Внутриклеточное движение биологической информации кратко

Обновлено: 07.07.2024

Изучение динамических процессов, происходящих в клетке во время жизни, является по-прежнему одной из наиболее трудных и увлекательных областей исследований современной науки. Она содержит множество тайн, и каждая раскрытая тайна спасает сотни тысяч жизней, поскольку дает ключ к созданию уникальных способов сохранения здоровья и улучшения самочувствия человека. Именно поэтому над раскрытием тайн природы, заложенных в клетке, сегодня трудятся не только биологи и генетики, но и биофизики, биохимики, системные аналитики, специалисты в области информатики, лингвистики и других областей знаний.

Клетка является сложной физической системой. В один и тот же момент времени в ней происходят десятки тысяч разнообразных динамических процессов. Для их изучения ученые используют модели. Модель клетки должна отражать свойства и функции живой клетки. Например, свойство клетки приспосабливаться при изменении параметров внешней среды (температуры, давления, влажности воздуха и других). Однако ни в какой модели нельзя учесть все свойства реальной клетки. Даже если бы нам и удалось встроить в модель значительную часть этих свойств, то задача получилась бы столь сложной, что решение ее было бы чрезвычайно затруднено или даже вовсе невозможно.

Тем не менее, ученые постоянно трудятся над созданием различных моделей, обладающих свойствами живой системы. По совокупности процессов, происходящих в клетке, ее можно сравнить с биороботом, наделенным, с точки зрения современной науки, фантастически совершенными свойствами: самовоспроизведения, самообучения и самонастройки.

В технике робот представляет собой информационно-вычислительный комплекс. Систему его функционирования можно разделить условно на пять основных подсистем: техническую, программную, лингвистическую, информационную и организационную. В свою очередь данные подсистемы можно разделить на два класса. Первый класс включает техническую подсистему, представляющую собой материальные средства комплекса (специалисты называют их “железом”), и второй класс – остальные четыре подсистемы, отвечающие за организацию информационного процесса.

Аналогом технической подсистемы в клетке являются ее биологическая субстанция, имеющая определенную форму и строение. В качестве строительного материала в ней используются органические вещества (биополимеры). Подробно об этом написано в разделе 1.3.2. Второй класс объединяет подсистемы, отвечающие за организацию динамических процессов – информационную жизнь клетки. Устройство клетки является настолько сложным, что воспроизвести искусственно подобную ей систему не по силам ни одной лаборатории мира.

В последние полвека ученые создали немало моделей разных искусственных систем: самолетов, ядерных реакторов, роботов. Более сложным оказалось моделирование природных явлений. Одним из таких примеров является моделирование процессов, позволяющее предсказывать погоду. Опыт, накопленный при проведении таких работ, позволил разработать общую теорию систем, обобщающую и раскрывающую фундаментальные свойства сложных объектов.

Для упрощения понимания протекания внутриклеточных процессов используем разные подходы к рассмотрению динамических процессов (биофизических, биохимических, энергетических, информационных). При этом мы будем вынуждены в большей или меньшей степени идеализировать свойства описываемой системы, учитывая только те решающие факторы, которые определяют черты поведения, обусловленные конкретным видом динамических процессов. Данный подход к рассмотрению вопроса позволит представить нам общие свойства клеток, тканей, органов или систем органов, организма в целом как системы.

Клетка является сложной открытой динамической системой, содержащей множество входов и выходов (смотри рисунок 1.4.1).

Рисунок 1.4.1. Системная модель клетки. Общие входы и выходы

В процессе жизнедеятельности клетка выполняет две основные задачи: обеспечивает поддержание стабильности жизнеобеспечения клеточной системы и реализует специфические функции, присущие определенному виду клеток (смотри рисунок 1.4.2).

Рисунок 1.4.2. Системная модель клетки. Разделение функций клетки

Основные функции клетки =
поддержание стабильности
подсистемы жизнеобеспечения +
выполнение специфических функций

Поддержание стабильности подсистемы жизнеобеспечения происходит за счет выработки энергии, трансмембранного переноса вещества, синтеза клеточных и тканевых структур, размножения клеток.

Выработка необходимой для жизни клетки и организма в целом энергии происходит в процессе протекания процессов распада клеточных и тканевых структур (катаболизма), а также сложных соединений, содержащих энергию.

Трансмембранный перенос веществ обеспечивает поступление на входы клетки необходимых веществ и выведение через ее выходы продуктов обмена и веществ, используемых другими клетками организма.

В процессе синтеза тканевых и клеточных структур, а также необходимых для жизнедеятельности соединений (анаболизма) энергия расходуется и накапливается. С пищей питательные вещества поступают, как правило, в виде продуктов, образующихся в результате гидролиза белков, жиров и углеводов. К ним относятся моносахара, аминокислоты, жирные кислоты и моноглицериды. Процесс синтеза обеспечивает восстановление структур клетки, подвергающихся распаду.

Размножение клеток в организме обеспечивает его рост и развитие, восстановление клеточных структур, способствует сохранению целостной структуры и нормальному функционированию организма.

Жизнедеятельность самой клетки обеспечивается взаимодействием всех ее органелл и клеточной мембраны. Как было сказано ранее в разделе 1.3.2, клеточные органеллы находятся в гиалоплазме, состоящей из воды и находящихся в ней различных ионов и органических веществ (глюкозы, аминокислот, белков, фосфолипидов и других). Гиалоплазма составляет внутреннюю среду клетки, обеспечивающую взаимодействие всех клеточных структур посредством транспорта веществ, потребляемых и синтезируемых клеткой. Гиалоплазма также хранит гликоген, липиды, пигменты. Большинство внутренних органелл имеют свои мембраны (ядро, эндоплазматический ретикулум, аппарат Гольджи, митохондрии, лизосомы). Они построены по тому же принципу, что и клеточные мембраны. Некоторые внутриклеточные органеллы не имеют собственной мембраны (рибосомы, микротрубочки, микрофиламенты и промежуточные филаменты). Каждая органелла выполняет свои специфические функции (таблица 1.4.1).

Таблица 1.4.1. Структура и функции основных клеточных элементов

Специфические функции характеризуются выполнением каждой клеткой определенной задачи, которая, в свою очередь, определяется генетически запрограммированным алгоритмом. Например, работа нервных клеток заключается в восприятии сигнала, его передаче, переработке и хранении информации. Возбуждение мембраны нейрона заканчивается выбросом медиатора в синаптическую щель. Таким образом, путем трансформации электрического импульса в химический сигнал происходит передача информации по всем звеньям нервной системы. Каждая секреторная клетка осуществляет синтез и выделение специфических веществ, важных для функционирования организма. В результате секреции выделяются слюна, желудочный и кишечный сок, желчь, молоко, гормоны и другие биологически активные соединения. Секреторные клетки участвуют в работе и регулировании функций многих органов: желудка, поджелудочной железы, щитовидной железы и других. Мышечные клетки в организме выполняют сократительную функцию: сокращения клеток поперечнополосатой мускулатуры обеспечивают работу опорно-двигательного аппарата, гладкой мускулатуры – работу внутренних органов.

В реальности организм человека существует, постоянно подвергаясь воздействию самых разнообразных и изменчивых внешних факторов. К ним могут быть отнесены температура окружающей среды, давление и влажность воздуха, концентрация в атмосфере вредных для организма веществ и так далее. Они могут меняться во времени как закономерным, так и случайным образом. На клеточном уровне схема внешних воздействий приведена на рисунке 1.4.3.

Рисунок 1.4.3. Системная модель клетки. Воздействие внешних факторов

Работа подсистемы жизнеобеспечения характеризуется поддержанием на генетически определенном уровне набора параметров: температура, концентрация белков, содержания воды, уровень кислотно-щелочного равновесия внутри клетки, ее мембранный потенциал и множество других. В процессе эволюции клетка научилась сохранять благоприятную внутреннюю среду, несмотря на изменение внешних условий. Главный механизм клетки как самоорганизующейся системы, способствующий поддержанию определенных величин в физиологически допустимых границах и заложенный в основу подсистемы жизнеобеспечения, называется гомеостатом. Само свойство клетки поддерживать постоянство внутренней среды на генетически заданном уровне называется гомеостазом. Клетка хранит информацию о значениях всех параметров, обеспечивающих ее жизнедеятельность и выполнение свойственных ей функций. Гомеостаз реализуется за счет использования механизма обратной связи (смотри рисунок 1.4.4). Более подробно об этом будет рассказано в разделе “Принципы и алгоритмы регуляции функций организма (информационный подход)”.

Рисунок 1.4.4. Системная модель клетки. Механизм обратной связи

Каждое мгновение жизни клетки характеризуется набором значений текущих параметров (показателей): температурой внутри клетки, концентрацией питательных веществ и других. Совокупность значений этих параметров в некоторый момент времени определяет состояние клетки как системы. Одни из данных параметров поддерживаются на неизменном уровне, другие могут меняться без потери устойчивости системы в целом.

Сам по себе известен и хорошо понятен принцип работы механизма обратной связи. Схема регулирования параметров клетки изображена на рисунке 1.4.4. Но, как внутри клетки одновременно и слаженно (синхронно) работают тысячи таких механизмов, и при этом происходит сравнение их текущих параметров с генетически заданными? Это остается загадкой природы.

Благодаря приспособительным (адаптационным) механизмам физические и химические параметры, определяющие жизнедеятельность клетки, меняются в сравнительно узких пределах, несмотря на значительные изменения внешних условий.

Зоны устойчивости характеризуются пределами изменений значений параметров входных сигналов подсистемы жизнеобеспечения, при которых процессы в клетке протекают нормально. В качестве входных сигналов можно рассматривать количество питательных веществ, содержание кислорода, углекислого газа, гормонов в крови и другие. Внутриклеточные параметры, например показатель кислотно-щелочного равновесия (рН), поддерживаются на заданном относительно постоянном уровне.

В цитоплазме клеток рН составляет 6,7-7,3 (разница, определяющая зону устойчивости, составляет 0,6). Более строгими являются требования к изменению этого показателя со стороны крови: рН крови может изменяться только в пределах 7,35-7,45 (зона устойчивости составляет 0,1, что в 6 раз меньше, чем для рН цитоплазмы клеток).

При отклонении значений этих параметров за пределы зон устойчивости изменяется скорость протекания биохимических реакций, вплоть до торможения. Активность большинства клеточных ферментов зависит от показателя рН, так как при его повышении внутри клеток нарушается структура белка и, в частности, ферментов. Считается, что увеличение рН внутри клеток поджелудочной железы служит одним из сигналов начала реакций запрограммированной их гибели (апоптоза).

Постоянство температуры внутри клетки также способствует оптимальному течению в ней химических реакций. Организм человека удерживает температуру тела на определенном уровне. Жизненные процессы в организме протекают в узких температурных границах: при температуре от 22 °C до 43 °C. Повышение температуры живых тканей выше 45-47 °С сопровождается необратимыми изменениями и прекращением жизни из-за свертывания белков и инактивации ферментов. При температуре ниже 22 °C наступает торможение работы клетки, обусловленное значительным замедлением обмена веществ и энергии.

Функционирование подсистемы, обеспечивающей выполнение специальных функций, также невозможно без механизма обратной связи, поддерживающего гомеостаз в клетке. Например, в системе гормональной регуляции постоянный уровень, в частности, кортикостероидов поддерживается благодаря такому механизму. Гипофиз отслеживает концентрацию данных гормонов в крови и при ее уменьшении выделяет в кровь адренкортикотропный гормон (АКТГ). АКТГ стимулирует образование кортикостероидов в корковом веществе надпочечников, концентрация гормонов увеличивается. При повышенном уровне гормонов, наоборот, идет сигнал на прекращение выработки АКТГ.

Существуют диапазоны колебаний внешних воздействий (температуры окружающей среды, уровня электромагнитных излучений и других), в пределах которых клетка остается устойчивой и работоспособной независимо от времени их воздействия. Приведем несколько примеров зон устойчивости при внешних воздействиях. Зимой и летом, при температуре окружающего воздуха в диапазоне от –70 до +50 °С температура тела человека остается практически постоянной, изменяясь всего на несколько долей градуса. В жаркий день даже небольшое повышение температуры тела дает сигнал к усилению активности потовых желез, кожа становится влажной, испарение воды с ее поверхности способствует охлаждению тела. И напротив, в холодную погоду поверхностные сосуды сужаются, потеря тепла уменьшается, а выработка – увеличивается, возникает защитная реакция – дрожь, “мурашки”.

Внутренние параметры клетки остаются в норме после прекращения действия возмущающего фактора, если он не превысил допустимые пределы. Таким образом, можно выделить допустимые интервалы внешних параметров (температуры, влажности, атмосферного давления, ионизирующего излучения и других), при которых система клеточного гомеостаза поддерживает относительное постоянство внутренней среды то есть возвращает параметры в нормальное состояние, при условии, что внешние воздействия не выводят их значения за пределы зон устойчивости.

Устойчивость в малом, но неустойчивость в большом. Будем говорить, что система устойчива в малом, но неустойчива в большом, если ограниченное изменение входного сигнала (набора входных сигналов) ведет к изменению в ограниченном диапазоне значений выходного сигнала (набора выходных сигналов).

Существование клетки в определенном диапазоне значений параметров хорошо прослеживается при воздействии радиации, или радиоактивного облучения. Учитывая, что каждый человек подвергается воздействию природной радиации, можно проследить, как ионизирующее излучение оказывает воздействие на клетку. Основу этого воздействия составляет передача энергии радиации клеткам организма.

На Земле всегда есть природный радиоактивный фон, который создают космическое излучение и радионуклиды, рассеянные в окружающей среде и всегда находящиеся в живых организмах. Радиация непрерывно воздействует на все живые организмы, в том числе на каждую клетку. Но ее уровень чрезвычайно мал, в среднем 0,2 сГрэй в год для человека, что в миллион раз меньше вредной для организма дозы облучения. Данный природный радиоактивный фон необходим для нормального существования клеточной системы.

Однако случайное облучение радиацией большой мощности способно привести к разрушению, повреждению и изменению определенных клеточных структур (белков, ДНК, РНК и их комплексов), гибели клеток. Большие дозы могут вызвать полное прекращение деления клеток.

К примеру, доказано, что кожа не выдерживает радиоактивного облучения или длительного и интенсивного облучения солнечным светом, так как разрушаются соединительнотканные структуры (коллаген и эластин), обеспечивающие плотность и упругость кожи, появляются признаки преждевременного старения.

Таким образом, если действует внешнее воздействие, при котором клетка теряет устойчивость, и нарушаются допустимые параметры ее существования, то возникает ряд патологических процессов, приводящих к гибели системы клетки в целом.

Управляемость клеточной системы. Каждая система, в том числе и система клетки, в любой момент времени находится в определенном состоянии, характеризуемом набором конкретных значений ряда параметров. Например, на мембранах нервных клеток существует определенная разность потенциалов, изменение которой приводит к возникновению и распространению нервного импульса по аксону. Переход из одного состояния системы в другое осуществляется за счет изменения значений параметров входных сигналов с учетом внешних воздействий. Так поступление внешнего стимула (света, шума) на рецепторную клетку приводит к изменению ее состояния (возбуждению), активации различных биохимических процессов. Будем говорить о том, что система управляема, если за счет изменения значений входных сигналов мы можем перевести ее состояние из начального в заранее определенное. Например, при избыточном поступлении кислорода в организм, происходит увеличение содержания кислорода в крови и соответствующая активация некоторых процессов в клетке (например, дыхания). Клетка начинает усиленно работать. Таким образом, управляемость системы – это способность перевода из текущего состояния в другие запланированные.

В данном разделе были отмечены и рассмотрены общие характеристики клетки как системы. Жизнедеятельность клетки связана с биофизическими, биохимическими, информационными и энергетическими процессами.

В клетке присутствует значительное число разновидностей РНК, принимающих участие во многих жизненно важных процессах. Ранее мы познакомились с РНК-праймерами (см. п. 2.4.5.3), запускающими репликацию ДНК, и snoRNA ядрышек (см. п. 2.4.3.3).

В отличие от ДНК, молекулы рибонуклеиновых кислот представлены единичной полинуклеотидной цепью, по ходу которой, однако, нередко и закономерно образуются двухцепочечные участки. Так, в молекулах транспортных РНК, наряду с пятью одноцепочечными участками, имеется 4 двухцепочечных.

Полинуклеотидная цепь РНК построена из четырех видов нуклео-тидов. Каждый из них представлен пятиуглеродным сахаром рибозой, одним из четырех азотистых оснований (аденин, гуанин, цитозин, урацил) и остатком фосфорной кислоты. Таким образом, отличия между ДНК и РНК касаются сахара (дезоксирибоза/рибоза) и одного из четырех азотистых оснований (тимин/урацил). Все РНК образуются на молекулах ДНК при участии ферментов РНК-полимераз с соблюдением правила комплементарности: адениловому нуклеотиду ДНК соответствует уридиловый нуклеотид РНК, цитидиловому — гуаниловый и гуа-ниловому — цитидиловый. В молекулах РНК встречаются химически модифицированные (неканонические) нуклеотиды (см. здесь же, ниже: например, инозин антикодонов транспортных РНК). Их количество, как правило, невелико (минорные нуклеотиды), но в аланино-вой тРНК на их долю приходится 13\%.

В отличие от репликации, когда обе полинуклеотидных цепи двойной спирали ДНК функционируют в качестве матриц, матрицей для образования РНК служит одна (матричная) полинуклеотидная цепь, комплементарная второй (кодогенной) цепи, на которой, собственно, и расположены гены (рис. 2.31). Таким образом, процесс транскрипции является асимметричным. Особенность матричной цепи ДНК состоит в том, что на ней формируется открытый для РНК-полимеразы 3′-конец.

На рис. 2.31 видно, что с учетом замены тимидиловых (Т) нуклео-тидов на уридиловые (У) последовательность кодонов и(м)РНК идентична последовательности триплетов кодогенной молекулы биспирали

В биосинтезе белков в эукариотических клетках задействованы три типа РНК: информационная (матричная), или и(м)РНК, рибосом-ные, или рРНК, и тРНК. Соответственно, в этих клетках имеется три РНК-полимеразы — I, II и III. РНК-полимераза I участвует в синтезе молекулы-предшественницы пре-рРНК, РНК-полимераза II — ключевой фермент в транскрипции структурных (смысловых) генов, кодирующих аминокислотные последовательности белков, а также


Рис. 2.31. Образование и(м)РНК на матричной цепи биспирали ДНК

бор необходимых тРНК. Процесс транскрипции, процессинга и ядерно-цитоплазматического транспорта и(м)РНК рассмотрен в деталях ниже (см. п. 2.4.5.5).

У эукариот образование рРНК (см. п. 2.4.3.3) происходит в зоне расположения кластеров соответствующих генов (рДНК, ядрышковые организаторы) одним блоком (45S пре-РНК транскрипт) и катализируется ферментом РНК-полимеразой I. В результате процессинга пре-рРНК транскрипта образуются молекулы 28S, 18S и 5,8S рРНК (см. рис. 2.20). Гены 5S рРНК транскрибируются отдельно ферментом РНК-полимеразой III. Особенностью рибосомных РНК является их относительное богатство гуаниловыми и цитидиловыми нуклеотидами. Во вторичной структуре рРНК много двухцепочечных участков и петель.


Рис. 2.32. Структура тРНК (клеверный лист) в схематичном изображении


Рис. 2.33. Образование аминоацил-тРНК

Жизнедеятельность клетки как единицы биологической активности обеспечивается совокупностью взаимосвязанных, приуроченных к определенным внутриклеточным структурам, упорядоченных во времени и пространстве обменных (метаболических) процессов. Эти процессы образуют три потока: информации, энергии и веществ.

Благодаря наличию потока информации клетка на основе многовекового эволюционного опыта предков приобретает структуру, отвечающую критериям живого, поддерживает ее во времени, а также передает в ряду поколений.

В потоке информации участвуют ядро (конкретно ДНК хромосом), макромолекулы, переносящие информацию в цитоплазму (мРНК), цитоплазматический аппарат трансляции (рибосомы и полисомы, тРНК, ферменты активации аминокислот). На завершающем этапе этого потока полипептиды, синтезированные на полисомах, приобретают третичную и четвертичную структуры и используются в качестве катализаторов или структурных белков (рис. 2.7). Кроме основного по объему заключенной информации ядерного генома в эукариотических клетках функционируют также геномы митохондрий, а в зеленых растениях — и хлоропластов.

Рис. 2.7. Поток биологической информации в клетке

2.3.4. Внутриклеточный поток энергии

Поток энергии у представителей разных групп организмов обеспечивается механизмами энергоснабжения —брожением, фото- или хемосинтезом, дыханием.

Рис. 2.8. Поток энергии в клетке
Среди органелл животной клетки особое место в дыхательном обмене принадлежит митохондриям, выполняющим функцию окислительного фосфорилирования, а также матриксу цитоплазмы, в котором протекает процесс бескислородного расщепления глюкозы — анаэробный гликолиз (рис. 2.8). Из двух механизмов, обеспечивающих жизнедеятельность клетки энергией, анаэробный гликолиз менее эффективен. В связи с неполным (в отсутствие кислорода) окислением, прежде всего глюкозы, в процессе гликолиза для нужд клетки извлекается не более 10% энергии. Недоокисленные продукты гликолиза (пируват) поступают в митохондрий, где в условиях полного окисления, сопряженного с фосфорилированием АДФ до АТФ, отдают для нужд клетки оставшуюся в их химических связях энергию.

Из преобразователей энергии химических связей АТФ в работу наиболее изучена механохимическая система поперечно-полосатой мышцы. Она состоит из сократительных белков (актомиозиновый комплекс) и фермента аденозинтрифосфатазы, расщепляющего АТФ с высвобождением энергии.

Особенность потока энергии растительной клетки состоит в наличии фотосинтеза механизма преобразования энергии солнечного света в энергию химических связей органических веществ.

Механизмы энергообеспечения клетки отличаются эффективностью. Коэффициенты полезного действия хлоропласта и митохондрий, достигая соответственно 25 и 45—60%, существенно превосходят аналогичный показатель паровой машины (8%) или двигателя внутреннего сгорания (17%).

2.3.5. Внутриклеточный поток веществ

Реакции дыхательного обмена не только поставляют энергию, но и снабжают клетку строительными блоками для синтеза разнообразных молекул. Ими являются многие продукты расщепления пищевых веществ. Особая роль в этом принадлежит одному из этапов дыхательного обмена — циклу Кребса,осуществля-емому в митохондриях. Через этот цикл проходит путь углеродных атомов (углеродных скелетов) большинства соединений, служащих промежуточными продуктами синтеза химических компонентов клетки. В цикле Кребса происходит выбор пути превращения того или иного соединения, а также переключение обмена клетки с одного пути на другой, например с углеводного на жировой. Таким образом, дыхательный обмен одновременно составляет ведущее звено потока веществ, объединяющего метаболические пути расщепления и образования углеводов, белков, жиров, нуклеиновых кислот (рис. 2.9).

Рис. 2.9. Взаимосвязь внутриклеточного обмена белков, жиров и углеводов через цикл Кребса

2.3.6. Другие внутриклеточные механизмы общего значения

Потоки информации, энергии и веществ осуществляются непрерывно и составляют необходимое условие сохранения клетки как живой системы.

Кроме структур и процессов, прямо включенных в названные потоки, в клетке функционируют механизмы, которые также являются жизненно необходимыми. Так, лизосомы, воздействуя ферментами на пиноцитированный или аутофагированный материал, обеспечивают гидролитическое расщепление макромолекул до низкомолекулярных соединений. Они же обусловливают разрушение внутриклеточных структур, утративших свое функциональное значение. Образовавшиеся при этом химические соединения включаются в потоки энергии, веществ и информации. Пероксисомы ликвидируют возникающие в клетке пероксиды, токсичные для живой протоплазмы. Организация внутриклеточных транспортных потоков обусловливается наличием и активностью микротрубочек, микрофибрилл.

2.3.7. Клетка как целостная структура. Коллоидная система протоплазмы

Выше мы познакомились с различными по строению и функциям клеточными структурами. Однако, взаимодействуя с окружающей средой и отвечая на регуляторные стимулы, клетка ведет себя как целостная структура. Об этом свидетельствует однотипность реакции разных видов клеток на действие раздражителей, вызывающих переход клетки в возбужденное состояние 1 .

Важная роль в функциональном объединении структурных компонентов и компартментов клетки принадлежит свойствам живой протоплазмы 2 . В целом ее принято рассматривать как особую многофазную коллоидную систему, или биоколлоид. От банальных коллоидных систем биоколлоид отличается сложностью дисперсной фазы. Основу ее составляют макромолекулы, которые присутствуют либо в составе плотных микроскопически видимых структур (органелл), либо в диспергированном состоянии, близком к растворам или рыхлым сетеобразным структурам типа гелей.

Между крайними полюсами организации протоплазмы в виде вязких гелей и растворов имеются переходные состояния. При указанных переходах совершается работа, в результате которой осуществляются различные внутриклеточные превращения,—образование мембран, сборка микротрубочек или микрофиламентов из субъединиц, выброс из клетки секрета, изменение геометрии белковых молекул, приводящее к торможению или усилению ферментативной активности. Особенностью биоколлоида является также и то, что в физиологических условиях переходы протоплазмы из одного агрегатного состояния в другое (в силу наличия особого ферментативного механизма) обратимы.

Названное свойство биоколлоида обеспечивает клетке способность при наличии энергии многократно совершать работу в ответ на действие стимулов.

2.4. ЗАКОНОМЕРНОСТИ СУЩЕСТВОВАНИЯ КЛЕТКИ ВО ВРЕМЕНИ

2.4.1. Жизненный цикл клетки

Закономерные изменения структурно-функциональных характеристик клетки во времени составляют содержание жизненного цикла клетки (клеточного цикла). Клеточный цикл — это период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или смерти.

Важным компонентом клеточного цикла является митотический (пролиферативный) цикл —комплекс взаимосвязанных и согласованных во времени событий, происходящих в процессе подготовки клетки к делению и на протяжении самого деления. Кроме того, в жизненный цикл включается период выполнения клеткой многоклеточного организма специфических функций, а также периоды покоя. В периоды покоя ближайшая судьба клетки не определена: она может либо начать подготовку к митозу, либо приступить к специализации в определенном функциональном направлении (рис. 2.10).

Продолжительность митотического цикла для большинства клеток составляет от 10 до 50 ч. Длительность цикла регулируется путем изменения продолжительности всех его периодов. У млекопитающих время митоза составляет 1—1,5 ч, 02-периода интерфазы —2—5 ч, S-периода интерфазы — 6—10 ч.

Биологическое значение митотического цикла состоит в том, что он обеспечивает преемственность хромосом в ряду клеточных поколений, образование клеток, равноценных по объему и содержанию наследственной информации. Таким образом, цикл является всеобщим механизмом воспроизведения клеточной организации эукариотического типа в индивидуальном развитии.

Главные события митотического цикла заключаются в редупликации (самоудвоении) наследственного материала материнской клетки и в равномерном распределении этого материала между дочерними клетками. Указанным событиям сопутствуют закономерные изменения химической и морфологической организации хромосом ядерных структур, в которых сосредоточено более 90% генетического материала эукари-отической клетки (основная часть внеядерной ДНК животной клетки находится в митохондриях).

Хромосомы во взаимодействии с внехромосомными механизмами обеспечивают: а) хранение генетической информации, б) использование этой информации для создания и поддержания клеточной организации, в) регуляцию считывания наследственной информации, г) удвоение (самокопирование) генетического материала, д) передачу его от материнской клетки дочерним. Химическая организация и строение хромосом описаны в разд. 3.5.2.

Рис. 2.10. Жизненный цикл клетки многоклеточного организма.
I — митотический цикл; II — переход клетки в дифференцированное состояние; III— гибель клетки:

G 1 — пресинтетический период, G 2 — постсинтетический (предмитотический) период, М —митоз, S — синтетический период, R 1 и R2 — периоды покоя клеточного цикла; 2с —количество ДНК в диплоидном наборе хромосом, 4с —удвоенное количество ДНК

2.4.2. Изменения клетки в митотическом цикле

По двум главным событиям митотического цикла в нем выделяют репродуктивную и разделительную фазы, соответствующие интерфазе и митозу классической цитологии (рис. 2.11).

Рис. 2.11. Интерфазная и митотическая формы структурной организации хромосом. А хроматин в интерфазном ядре; Б включение в ядро радиоактивного предшественника ДНК в синтетическом периоде митотического цикла; В клетка в анафазе митоза
В начальный отрезок интерфазы (постмитотический, пресинтетический, или Gi-период) восстанавливаются черты организации интерфазной клетки, завершается формирование ядрышка, начавшееся еще в телофазе. Из цитоплазмы в ядро поступает значительное (до 90%) количество белка. В цитоплазме параллельно реорганизации ультраструктуры интенсифицируется синтез белка. Это способствует росту массы клетки. Если дочерней клетке предстоит вступить в следующий митотический цикл, синтезы приобретают направленный характер: образуются химические предшественники ДНК, ферменты, катализирующие реакцию редупликации ДНК, синтезируется белок, начинающий эту реакцию. Таким образом осуществляются процессы подготовки следующего периода интерфазы — синтетического.

В синтетическом или S-периодв удваивается количество наследственного материала клетки. За малыми исключениями редупликация 1 ДНК осуществляется полуконсервативным способом (рис. 2.12).

В клетке человека содержится более 50 000 репликонов. Длина каждого из них около 30 мкм. Число их меняется в онтогенезе. Смысл редупликации ДНК репликонами становится понятным из следующих сопоставлений. Скорость синтеза ДНК составляет 0,5 мкм/мин. В этом случае редупликация нити ДНК одной хромосомы человека длиной около 7 см должна была бы занять около трех месяцев. Продолжительность же синтетического периода в клетках человека составляет 7—12 ч.

Рис. 2.12. Полуконсервативный редупликации ДНК. I материнская биспираль ДНК; II—достраивание комплементарных полинуклеотидных цепей; III — две дочерние биспирали ДНК: А, Т, Г, Ц - символы азотистых оснований нуклеотидов
Участки хромосом, в которых начинается синтез, называют точками инициации. Возможно, ими являются места прикрепления интерфазных хромосом к внутренней мембране ядерной оболочки. Можно думать, что ДНК отдельных фракций, о которых речь пойдет ниже (см. разд. 2.4.2), редуплицируется в строго определенной фазе S-периода. Так, большая часть генов рРНК удваивает ДНК в начале периода. Редупликация запускается поступающим в ядро из цитоплазмы сигналом, природа которого не выяснена. Синтезу ДНК в репликоне предшествует синтез РНК. В клетке, прошедшей S-период интерфазы, хромосомы содержат удвоенное количество генетического материала. Наряду с ДНК в синтетическом периоде интенсивно образуются РНК и белок, а количество гистонов строго удваивается.

Примерно 1% ДНК животной клетки находится в митоховдриях. Незначительная часть митохондриальной ДНК редуплицируется в синтетическом, тогда как основная —в постсинтетическом периоде интерфазы. Вместе с тем известно, что продолжительность жизни митохондрий печеночных клеток, например, составляет 10 сут. Учитывая, что в обычных условиях гепатоциты делятся редко, следует допустить, что редупликация ДНК митохондрий может происходить независимо от стадий митотического цикла.

Отрезок времени от окончания синтетического периода до начала митоза занимает постсинтетический (предмитотический), или G2-neриод интерфазы. Он характеризуется интенсивным синтезом РНК и особенно белка. Завершается удвоение массы цитоплазмы по сравнению с началом интерфазы. Это необходимо для вступления клетки в митоз. Часть образуемых белков (тубулины) используется в дальнейшем для построения микротрубочек веретена деления. Синтетический и постсинтетический периоды связаны с митозом непосредственно. Это позволяет выделить их в особый период интерфазы — препрофазу.

В митозе можно выделить четыре фазы. Главные события по отдельным фазам представлены ниже и на рис. 2.13.

Рис. 2.13. Митоз в животной клетке.

А профаза; Б метафаза; В анафаза; Г телофаза

Заканчивается образование веретена деления. Хромосомы выстраиваются в экваториальной плоскости клетки (метафазная пластинка). Микротрубочки веретена деления связаны с кинетохорами хромосом. Каждая хромосома продольно расщепляется на две хроматиды (дочерние хромосомы), соединенные в области кинетохора

Наряду с преобразованием строения и упорядоченными перемещениями хромосом обязательным для разделительной фазы цикла является построение митотического аппарата. Он состоит из системы микротрубочек (ахроматиновое веретено, или веретено деления светооптической микроскопии) и структур, поляризующих митоз 1 , т.е. обозначающих два полюса в клетке, к которым разойдутся дочерние хромосомы. В клетках млекопитающих и человека роль поляризующих структур выполняют центриоли.

Митотический аппарат обеспечивает направленное перемещение дочерних хромосом в анафазе. Для этого необходим контакт микротрубочек со специализированными участками хромосом — центромерами (кинетохорами). При разрушении центромер в эксперименте расхождения хромосом к полюсам клетки не происходит.

Природа сил, обеспечивающих расхождение, неизвестна. Предполагают, что функциональную основу митотического аппарата составляет механохимическая система, сходная с действующей в поперечно-полосатой мышце. В нее входят сократимые белки и фермент, катализирующий расщепление АТФ для обеспечения процесса энергией.

Нарушения той или иной фазы митоза приводят к патологическим изменениям клеток. Отклонение от нормального течения процесса спирализации может привести к набуханию и слипанию хромосом. Иногда наблюдается отрыв участка хромосомы, который, если он лишен центромеры, не участвует в анафазном перемещении к полюсам и теряется. Отставать при движении могут отдельные хроматиды, что приводит к образованию дочерних ядер с несбалансированными хромосомными наборами. Повреждения со стороны веретена деления приводят к задержке митоза в метафазе, рассеиванию хромосом. При изменении количества центриолей возникают многополюсные или асимметричные митозы. Нарушение цитотомии приводит к появлению дву- и многоядерных клеток.

Данные генетики и цитологии указывают на сохранение структурной индивидуальности хромосом в клеточном цикле. Есть свидетельства в пользу упорядоченного размещения хромосом в объеме интерфазного ядра. Особенности взаиморасположения хромосом могут иметь большое функциональное значение. Так, пространственная близость в клетках человека хромосом 13, 14, 15, 21 и 22-й пар, содержащих гены рРНК, объясняется, по-видимому, их участием в формировании ядрышка и образовании рибосом, а 11-й и 16-й хромосом —в образовании молекулы гемоглобина. Есть указания на то, что в клетках разных типов расположение хромосом не одинаково.

На основе митотического цикла возник ряд механизмов, с помощью которых в том или ином органе количество генетического материала и, следовательно, интенсивность обмена могут быть увеличены при сохранении постоянства числа клеток. Удвоение ДНК клетки не всегда сопровождается ее разделением на две. Поскольку механизм такого удвоения совпадает с предмитотической редупликацией ДНК и оно сопровождается кратным увеличением количества хромосом, это явление получило название эндомитоза.

С генетической точки зрения, эндомитоз — геномная соматическая мутация, о чем будет сказано ниже. Другое явление, сходное по результату и названное политенией, заключается в кратном увеличении содержания ДНК в хромосомах при сохранении их диплоидного количества. Эндомитоз и политения приводят к образованию полиплоидных клеток, отличающихся кратным увеличением объема наследственного материала. В таких клетках в отличие от диплоидных гены повторены более чем два раза. Пропорционально увеличению числа генов растет масса клетки, что повышает ее функциональные возможности. В организме млекопитающих полиплоидизация с возрастом свойственна печеночным клеткам.

Основные типы перемещений внутри клетки- это поток белков и поток пузырьков (везикул). Одна из важнейших задач клетки – доставка молекул к различным отделам внутри клетки и во внеклеточное пространство. Существуют строго определенные пути внутриклеточного и межклеточного перемещения материала. Хотя в высокоспециализированных клетках могут встречаться некоторые вариации, внутриклеточные потоки в эукариотических клетках обычно похожи. Например, хотя между органеллами иногда встречаются двунаправленные потоки, белковый и везикулярный потоки преимущественно однонаправлены – мембранные белки перемещаются из эндоплазматического ретикулума к клеточной поверхности.

Доставку веществ из одного отдела клетки к другому выполняют специальные белки. В качестве сигнальных меток выступают специфические полипептидные последовательности этих белков. Важным открытием медицины за последние два десятилетия стало понимание того, что нарушение любого из таких транспортных путей может привести к заболеванию. Дефект сигнального маркера или локуса, узнающего маркер, может значительно нарушить здоровое состояние клетки и организма. Детальное изучение этих путей необходимо для понимания молекулярной основы многих заболеваний человека.

Клеточное ядро.

Ядро эукариотической клетки при микроскопии обычно выглядит как крупная округлая структура вблизи центра клетки. Ядерный материал, определяемый какхроматин, состоит из дезоксирибонуклеиновой кислоты (ДНК), гистонов и различных ядерных белков, участвующих в следующих процессах:

Формирование поддерживающего комплекса для ДНК.

Связывание со специфическими последовательностями ДНК и участие в транскрипции ДНК.

Внутри ядра находится структура, называемая ядрышком. В нем находятся хромосомы, содержащие петли ДНК и большие скопления генов рибосомной рибонуклеиновой кислоты (рРНК). Каждое такое скопление генов называется ядрышковым организатором.В ядрышках происходят следующие процессы:

Транскрипция рибосомной ДНК РНК- полимеразойI.

Упаковка рРНК в рибонуклеопротеидные комплексы, которые в дальнейшем становятся двумя главными субъединицами рибосомы (40Sи 60Sсубъединицами).

Размер ядрышек отражает активность синтеза белка в клетке. Чем активнее клетка, тем больше ядрышко.

Синтез рибосом в ядрышке.

Синтез рибосом – основной процесс, происходящий в ядре. Самые активные эукариотические клетки используют около 10 миллионов рибосом в течение одного клеточного цикла. Как часть структуры рибосомы, вокруг каждой рРНК субъединицы находится ряд высокоспециализированных белков. В состав малой субъединицы – 40S частицы – входят 30 уникальных белко, собранных вокруг молекулы 18S РНК. Большая субъединица 60S частица – имеет 51 белок, связанный со своей главной молекулой 28S РНК. В комплекс большей субъединицы входит также 5,8S РНК.

Ядерная оболочка.

Ядерная оболочка – двойная мембранная структура, которая окружает хроматин и переходит в эндоплазматический ретикулум (ЭР0. Внутренняя мембрана по составу белков отличается от наружной мембраны. Внутренний слой мембраны имеет волокнистую сеть белков, называемых ламинами, которые играют ключевую роль в поддержании структурной целостности мембраны. Наружная мембрана ядра переходит в мембрану ЭР и содержит белки, необходимые для связывания рибосом.

Ядерная пора и ядерный поровый комплекс.

Ядерные поры – гигантские макромолекулярные комплексы, которые обеспечивают активный обмен белков и рибонуклеопротеидов между ядром и цитоплазмой. Ядерный поровый комплекс (ЯПК) формирует цилиндр, приблизительно 1200 Ǻ в диаметре и 500 Ǻ толщиной и имеет восьмиугольную симметрию. ЯПК состоит из 100-200 белков; он имеет массу 124х106 дальтон, что примерно в 30 раз больше массы рибосомы.

Этот комплекс – основные ворота для веществ, которые постоянно перемещаются внутрь ядра и из него. Например, матричная РНК (мРНК), субъединицы рибосом, гистоны, рибосомные белки, факторы транскрипции, ионы и мелкие молекулы быстро обмениваются между ядром и полостью эндоплазматического ретикулума или цитозолем.

Механизм ядерного импорта и экспорта

Перемещение молекул из ядра и в него происходит путем активного транспорта, пассивной диффузии или путем специальной ядерной локализации, которая идет посредством сигнальной последовательности определенных белков. Пассивная диффузия и активный транспорт происходят через ядерный поровый комплекс. Мелкие молекулы и ионы ( 9кДа) перемещаются путем активного транспорта с вовлечением ядерного сигнала, а также по энергозависимому механизму.

Ядерный локализационный сигнал.

Роль импортина.

Белки, транспортируемые в ядро, несут ядерный локализационный сигнал (ЯЛС), который содержит значительно обогащенный промежуток из пяти или шести основных аминокислот. Пример- пролин-пролин-лизин-лизин- лизин- лизин-аланин- лизин-валин (Р-Р-К-К-К-К-А-К-V).

Группы основных аминокислот ЯЛС могут локализоваться в любом месте белка. Более того, ядерный локализационный сигнал не изменяется при транслокационных преобразованиях. Особое внимание привлекает тот факт, что 60 кДа белок импортин связывается с ЯЛС, инициирует и поддерживает импорт белков. В ядерном импорте также участвуют цитоплазматические факторы.

Растворение ядра и его восстановление

Интерфазные ядра полностью собраны вместе с комплексами пор. Ядерная пластина (ламина) – сетчая структура специальных промежуточных филаментов - формирует волосковую сетеподобную структуру, которая связана с липопротеиновым комплексом внутренней ядерной мембраны.

При вступлении клетки в начало профазы цитозольные киназы фосфорилируют субъединицы ядерных ламин. После фосфорилирования сетеподобная структура разрушается. Затем липопротеиновый компонент внутренней ядерной мембраны распадается на мелкие везикулы, так же как и наружная ядерная мембрана, которая состыкована с ЭР. Затем содержимое ядра распространяется в цитозоле.

Восстановление ядерной оболочки начинается в поздней анафазе, в тот момент, когда цитоплазматические фосфатазы начинают удаление фосфатных остатков из ядерных ламин. Эти белки начинают реполимеризоваться на поверхности конденсированных хромосом. В то же время везикулы, образовавшиеся из внутренней ядерной мембраны, начинают сливаться и формируют оболочку вокруг хромосом. К концу поздней телофазы происходит окончательное слияние внутренней ядерной мембраны. Эти слитые мембраны и дефосфорилированные ламины формируют сетевидную структуру на внутренней поверхности ядерной мембраны.

Митохондрии

Общая структура и функции

Митохондрии – это окруженные двойной мембраной органеллы, которые выполняют функцию метаболического центра клетки. Митохондрии являются местом синтеза аденозинтрифосфата (АТФ). Этот процесс требует участия многих ферментов, большинство из которых поступает из цитозоля.

Процесс импорта ферментов очень сложен и включает несколько этапов. Предполагается, что митохондрии – результат эволюции организмов, которые внедрились в примитивную прокариотическую клетку и сформировали симбиотические отношения с хозяином.

Считается, что митохондрии произошли врезультате эволюции от орагнизмов, которые внедрились в примитивную прокариотическую клетку и стали симбиотами с ней.

Эти орагнеллы могут принимать различные морфологические формы. Некоторые из них имеют сферическую форму, другие лентовидную.

Митохондриальная ДНК реплицируется в интерфазе, и этот процесс не синхронизирован с репликацией ДНК в ядре. Митохондриальная ДНК отличается от ядерной ДНК и кодирует особые митохондриальные гены.

Количество транслируемых с митохондриальной мРНК белков ограничено; они формируют субъединицы крупных ферментных комплексов. Митохондрии имеют функционирующие рибосомы, переводящие информацию митохондриальной ДНК в белки, используемые в органелле.

Во время клеточного цикла митохондрии один раз делятся надвое, образуя при этом перетяжку. Перетяжка деления развивается, начиная с внутренней митохондриальной мембраны.

Митохондриальная ДНК

В отличие от других орагнелл клетки, митохондрии обладают собственной ДНК, которая отличается от ядерной ДНК и кодирует особые митохондриальные гены. Свойства митохондриальной ДНК:

небольшая и содержит около 16,5 кб, то есть приблизительно в 105 раз меньше, чем ДНК, локализованная в ядре;

кольцевая и кодирует 2 рибосомные РНК, 22 транспортных РНК (тРНК) и 13 белков.

Генетический код митохондрий, определяющий отдельные аминокислоты, немного отличается от кода ядерной ДНК. Митохондриальный код, например, обладает измененными стоп-кодонами.

Эта органелла обладает функционирующими рибосомами, которые синтезируют белки, используемые в органелле и кодируемые митохондриальной мРНК белка, ограничено и формирует субъединицы более крупных ферментных комплексов. Митохондрии могут принимать различную форму. Обычно митохондрия делится, по крайней мере, один раз в течение клеточного цикла после репликации ее ДНК, которая происходит во время интерфазы. Эта репликация не связана с S-фазой клетки. Деление митохондрии происходит посредством перетяжки на две, которая начинается с образования кольцевой бороздки на внутренней митохондриальной мембране.

Читайте также: