макаровой. – СПБ: Питер, 2004.

Читайте также: